3437 lines
129 KiB
C++
3437 lines
129 KiB
C++
|
//===- X86.cpp ------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "ABIInfoImpl.h"
|
||
|
#include "TargetInfo.h"
|
||
|
#include "clang/Basic/DiagnosticFrontend.h"
|
||
|
#include "llvm/ADT/SmallBitVector.h"
|
||
|
|
||
|
using namespace clang;
|
||
|
using namespace clang::CodeGen;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
/// IsX86_MMXType - Return true if this is an MMX type.
|
||
|
bool IsX86_MMXType(llvm::Type *IRType) {
|
||
|
// Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
|
||
|
return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
|
||
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
|
||
|
IRType->getScalarSizeInBits() != 64;
|
||
|
}
|
||
|
|
||
|
static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
|
StringRef Constraint,
|
||
|
llvm::Type* Ty) {
|
||
|
bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
|
||
|
.Cases("y", "&y", "^Ym", true)
|
||
|
.Default(false);
|
||
|
if (IsMMXCons && Ty->isVectorTy()) {
|
||
|
if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
|
||
|
64) {
|
||
|
// Invalid MMX constraint
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
|
||
|
}
|
||
|
|
||
|
if (Constraint == "k") {
|
||
|
llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
|
||
|
return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
|
||
|
}
|
||
|
|
||
|
// No operation needed
|
||
|
return Ty;
|
||
|
}
|
||
|
|
||
|
/// Returns true if this type can be passed in SSE registers with the
|
||
|
/// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
|
||
|
static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
|
||
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
||
|
if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
|
||
|
if (BT->getKind() == BuiltinType::LongDouble) {
|
||
|
if (&Context.getTargetInfo().getLongDoubleFormat() ==
|
||
|
&llvm::APFloat::x87DoubleExtended())
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
} else if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||
|
// vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
|
||
|
// registers specially.
|
||
|
unsigned VecSize = Context.getTypeSize(VT);
|
||
|
if (VecSize == 128 || VecSize == 256 || VecSize == 512)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// Returns true if this aggregate is small enough to be passed in SSE registers
|
||
|
/// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
|
||
|
static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
|
||
|
return NumMembers <= 4;
|
||
|
}
|
||
|
|
||
|
/// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
|
||
|
static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
|
||
|
auto AI = ABIArgInfo::getDirect(T);
|
||
|
AI.setInReg(true);
|
||
|
AI.setCanBeFlattened(false);
|
||
|
return AI;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// X86-32 ABI Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// Similar to llvm::CCState, but for Clang.
|
||
|
struct CCState {
|
||
|
CCState(CGFunctionInfo &FI)
|
||
|
: IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
|
||
|
Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
|
||
|
|
||
|
llvm::SmallBitVector IsPreassigned;
|
||
|
unsigned CC = CallingConv::CC_C;
|
||
|
unsigned FreeRegs = 0;
|
||
|
unsigned FreeSSERegs = 0;
|
||
|
RequiredArgs Required;
|
||
|
bool IsDelegateCall = false;
|
||
|
};
|
||
|
|
||
|
/// X86_32ABIInfo - The X86-32 ABI information.
|
||
|
class X86_32ABIInfo : public ABIInfo {
|
||
|
enum Class {
|
||
|
Integer,
|
||
|
Float
|
||
|
};
|
||
|
|
||
|
static const unsigned MinABIStackAlignInBytes = 4;
|
||
|
|
||
|
bool IsDarwinVectorABI;
|
||
|
bool IsRetSmallStructInRegABI;
|
||
|
bool IsWin32StructABI;
|
||
|
bool IsSoftFloatABI;
|
||
|
bool IsMCUABI;
|
||
|
bool IsLinuxABI;
|
||
|
unsigned DefaultNumRegisterParameters;
|
||
|
|
||
|
static bool isRegisterSize(unsigned Size) {
|
||
|
return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
|
||
|
}
|
||
|
|
||
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override {
|
||
|
// FIXME: Assumes vectorcall is in use.
|
||
|
return isX86VectorTypeForVectorCall(getContext(), Ty);
|
||
|
}
|
||
|
|
||
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
||
|
uint64_t NumMembers) const override {
|
||
|
// FIXME: Assumes vectorcall is in use.
|
||
|
return isX86VectorCallAggregateSmallEnough(NumMembers);
|
||
|
}
|
||
|
|
||
|
bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
|
||
|
|
||
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
|
/// such that the argument will be passed in memory.
|
||
|
ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
|
||
|
|
||
|
ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
|
||
|
|
||
|
/// Return the alignment to use for the given type on the stack.
|
||
|
unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
|
||
|
|
||
|
Class classify(QualType Ty) const;
|
||
|
ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
|
||
|
ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
|
||
|
unsigned ArgIndex) const;
|
||
|
|
||
|
/// Updates the number of available free registers, returns
|
||
|
/// true if any registers were allocated.
|
||
|
bool updateFreeRegs(QualType Ty, CCState &State) const;
|
||
|
|
||
|
bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
|
||
|
bool &NeedsPadding) const;
|
||
|
bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
|
||
|
|
||
|
bool canExpandIndirectArgument(QualType Ty) const;
|
||
|
|
||
|
/// Rewrite the function info so that all memory arguments use
|
||
|
/// inalloca.
|
||
|
void rewriteWithInAlloca(CGFunctionInfo &FI) const;
|
||
|
|
||
|
void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
||
|
CharUnits &StackOffset, ABIArgInfo &Info,
|
||
|
QualType Type) const;
|
||
|
void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
|
||
|
|
||
|
public:
|
||
|
|
||
|
void computeInfo(CGFunctionInfo &FI) const override;
|
||
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const override;
|
||
|
|
||
|
X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
|
||
|
bool RetSmallStructInRegABI, bool Win32StructABI,
|
||
|
unsigned NumRegisterParameters, bool SoftFloatABI)
|
||
|
: ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
|
||
|
IsRetSmallStructInRegABI(RetSmallStructInRegABI),
|
||
|
IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
|
||
|
IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
|
||
|
IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
|
||
|
CGT.getTarget().getTriple().isOSCygMing()),
|
||
|
DefaultNumRegisterParameters(NumRegisterParameters) {}
|
||
|
};
|
||
|
|
||
|
class X86_32SwiftABIInfo : public SwiftABIInfo {
|
||
|
public:
|
||
|
explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
|
||
|
: SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
|
||
|
|
||
|
bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
|
||
|
bool AsReturnValue) const override {
|
||
|
// LLVM's x86-32 lowering currently only assigns up to three
|
||
|
// integer registers and three fp registers. Oddly, it'll use up to
|
||
|
// four vector registers for vectors, but those can overlap with the
|
||
|
// scalar registers.
|
||
|
return occupiesMoreThan(ComponentTys, /*total=*/3);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
|
public:
|
||
|
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
|
||
|
bool RetSmallStructInRegABI, bool Win32StructABI,
|
||
|
unsigned NumRegisterParameters, bool SoftFloatABI)
|
||
|
: TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
|
||
|
CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
|
||
|
NumRegisterParameters, SoftFloatABI)) {
|
||
|
SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
|
||
|
}
|
||
|
|
||
|
static bool isStructReturnInRegABI(
|
||
|
const llvm::Triple &Triple, const CodeGenOptions &Opts);
|
||
|
|
||
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
|
CodeGen::CodeGenModule &CGM) const override;
|
||
|
|
||
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
||
|
// Darwin uses different dwarf register numbers for EH.
|
||
|
if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
|
||
|
return 4;
|
||
|
}
|
||
|
|
||
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
|
llvm::Value *Address) const override;
|
||
|
|
||
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
|
StringRef Constraint,
|
||
|
llvm::Type* Ty) const override {
|
||
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
||
|
}
|
||
|
|
||
|
void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
|
||
|
std::string &Constraints,
|
||
|
std::vector<llvm::Type *> &ResultRegTypes,
|
||
|
std::vector<llvm::Type *> &ResultTruncRegTypes,
|
||
|
std::vector<LValue> &ResultRegDests,
|
||
|
std::string &AsmString,
|
||
|
unsigned NumOutputs) const override;
|
||
|
|
||
|
StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
|
||
|
return "movl\t%ebp, %ebp"
|
||
|
"\t\t// marker for objc_retainAutoreleaseReturnValue";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
/// Rewrite input constraint references after adding some output constraints.
|
||
|
/// In the case where there is one output and one input and we add one output,
|
||
|
/// we need to replace all operand references greater than or equal to 1:
|
||
|
/// mov $0, $1
|
||
|
/// mov eax, $1
|
||
|
/// The result will be:
|
||
|
/// mov $0, $2
|
||
|
/// mov eax, $2
|
||
|
static void rewriteInputConstraintReferences(unsigned FirstIn,
|
||
|
unsigned NumNewOuts,
|
||
|
std::string &AsmString) {
|
||
|
std::string Buf;
|
||
|
llvm::raw_string_ostream OS(Buf);
|
||
|
size_t Pos = 0;
|
||
|
while (Pos < AsmString.size()) {
|
||
|
size_t DollarStart = AsmString.find('$', Pos);
|
||
|
if (DollarStart == std::string::npos)
|
||
|
DollarStart = AsmString.size();
|
||
|
size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
|
||
|
if (DollarEnd == std::string::npos)
|
||
|
DollarEnd = AsmString.size();
|
||
|
OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
|
||
|
Pos = DollarEnd;
|
||
|
size_t NumDollars = DollarEnd - DollarStart;
|
||
|
if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
|
||
|
// We have an operand reference.
|
||
|
size_t DigitStart = Pos;
|
||
|
if (AsmString[DigitStart] == '{') {
|
||
|
OS << '{';
|
||
|
++DigitStart;
|
||
|
}
|
||
|
size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
|
||
|
if (DigitEnd == std::string::npos)
|
||
|
DigitEnd = AsmString.size();
|
||
|
StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
|
||
|
unsigned OperandIndex;
|
||
|
if (!OperandStr.getAsInteger(10, OperandIndex)) {
|
||
|
if (OperandIndex >= FirstIn)
|
||
|
OperandIndex += NumNewOuts;
|
||
|
OS << OperandIndex;
|
||
|
} else {
|
||
|
OS << OperandStr;
|
||
|
}
|
||
|
Pos = DigitEnd;
|
||
|
}
|
||
|
}
|
||
|
AsmString = std::move(OS.str());
|
||
|
}
|
||
|
|
||
|
/// Add output constraints for EAX:EDX because they are return registers.
|
||
|
void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
|
||
|
CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
|
||
|
std::vector<llvm::Type *> &ResultRegTypes,
|
||
|
std::vector<llvm::Type *> &ResultTruncRegTypes,
|
||
|
std::vector<LValue> &ResultRegDests, std::string &AsmString,
|
||
|
unsigned NumOutputs) const {
|
||
|
uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
|
||
|
|
||
|
// Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
|
||
|
// larger.
|
||
|
if (!Constraints.empty())
|
||
|
Constraints += ',';
|
||
|
if (RetWidth <= 32) {
|
||
|
Constraints += "={eax}";
|
||
|
ResultRegTypes.push_back(CGF.Int32Ty);
|
||
|
} else {
|
||
|
// Use the 'A' constraint for EAX:EDX.
|
||
|
Constraints += "=A";
|
||
|
ResultRegTypes.push_back(CGF.Int64Ty);
|
||
|
}
|
||
|
|
||
|
// Truncate EAX or EAX:EDX to an integer of the appropriate size.
|
||
|
llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
|
||
|
ResultTruncRegTypes.push_back(CoerceTy);
|
||
|
|
||
|
// Coerce the integer by bitcasting the return slot pointer.
|
||
|
ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy));
|
||
|
ResultRegDests.push_back(ReturnSlot);
|
||
|
|
||
|
rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
|
||
|
}
|
||
|
|
||
|
/// shouldReturnTypeInRegister - Determine if the given type should be
|
||
|
/// returned in a register (for the Darwin and MCU ABI).
|
||
|
bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
|
||
|
ASTContext &Context) const {
|
||
|
uint64_t Size = Context.getTypeSize(Ty);
|
||
|
|
||
|
// For i386, type must be register sized.
|
||
|
// For the MCU ABI, it only needs to be <= 8-byte
|
||
|
if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
|
||
|
return false;
|
||
|
|
||
|
if (Ty->isVectorType()) {
|
||
|
// 64- and 128- bit vectors inside structures are not returned in
|
||
|
// registers.
|
||
|
if (Size == 64 || Size == 128)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// If this is a builtin, pointer, enum, complex type, member pointer, or
|
||
|
// member function pointer it is ok.
|
||
|
if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
|
||
|
Ty->isAnyComplexType() || Ty->isEnumeralType() ||
|
||
|
Ty->isBlockPointerType() || Ty->isMemberPointerType())
|
||
|
return true;
|
||
|
|
||
|
// Arrays are treated like records.
|
||
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
|
||
|
return shouldReturnTypeInRegister(AT->getElementType(), Context);
|
||
|
|
||
|
// Otherwise, it must be a record type.
|
||
|
const RecordType *RT = Ty->getAs<RecordType>();
|
||
|
if (!RT) return false;
|
||
|
|
||
|
// FIXME: Traverse bases here too.
|
||
|
|
||
|
// Structure types are passed in register if all fields would be
|
||
|
// passed in a register.
|
||
|
for (const auto *FD : RT->getDecl()->fields()) {
|
||
|
// Empty fields are ignored.
|
||
|
if (isEmptyField(Context, FD, true))
|
||
|
continue;
|
||
|
|
||
|
// Check fields recursively.
|
||
|
if (!shouldReturnTypeInRegister(FD->getType(), Context))
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
|
||
|
// Treat complex types as the element type.
|
||
|
if (const ComplexType *CTy = Ty->getAs<ComplexType>())
|
||
|
Ty = CTy->getElementType();
|
||
|
|
||
|
// Check for a type which we know has a simple scalar argument-passing
|
||
|
// convention without any padding. (We're specifically looking for 32
|
||
|
// and 64-bit integer and integer-equivalents, float, and double.)
|
||
|
if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
|
||
|
!Ty->isEnumeralType() && !Ty->isBlockPointerType())
|
||
|
return false;
|
||
|
|
||
|
uint64_t Size = Context.getTypeSize(Ty);
|
||
|
return Size == 32 || Size == 64;
|
||
|
}
|
||
|
|
||
|
static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
|
||
|
uint64_t &Size) {
|
||
|
for (const auto *FD : RD->fields()) {
|
||
|
// Scalar arguments on the stack get 4 byte alignment on x86. If the
|
||
|
// argument is smaller than 32-bits, expanding the struct will create
|
||
|
// alignment padding.
|
||
|
if (!is32Or64BitBasicType(FD->getType(), Context))
|
||
|
return false;
|
||
|
|
||
|
// FIXME: Reject bit-fields wholesale; there are two problems, we don't know
|
||
|
// how to expand them yet, and the predicate for telling if a bitfield still
|
||
|
// counts as "basic" is more complicated than what we were doing previously.
|
||
|
if (FD->isBitField())
|
||
|
return false;
|
||
|
|
||
|
Size += Context.getTypeSize(FD->getType());
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
|
||
|
uint64_t &Size) {
|
||
|
// Don't do this if there are any non-empty bases.
|
||
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
||
|
if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
|
||
|
Size))
|
||
|
return false;
|
||
|
}
|
||
|
if (!addFieldSizes(Context, RD, Size))
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Test whether an argument type which is to be passed indirectly (on the
|
||
|
/// stack) would have the equivalent layout if it was expanded into separate
|
||
|
/// arguments. If so, we prefer to do the latter to avoid inhibiting
|
||
|
/// optimizations.
|
||
|
bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
|
||
|
// We can only expand structure types.
|
||
|
const RecordType *RT = Ty->getAs<RecordType>();
|
||
|
if (!RT)
|
||
|
return false;
|
||
|
const RecordDecl *RD = RT->getDecl();
|
||
|
uint64_t Size = 0;
|
||
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
|
if (!IsWin32StructABI) {
|
||
|
// On non-Windows, we have to conservatively match our old bitcode
|
||
|
// prototypes in order to be ABI-compatible at the bitcode level.
|
||
|
if (!CXXRD->isCLike())
|
||
|
return false;
|
||
|
} else {
|
||
|
// Don't do this for dynamic classes.
|
||
|
if (CXXRD->isDynamicClass())
|
||
|
return false;
|
||
|
}
|
||
|
if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
|
||
|
return false;
|
||
|
} else {
|
||
|
if (!addFieldSizes(getContext(), RD, Size))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// We can do this if there was no alignment padding.
|
||
|
return Size == getContext().getTypeSize(Ty);
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
|
||
|
// If the return value is indirect, then the hidden argument is consuming one
|
||
|
// integer register.
|
||
|
if (State.FreeRegs) {
|
||
|
--State.FreeRegs;
|
||
|
if (!IsMCUABI)
|
||
|
return getNaturalAlignIndirectInReg(RetTy);
|
||
|
}
|
||
|
return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
|
||
|
CCState &State) const {
|
||
|
if (RetTy->isVoidType())
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
|
||
|
const Type *Base = nullptr;
|
||
|
uint64_t NumElts = 0;
|
||
|
if ((State.CC == llvm::CallingConv::X86_VectorCall ||
|
||
|
State.CC == llvm::CallingConv::X86_RegCall) &&
|
||
|
isHomogeneousAggregate(RetTy, Base, NumElts)) {
|
||
|
// The LLVM struct type for such an aggregate should lower properly.
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
if (const VectorType *VT = RetTy->getAs<VectorType>()) {
|
||
|
// On Darwin, some vectors are returned in registers.
|
||
|
if (IsDarwinVectorABI) {
|
||
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
|
|
||
|
// 128-bit vectors are a special case; they are returned in
|
||
|
// registers and we need to make sure to pick a type the LLVM
|
||
|
// backend will like.
|
||
|
if (Size == 128)
|
||
|
return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
|
||
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
||
|
|
||
|
// Always return in register if it fits in a general purpose
|
||
|
// register, or if it is 64 bits and has a single element.
|
||
|
if ((Size == 8 || Size == 16 || Size == 32) ||
|
||
|
(Size == 64 && VT->getNumElements() == 1))
|
||
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
|
Size));
|
||
|
|
||
|
return getIndirectReturnResult(RetTy, State);
|
||
|
}
|
||
|
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
if (isAggregateTypeForABI(RetTy)) {
|
||
|
if (const RecordType *RT = RetTy->getAs<RecordType>()) {
|
||
|
// Structures with flexible arrays are always indirect.
|
||
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
||
|
return getIndirectReturnResult(RetTy, State);
|
||
|
}
|
||
|
|
||
|
// If specified, structs and unions are always indirect.
|
||
|
if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
|
||
|
return getIndirectReturnResult(RetTy, State);
|
||
|
|
||
|
// Ignore empty structs/unions.
|
||
|
if (isEmptyRecord(getContext(), RetTy, true))
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
|
||
|
// Return complex of _Float16 as <2 x half> so the backend will use xmm0.
|
||
|
if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
|
||
|
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
||
|
if (ET->isFloat16Type())
|
||
|
return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
|
||
|
llvm::Type::getHalfTy(getVMContext()), 2));
|
||
|
}
|
||
|
|
||
|
// Small structures which are register sized are generally returned
|
||
|
// in a register.
|
||
|
if (shouldReturnTypeInRegister(RetTy, getContext())) {
|
||
|
uint64_t Size = getContext().getTypeSize(RetTy);
|
||
|
|
||
|
// As a special-case, if the struct is a "single-element" struct, and
|
||
|
// the field is of type "float" or "double", return it in a
|
||
|
// floating-point register. (MSVC does not apply this special case.)
|
||
|
// We apply a similar transformation for pointer types to improve the
|
||
|
// quality of the generated IR.
|
||
|
if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
|
||
|
if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
|
||
|
|| SeltTy->hasPointerRepresentation())
|
||
|
return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
|
||
|
|
||
|
// FIXME: We should be able to narrow this integer in cases with dead
|
||
|
// padding.
|
||
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
|
||
|
}
|
||
|
|
||
|
return getIndirectReturnResult(RetTy, State);
|
||
|
}
|
||
|
|
||
|
// Treat an enum type as its underlying type.
|
||
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
if (const auto *EIT = RetTy->getAs<BitIntType>())
|
||
|
if (EIT->getNumBits() > 64)
|
||
|
return getIndirectReturnResult(RetTy, State);
|
||
|
|
||
|
return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
|
||
|
: ABIArgInfo::getDirect());
|
||
|
}
|
||
|
|
||
|
unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
|
||
|
unsigned Align) const {
|
||
|
// Otherwise, if the alignment is less than or equal to the minimum ABI
|
||
|
// alignment, just use the default; the backend will handle this.
|
||
|
if (Align <= MinABIStackAlignInBytes)
|
||
|
return 0; // Use default alignment.
|
||
|
|
||
|
if (IsLinuxABI) {
|
||
|
// Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
|
||
|
// want to spend any effort dealing with the ramifications of ABI breaks.
|
||
|
//
|
||
|
// If the vector type is __m128/__m256/__m512, return the default alignment.
|
||
|
if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
|
||
|
return Align;
|
||
|
}
|
||
|
// On non-Darwin, the stack type alignment is always 4.
|
||
|
if (!IsDarwinVectorABI) {
|
||
|
// Set explicit alignment, since we may need to realign the top.
|
||
|
return MinABIStackAlignInBytes;
|
||
|
}
|
||
|
|
||
|
// Otherwise, if the type contains an SSE vector type, the alignment is 16.
|
||
|
if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
|
||
|
isRecordWithSIMDVectorType(getContext(), Ty)))
|
||
|
return 16;
|
||
|
|
||
|
return MinABIStackAlignInBytes;
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
|
||
|
CCState &State) const {
|
||
|
if (!ByVal) {
|
||
|
if (State.FreeRegs) {
|
||
|
--State.FreeRegs; // Non-byval indirects just use one pointer.
|
||
|
if (!IsMCUABI)
|
||
|
return getNaturalAlignIndirectInReg(Ty);
|
||
|
}
|
||
|
return getNaturalAlignIndirect(Ty, false);
|
||
|
}
|
||
|
|
||
|
// Compute the byval alignment.
|
||
|
unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
|
||
|
unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
|
||
|
if (StackAlign == 0)
|
||
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
|
||
|
|
||
|
// If the stack alignment is less than the type alignment, realign the
|
||
|
// argument.
|
||
|
bool Realign = TypeAlign > StackAlign;
|
||
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
|
||
|
/*ByVal=*/true, Realign);
|
||
|
}
|
||
|
|
||
|
X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
|
||
|
const Type *T = isSingleElementStruct(Ty, getContext());
|
||
|
if (!T)
|
||
|
T = Ty.getTypePtr();
|
||
|
|
||
|
if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
|
||
|
BuiltinType::Kind K = BT->getKind();
|
||
|
if (K == BuiltinType::Float || K == BuiltinType::Double)
|
||
|
return Float;
|
||
|
}
|
||
|
return Integer;
|
||
|
}
|
||
|
|
||
|
bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
|
||
|
if (!IsSoftFloatABI) {
|
||
|
Class C = classify(Ty);
|
||
|
if (C == Float)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
unsigned Size = getContext().getTypeSize(Ty);
|
||
|
unsigned SizeInRegs = (Size + 31) / 32;
|
||
|
|
||
|
if (SizeInRegs == 0)
|
||
|
return false;
|
||
|
|
||
|
if (!IsMCUABI) {
|
||
|
if (SizeInRegs > State.FreeRegs) {
|
||
|
State.FreeRegs = 0;
|
||
|
return false;
|
||
|
}
|
||
|
} else {
|
||
|
// The MCU psABI allows passing parameters in-reg even if there are
|
||
|
// earlier parameters that are passed on the stack. Also,
|
||
|
// it does not allow passing >8-byte structs in-register,
|
||
|
// even if there are 3 free registers available.
|
||
|
if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
State.FreeRegs -= SizeInRegs;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
|
||
|
bool &InReg,
|
||
|
bool &NeedsPadding) const {
|
||
|
// On Windows, aggregates other than HFAs are never passed in registers, and
|
||
|
// they do not consume register slots. Homogenous floating-point aggregates
|
||
|
// (HFAs) have already been dealt with at this point.
|
||
|
if (IsWin32StructABI && isAggregateTypeForABI(Ty))
|
||
|
return false;
|
||
|
|
||
|
NeedsPadding = false;
|
||
|
InReg = !IsMCUABI;
|
||
|
|
||
|
if (!updateFreeRegs(Ty, State))
|
||
|
return false;
|
||
|
|
||
|
if (IsMCUABI)
|
||
|
return true;
|
||
|
|
||
|
if (State.CC == llvm::CallingConv::X86_FastCall ||
|
||
|
State.CC == llvm::CallingConv::X86_VectorCall ||
|
||
|
State.CC == llvm::CallingConv::X86_RegCall) {
|
||
|
if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
|
||
|
NeedsPadding = true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
|
||
|
bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
|
||
|
(Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
|
||
|
Ty->isReferenceType());
|
||
|
|
||
|
if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
|
||
|
State.CC == llvm::CallingConv::X86_VectorCall))
|
||
|
return false;
|
||
|
|
||
|
if (!updateFreeRegs(Ty, State))
|
||
|
return false;
|
||
|
|
||
|
if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
|
||
|
return false;
|
||
|
|
||
|
// Return true to apply inreg to all legal parameters except for MCU targets.
|
||
|
return !IsMCUABI;
|
||
|
}
|
||
|
|
||
|
void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
|
||
|
// Vectorcall x86 works subtly different than in x64, so the format is
|
||
|
// a bit different than the x64 version. First, all vector types (not HVAs)
|
||
|
// are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
|
||
|
// This differs from the x64 implementation, where the first 6 by INDEX get
|
||
|
// registers.
|
||
|
// In the second pass over the arguments, HVAs are passed in the remaining
|
||
|
// vector registers if possible, or indirectly by address. The address will be
|
||
|
// passed in ECX/EDX if available. Any other arguments are passed according to
|
||
|
// the usual fastcall rules.
|
||
|
MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
|
||
|
for (int I = 0, E = Args.size(); I < E; ++I) {
|
||
|
const Type *Base = nullptr;
|
||
|
uint64_t NumElts = 0;
|
||
|
const QualType &Ty = Args[I].type;
|
||
|
if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
|
||
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
||
|
if (State.FreeSSERegs >= NumElts) {
|
||
|
State.FreeSSERegs -= NumElts;
|
||
|
Args[I].info = ABIArgInfo::getDirectInReg();
|
||
|
State.IsPreassigned.set(I);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
|
||
|
unsigned ArgIndex) const {
|
||
|
// FIXME: Set alignment on indirect arguments.
|
||
|
bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
|
||
|
bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
|
||
|
bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
|
||
|
|
||
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
||
|
TypeInfo TI = getContext().getTypeInfo(Ty);
|
||
|
|
||
|
// Check with the C++ ABI first.
|
||
|
const RecordType *RT = Ty->getAs<RecordType>();
|
||
|
if (RT) {
|
||
|
CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
|
||
|
if (RAA == CGCXXABI::RAA_Indirect) {
|
||
|
return getIndirectResult(Ty, false, State);
|
||
|
} else if (State.IsDelegateCall) {
|
||
|
// Avoid having different alignments on delegate call args by always
|
||
|
// setting the alignment to 4, which is what we do for inallocas.
|
||
|
ABIArgInfo Res = getIndirectResult(Ty, false, State);
|
||
|
Res.setIndirectAlign(CharUnits::fromQuantity(4));
|
||
|
return Res;
|
||
|
} else if (RAA == CGCXXABI::RAA_DirectInMemory) {
|
||
|
// The field index doesn't matter, we'll fix it up later.
|
||
|
return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Regcall uses the concept of a homogenous vector aggregate, similar
|
||
|
// to other targets.
|
||
|
const Type *Base = nullptr;
|
||
|
uint64_t NumElts = 0;
|
||
|
if ((IsRegCall || IsVectorCall) &&
|
||
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
||
|
if (State.FreeSSERegs >= NumElts) {
|
||
|
State.FreeSSERegs -= NumElts;
|
||
|
|
||
|
// Vectorcall passes HVAs directly and does not flatten them, but regcall
|
||
|
// does.
|
||
|
if (IsVectorCall)
|
||
|
return getDirectX86Hva();
|
||
|
|
||
|
if (Ty->isBuiltinType() || Ty->isVectorType())
|
||
|
return ABIArgInfo::getDirect();
|
||
|
return ABIArgInfo::getExpand();
|
||
|
}
|
||
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
||
|
}
|
||
|
|
||
|
if (isAggregateTypeForABI(Ty)) {
|
||
|
// Structures with flexible arrays are always indirect.
|
||
|
// FIXME: This should not be byval!
|
||
|
if (RT && RT->getDecl()->hasFlexibleArrayMember())
|
||
|
return getIndirectResult(Ty, true, State);
|
||
|
|
||
|
// Ignore empty structs/unions on non-Windows.
|
||
|
if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
|
||
|
llvm::LLVMContext &LLVMContext = getVMContext();
|
||
|
llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
|
||
|
bool NeedsPadding = false;
|
||
|
bool InReg;
|
||
|
if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
|
||
|
unsigned SizeInRegs = (TI.Width + 31) / 32;
|
||
|
SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
|
||
|
llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
|
||
|
if (InReg)
|
||
|
return ABIArgInfo::getDirectInReg(Result);
|
||
|
else
|
||
|
return ABIArgInfo::getDirect(Result);
|
||
|
}
|
||
|
llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
|
||
|
|
||
|
// Pass over-aligned aggregates to non-variadic functions on Windows
|
||
|
// indirectly. This behavior was added in MSVC 2015. Use the required
|
||
|
// alignment from the record layout, since that may be less than the
|
||
|
// regular type alignment, and types with required alignment of less than 4
|
||
|
// bytes are not passed indirectly.
|
||
|
if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
|
||
|
unsigned AlignInBits = 0;
|
||
|
if (RT) {
|
||
|
const ASTRecordLayout &Layout =
|
||
|
getContext().getASTRecordLayout(RT->getDecl());
|
||
|
AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
|
||
|
} else if (TI.isAlignRequired()) {
|
||
|
AlignInBits = TI.Align;
|
||
|
}
|
||
|
if (AlignInBits > 32)
|
||
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
||
|
}
|
||
|
|
||
|
// Expand small (<= 128-bit) record types when we know that the stack layout
|
||
|
// of those arguments will match the struct. This is important because the
|
||
|
// LLVM backend isn't smart enough to remove byval, which inhibits many
|
||
|
// optimizations.
|
||
|
// Don't do this for the MCU if there are still free integer registers
|
||
|
// (see X86_64 ABI for full explanation).
|
||
|
if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
|
||
|
canExpandIndirectArgument(Ty))
|
||
|
return ABIArgInfo::getExpandWithPadding(
|
||
|
IsFastCall || IsVectorCall || IsRegCall, PaddingType);
|
||
|
|
||
|
return getIndirectResult(Ty, true, State);
|
||
|
}
|
||
|
|
||
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||
|
// On Windows, vectors are passed directly if registers are available, or
|
||
|
// indirectly if not. This avoids the need to align argument memory. Pass
|
||
|
// user-defined vector types larger than 512 bits indirectly for simplicity.
|
||
|
if (IsWin32StructABI) {
|
||
|
if (TI.Width <= 512 && State.FreeSSERegs > 0) {
|
||
|
--State.FreeSSERegs;
|
||
|
return ABIArgInfo::getDirectInReg();
|
||
|
}
|
||
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
||
|
}
|
||
|
|
||
|
// On Darwin, some vectors are passed in memory, we handle this by passing
|
||
|
// it as an i8/i16/i32/i64.
|
||
|
if (IsDarwinVectorABI) {
|
||
|
if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
|
||
|
(TI.Width == 64 && VT->getNumElements() == 1))
|
||
|
return ABIArgInfo::getDirect(
|
||
|
llvm::IntegerType::get(getVMContext(), TI.Width));
|
||
|
}
|
||
|
|
||
|
if (IsX86_MMXType(CGT.ConvertType(Ty)))
|
||
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
|
||
|
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
|
||
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
|
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
bool InReg = shouldPrimitiveUseInReg(Ty, State);
|
||
|
|
||
|
if (isPromotableIntegerTypeForABI(Ty)) {
|
||
|
if (InReg)
|
||
|
return ABIArgInfo::getExtendInReg(Ty);
|
||
|
return ABIArgInfo::getExtend(Ty);
|
||
|
}
|
||
|
|
||
|
if (const auto *EIT = Ty->getAs<BitIntType>()) {
|
||
|
if (EIT->getNumBits() <= 64) {
|
||
|
if (InReg)
|
||
|
return ABIArgInfo::getDirectInReg();
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
return getIndirectResult(Ty, /*ByVal=*/false, State);
|
||
|
}
|
||
|
|
||
|
if (InReg)
|
||
|
return ABIArgInfo::getDirectInReg();
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
|
CCState State(FI);
|
||
|
if (IsMCUABI)
|
||
|
State.FreeRegs = 3;
|
||
|
else if (State.CC == llvm::CallingConv::X86_FastCall) {
|
||
|
State.FreeRegs = 2;
|
||
|
State.FreeSSERegs = 3;
|
||
|
} else if (State.CC == llvm::CallingConv::X86_VectorCall) {
|
||
|
State.FreeRegs = 2;
|
||
|
State.FreeSSERegs = 6;
|
||
|
} else if (FI.getHasRegParm())
|
||
|
State.FreeRegs = FI.getRegParm();
|
||
|
else if (State.CC == llvm::CallingConv::X86_RegCall) {
|
||
|
State.FreeRegs = 5;
|
||
|
State.FreeSSERegs = 8;
|
||
|
} else if (IsWin32StructABI) {
|
||
|
// Since MSVC 2015, the first three SSE vectors have been passed in
|
||
|
// registers. The rest are passed indirectly.
|
||
|
State.FreeRegs = DefaultNumRegisterParameters;
|
||
|
State.FreeSSERegs = 3;
|
||
|
} else
|
||
|
State.FreeRegs = DefaultNumRegisterParameters;
|
||
|
|
||
|
if (!::classifyReturnType(getCXXABI(), FI, *this)) {
|
||
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
|
||
|
} else if (FI.getReturnInfo().isIndirect()) {
|
||
|
// The C++ ABI is not aware of register usage, so we have to check if the
|
||
|
// return value was sret and put it in a register ourselves if appropriate.
|
||
|
if (State.FreeRegs) {
|
||
|
--State.FreeRegs; // The sret parameter consumes a register.
|
||
|
if (!IsMCUABI)
|
||
|
FI.getReturnInfo().setInReg(true);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The chain argument effectively gives us another free register.
|
||
|
if (FI.isChainCall())
|
||
|
++State.FreeRegs;
|
||
|
|
||
|
// For vectorcall, do a first pass over the arguments, assigning FP and vector
|
||
|
// arguments to XMM registers as available.
|
||
|
if (State.CC == llvm::CallingConv::X86_VectorCall)
|
||
|
runVectorCallFirstPass(FI, State);
|
||
|
|
||
|
bool UsedInAlloca = false;
|
||
|
MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
|
||
|
for (unsigned I = 0, E = Args.size(); I < E; ++I) {
|
||
|
// Skip arguments that have already been assigned.
|
||
|
if (State.IsPreassigned.test(I))
|
||
|
continue;
|
||
|
|
||
|
Args[I].info =
|
||
|
classifyArgumentType(Args[I].type, State, I);
|
||
|
UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
|
||
|
}
|
||
|
|
||
|
// If we needed to use inalloca for any argument, do a second pass and rewrite
|
||
|
// all the memory arguments to use inalloca.
|
||
|
if (UsedInAlloca)
|
||
|
rewriteWithInAlloca(FI);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
|
||
|
CharUnits &StackOffset, ABIArgInfo &Info,
|
||
|
QualType Type) const {
|
||
|
// Arguments are always 4-byte-aligned.
|
||
|
CharUnits WordSize = CharUnits::fromQuantity(4);
|
||
|
assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
|
||
|
|
||
|
// sret pointers and indirect things will require an extra pointer
|
||
|
// indirection, unless they are byval. Most things are byval, and will not
|
||
|
// require this indirection.
|
||
|
bool IsIndirect = false;
|
||
|
if (Info.isIndirect() && !Info.getIndirectByVal())
|
||
|
IsIndirect = true;
|
||
|
Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
|
||
|
llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
|
||
|
if (IsIndirect)
|
||
|
LLTy = llvm::PointerType::getUnqual(getVMContext());
|
||
|
FrameFields.push_back(LLTy);
|
||
|
StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
|
||
|
|
||
|
// Insert padding bytes to respect alignment.
|
||
|
CharUnits FieldEnd = StackOffset;
|
||
|
StackOffset = FieldEnd.alignTo(WordSize);
|
||
|
if (StackOffset != FieldEnd) {
|
||
|
CharUnits NumBytes = StackOffset - FieldEnd;
|
||
|
llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
|
||
|
Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
|
||
|
FrameFields.push_back(Ty);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool isArgInAlloca(const ABIArgInfo &Info) {
|
||
|
// Leave ignored and inreg arguments alone.
|
||
|
switch (Info.getKind()) {
|
||
|
case ABIArgInfo::InAlloca:
|
||
|
return true;
|
||
|
case ABIArgInfo::Ignore:
|
||
|
case ABIArgInfo::IndirectAliased:
|
||
|
return false;
|
||
|
case ABIArgInfo::Indirect:
|
||
|
case ABIArgInfo::Direct:
|
||
|
case ABIArgInfo::Extend:
|
||
|
return !Info.getInReg();
|
||
|
case ABIArgInfo::Expand:
|
||
|
case ABIArgInfo::CoerceAndExpand:
|
||
|
// These are aggregate types which are never passed in registers when
|
||
|
// inalloca is involved.
|
||
|
return true;
|
||
|
}
|
||
|
llvm_unreachable("invalid enum");
|
||
|
}
|
||
|
|
||
|
void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
|
||
|
assert(IsWin32StructABI && "inalloca only supported on win32");
|
||
|
|
||
|
// Build a packed struct type for all of the arguments in memory.
|
||
|
SmallVector<llvm::Type *, 6> FrameFields;
|
||
|
|
||
|
// The stack alignment is always 4.
|
||
|
CharUnits StackAlign = CharUnits::fromQuantity(4);
|
||
|
|
||
|
CharUnits StackOffset;
|
||
|
CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
|
||
|
|
||
|
// Put 'this' into the struct before 'sret', if necessary.
|
||
|
bool IsThisCall =
|
||
|
FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
|
||
|
ABIArgInfo &Ret = FI.getReturnInfo();
|
||
|
if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
|
||
|
isArgInAlloca(I->info)) {
|
||
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
||
|
++I;
|
||
|
}
|
||
|
|
||
|
// Put the sret parameter into the inalloca struct if it's in memory.
|
||
|
if (Ret.isIndirect() && !Ret.getInReg()) {
|
||
|
addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
|
||
|
// On Windows, the hidden sret parameter is always returned in eax.
|
||
|
Ret.setInAllocaSRet(IsWin32StructABI);
|
||
|
}
|
||
|
|
||
|
// Skip the 'this' parameter in ecx.
|
||
|
if (IsThisCall)
|
||
|
++I;
|
||
|
|
||
|
// Put arguments passed in memory into the struct.
|
||
|
for (; I != E; ++I) {
|
||
|
if (isArgInAlloca(I->info))
|
||
|
addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
|
||
|
}
|
||
|
|
||
|
FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
|
||
|
/*isPacked=*/true),
|
||
|
StackAlign);
|
||
|
}
|
||
|
|
||
|
Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
|
||
|
Address VAListAddr, QualType Ty) const {
|
||
|
|
||
|
auto TypeInfo = getContext().getTypeInfoInChars(Ty);
|
||
|
|
||
|
// x86-32 changes the alignment of certain arguments on the stack.
|
||
|
//
|
||
|
// Just messing with TypeInfo like this works because we never pass
|
||
|
// anything indirectly.
|
||
|
TypeInfo.Align = CharUnits::fromQuantity(
|
||
|
getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
|
||
|
|
||
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
|
||
|
TypeInfo, CharUnits::fromQuantity(4),
|
||
|
/*AllowHigherAlign*/ true);
|
||
|
}
|
||
|
|
||
|
bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
|
||
|
const llvm::Triple &Triple, const CodeGenOptions &Opts) {
|
||
|
assert(Triple.getArch() == llvm::Triple::x86);
|
||
|
|
||
|
switch (Opts.getStructReturnConvention()) {
|
||
|
case CodeGenOptions::SRCK_Default:
|
||
|
break;
|
||
|
case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
|
||
|
return false;
|
||
|
case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (Triple.isOSDarwin() || Triple.isOSIAMCU())
|
||
|
return true;
|
||
|
|
||
|
switch (Triple.getOS()) {
|
||
|
case llvm::Triple::DragonFly:
|
||
|
case llvm::Triple::FreeBSD:
|
||
|
case llvm::Triple::OpenBSD:
|
||
|
case llvm::Triple::Win32:
|
||
|
return true;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
|
||
|
CodeGen::CodeGenModule &CGM) {
|
||
|
if (!FD->hasAttr<AnyX86InterruptAttr>())
|
||
|
return;
|
||
|
|
||
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
||
|
Fn->setCallingConv(llvm::CallingConv::X86_INTR);
|
||
|
if (FD->getNumParams() == 0)
|
||
|
return;
|
||
|
|
||
|
auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
|
||
|
llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
|
||
|
llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
|
||
|
Fn->getContext(), ByValTy);
|
||
|
Fn->addParamAttr(0, NewAttr);
|
||
|
}
|
||
|
|
||
|
void X86_32TargetCodeGenInfo::setTargetAttributes(
|
||
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
||
|
if (GV->isDeclaration())
|
||
|
return;
|
||
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
||
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
||
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
||
|
Fn->addFnAttr("stackrealign");
|
||
|
}
|
||
|
|
||
|
addX86InterruptAttrs(FD, GV, CGM);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
|
||
|
CodeGen::CodeGenFunction &CGF,
|
||
|
llvm::Value *Address) const {
|
||
|
CodeGen::CGBuilderTy &Builder = CGF.Builder;
|
||
|
|
||
|
llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
|
||
|
|
||
|
// 0-7 are the eight integer registers; the order is different
|
||
|
// on Darwin (for EH), but the range is the same.
|
||
|
// 8 is %eip.
|
||
|
AssignToArrayRange(Builder, Address, Four8, 0, 8);
|
||
|
|
||
|
if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
|
||
|
// 12-16 are st(0..4). Not sure why we stop at 4.
|
||
|
// These have size 16, which is sizeof(long double) on
|
||
|
// platforms with 8-byte alignment for that type.
|
||
|
llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
|
||
|
AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
|
||
|
|
||
|
} else {
|
||
|
// 9 is %eflags, which doesn't get a size on Darwin for some
|
||
|
// reason.
|
||
|
Builder.CreateAlignedStore(
|
||
|
Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
|
||
|
CharUnits::One());
|
||
|
|
||
|
// 11-16 are st(0..5). Not sure why we stop at 5.
|
||
|
// These have size 12, which is sizeof(long double) on
|
||
|
// platforms with 4-byte alignment for that type.
|
||
|
llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
|
||
|
AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// X86-64 ABI Implementation
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
/// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
|
||
|
static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
|
||
|
switch (AVXLevel) {
|
||
|
case X86AVXABILevel::AVX512:
|
||
|
return 512;
|
||
|
case X86AVXABILevel::AVX:
|
||
|
return 256;
|
||
|
case X86AVXABILevel::None:
|
||
|
return 128;
|
||
|
}
|
||
|
llvm_unreachable("Unknown AVXLevel");
|
||
|
}
|
||
|
|
||
|
/// X86_64ABIInfo - The X86_64 ABI information.
|
||
|
class X86_64ABIInfo : public ABIInfo {
|
||
|
enum Class {
|
||
|
Integer = 0,
|
||
|
SSE,
|
||
|
SSEUp,
|
||
|
X87,
|
||
|
X87Up,
|
||
|
ComplexX87,
|
||
|
NoClass,
|
||
|
Memory
|
||
|
};
|
||
|
|
||
|
/// merge - Implement the X86_64 ABI merging algorithm.
|
||
|
///
|
||
|
/// Merge an accumulating classification \arg Accum with a field
|
||
|
/// classification \arg Field.
|
||
|
///
|
||
|
/// \param Accum - The accumulating classification. This should
|
||
|
/// always be either NoClass or the result of a previous merge
|
||
|
/// call. In addition, this should never be Memory (the caller
|
||
|
/// should just return Memory for the aggregate).
|
||
|
static Class merge(Class Accum, Class Field);
|
||
|
|
||
|
/// postMerge - Implement the X86_64 ABI post merging algorithm.
|
||
|
///
|
||
|
/// Post merger cleanup, reduces a malformed Hi and Lo pair to
|
||
|
/// final MEMORY or SSE classes when necessary.
|
||
|
///
|
||
|
/// \param AggregateSize - The size of the current aggregate in
|
||
|
/// the classification process.
|
||
|
///
|
||
|
/// \param Lo - The classification for the parts of the type
|
||
|
/// residing in the low word of the containing object.
|
||
|
///
|
||
|
/// \param Hi - The classification for the parts of the type
|
||
|
/// residing in the higher words of the containing object.
|
||
|
///
|
||
|
void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
|
||
|
|
||
|
/// classify - Determine the x86_64 register classes in which the
|
||
|
/// given type T should be passed.
|
||
|
///
|
||
|
/// \param Lo - The classification for the parts of the type
|
||
|
/// residing in the low word of the containing object.
|
||
|
///
|
||
|
/// \param Hi - The classification for the parts of the type
|
||
|
/// residing in the high word of the containing object.
|
||
|
///
|
||
|
/// \param OffsetBase - The bit offset of this type in the
|
||
|
/// containing object. Some parameters are classified different
|
||
|
/// depending on whether they straddle an eightbyte boundary.
|
||
|
///
|
||
|
/// \param isNamedArg - Whether the argument in question is a "named"
|
||
|
/// argument, as used in AMD64-ABI 3.5.7.
|
||
|
///
|
||
|
/// \param IsRegCall - Whether the calling conversion is regcall.
|
||
|
///
|
||
|
/// If a word is unused its result will be NoClass; if a type should
|
||
|
/// be passed in Memory then at least the classification of \arg Lo
|
||
|
/// will be Memory.
|
||
|
///
|
||
|
/// The \arg Lo class will be NoClass iff the argument is ignored.
|
||
|
///
|
||
|
/// If the \arg Lo class is ComplexX87, then the \arg Hi class will
|
||
|
/// also be ComplexX87.
|
||
|
void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
|
||
|
bool isNamedArg, bool IsRegCall = false) const;
|
||
|
|
||
|
llvm::Type *GetByteVectorType(QualType Ty) const;
|
||
|
llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
|
||
|
unsigned IROffset, QualType SourceTy,
|
||
|
unsigned SourceOffset) const;
|
||
|
llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
|
||
|
unsigned IROffset, QualType SourceTy,
|
||
|
unsigned SourceOffset) const;
|
||
|
|
||
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
|
/// such that the argument will be returned in memory.
|
||
|
ABIArgInfo getIndirectReturnResult(QualType Ty) const;
|
||
|
|
||
|
/// getIndirectResult - Give a source type \arg Ty, return a suitable result
|
||
|
/// such that the argument will be passed in memory.
|
||
|
///
|
||
|
/// \param freeIntRegs - The number of free integer registers remaining
|
||
|
/// available.
|
||
|
ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
|
||
|
|
||
|
ABIArgInfo classifyReturnType(QualType RetTy) const;
|
||
|
|
||
|
ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
|
||
|
unsigned &neededInt, unsigned &neededSSE,
|
||
|
bool isNamedArg,
|
||
|
bool IsRegCall = false) const;
|
||
|
|
||
|
ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
|
||
|
unsigned &NeededSSE,
|
||
|
unsigned &MaxVectorWidth) const;
|
||
|
|
||
|
ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
|
||
|
unsigned &NeededSSE,
|
||
|
unsigned &MaxVectorWidth) const;
|
||
|
|
||
|
bool IsIllegalVectorType(QualType Ty) const;
|
||
|
|
||
|
/// The 0.98 ABI revision clarified a lot of ambiguities,
|
||
|
/// unfortunately in ways that were not always consistent with
|
||
|
/// certain previous compilers. In particular, platforms which
|
||
|
/// required strict binary compatibility with older versions of GCC
|
||
|
/// may need to exempt themselves.
|
||
|
bool honorsRevision0_98() const {
|
||
|
return !getTarget().getTriple().isOSDarwin();
|
||
|
}
|
||
|
|
||
|
/// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
|
||
|
/// classify it as INTEGER (for compatibility with older clang compilers).
|
||
|
bool classifyIntegerMMXAsSSE() const {
|
||
|
// Clang <= 3.8 did not do this.
|
||
|
if (getContext().getLangOpts().getClangABICompat() <=
|
||
|
LangOptions::ClangABI::Ver3_8)
|
||
|
return false;
|
||
|
|
||
|
const llvm::Triple &Triple = getTarget().getTriple();
|
||
|
if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// GCC classifies vectors of __int128 as memory.
|
||
|
bool passInt128VectorsInMem() const {
|
||
|
// Clang <= 9.0 did not do this.
|
||
|
if (getContext().getLangOpts().getClangABICompat() <=
|
||
|
LangOptions::ClangABI::Ver9)
|
||
|
return false;
|
||
|
|
||
|
const llvm::Triple &T = getTarget().getTriple();
|
||
|
return T.isOSLinux() || T.isOSNetBSD();
|
||
|
}
|
||
|
|
||
|
X86AVXABILevel AVXLevel;
|
||
|
// Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
|
||
|
// 64-bit hardware.
|
||
|
bool Has64BitPointers;
|
||
|
|
||
|
public:
|
||
|
X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
|
||
|
: ABIInfo(CGT), AVXLevel(AVXLevel),
|
||
|
Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
|
||
|
|
||
|
bool isPassedUsingAVXType(QualType type) const {
|
||
|
unsigned neededInt, neededSSE;
|
||
|
// The freeIntRegs argument doesn't matter here.
|
||
|
ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
|
||
|
/*isNamedArg*/true);
|
||
|
if (info.isDirect()) {
|
||
|
llvm::Type *ty = info.getCoerceToType();
|
||
|
if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
|
||
|
return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void computeInfo(CGFunctionInfo &FI) const override;
|
||
|
|
||
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const override;
|
||
|
Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const override;
|
||
|
|
||
|
bool has64BitPointers() const {
|
||
|
return Has64BitPointers;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// WinX86_64ABIInfo - The Windows X86_64 ABI information.
|
||
|
class WinX86_64ABIInfo : public ABIInfo {
|
||
|
public:
|
||
|
WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
|
||
|
: ABIInfo(CGT), AVXLevel(AVXLevel),
|
||
|
IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
|
||
|
|
||
|
void computeInfo(CGFunctionInfo &FI) const override;
|
||
|
|
||
|
Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const override;
|
||
|
|
||
|
bool isHomogeneousAggregateBaseType(QualType Ty) const override {
|
||
|
// FIXME: Assumes vectorcall is in use.
|
||
|
return isX86VectorTypeForVectorCall(getContext(), Ty);
|
||
|
}
|
||
|
|
||
|
bool isHomogeneousAggregateSmallEnough(const Type *Ty,
|
||
|
uint64_t NumMembers) const override {
|
||
|
// FIXME: Assumes vectorcall is in use.
|
||
|
return isX86VectorCallAggregateSmallEnough(NumMembers);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
|
||
|
bool IsVectorCall, bool IsRegCall) const;
|
||
|
ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
|
||
|
const ABIArgInfo ¤t) const;
|
||
|
|
||
|
X86AVXABILevel AVXLevel;
|
||
|
|
||
|
bool IsMingw64;
|
||
|
};
|
||
|
|
||
|
class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
|
public:
|
||
|
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
|
||
|
: TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
|
||
|
SwiftInfo =
|
||
|
std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
|
||
|
}
|
||
|
|
||
|
/// Disable tail call on x86-64. The epilogue code before the tail jump blocks
|
||
|
/// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
|
||
|
bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
|
||
|
|
||
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
||
|
return 7;
|
||
|
}
|
||
|
|
||
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
|
llvm::Value *Address) const override {
|
||
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
||
|
|
||
|
// 0-15 are the 16 integer registers.
|
||
|
// 16 is %rip.
|
||
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
|
||
|
StringRef Constraint,
|
||
|
llvm::Type* Ty) const override {
|
||
|
return X86AdjustInlineAsmType(CGF, Constraint, Ty);
|
||
|
}
|
||
|
|
||
|
bool isNoProtoCallVariadic(const CallArgList &args,
|
||
|
const FunctionNoProtoType *fnType) const override {
|
||
|
// The default CC on x86-64 sets %al to the number of SSA
|
||
|
// registers used, and GCC sets this when calling an unprototyped
|
||
|
// function, so we override the default behavior. However, don't do
|
||
|
// that when AVX types are involved: the ABI explicitly states it is
|
||
|
// undefined, and it doesn't work in practice because of how the ABI
|
||
|
// defines varargs anyway.
|
||
|
if (fnType->getCallConv() == CC_C) {
|
||
|
bool HasAVXType = false;
|
||
|
for (CallArgList::const_iterator
|
||
|
it = args.begin(), ie = args.end(); it != ie; ++it) {
|
||
|
if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
|
||
|
HasAVXType = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!HasAVXType)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
|
||
|
}
|
||
|
|
||
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
|
CodeGen::CodeGenModule &CGM) const override {
|
||
|
if (GV->isDeclaration())
|
||
|
return;
|
||
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
||
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
||
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
||
|
Fn->addFnAttr("stackrealign");
|
||
|
}
|
||
|
|
||
|
addX86InterruptAttrs(FD, GV, CGM);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
|
||
|
const FunctionDecl *Caller,
|
||
|
const FunctionDecl *Callee,
|
||
|
const CallArgList &Args) const override;
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
static void initFeatureMaps(const ASTContext &Ctx,
|
||
|
llvm::StringMap<bool> &CallerMap,
|
||
|
const FunctionDecl *Caller,
|
||
|
llvm::StringMap<bool> &CalleeMap,
|
||
|
const FunctionDecl *Callee) {
|
||
|
if (CalleeMap.empty() && CallerMap.empty()) {
|
||
|
// The caller is potentially nullptr in the case where the call isn't in a
|
||
|
// function. In this case, the getFunctionFeatureMap ensures we just get
|
||
|
// the TU level setting (since it cannot be modified by 'target'..
|
||
|
Ctx.getFunctionFeatureMap(CallerMap, Caller);
|
||
|
Ctx.getFunctionFeatureMap(CalleeMap, Callee);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
|
||
|
SourceLocation CallLoc,
|
||
|
const llvm::StringMap<bool> &CallerMap,
|
||
|
const llvm::StringMap<bool> &CalleeMap,
|
||
|
QualType Ty, StringRef Feature,
|
||
|
bool IsArgument) {
|
||
|
bool CallerHasFeat = CallerMap.lookup(Feature);
|
||
|
bool CalleeHasFeat = CalleeMap.lookup(Feature);
|
||
|
if (!CallerHasFeat && !CalleeHasFeat)
|
||
|
return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
|
||
|
<< IsArgument << Ty << Feature;
|
||
|
|
||
|
// Mixing calling conventions here is very clearly an error.
|
||
|
if (!CallerHasFeat || !CalleeHasFeat)
|
||
|
return Diag.Report(CallLoc, diag::err_avx_calling_convention)
|
||
|
<< IsArgument << Ty << Feature;
|
||
|
|
||
|
// Else, both caller and callee have the required feature, so there is no need
|
||
|
// to diagnose.
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
|
||
|
SourceLocation CallLoc,
|
||
|
const llvm::StringMap<bool> &CallerMap,
|
||
|
const llvm::StringMap<bool> &CalleeMap,
|
||
|
QualType Ty, bool IsArgument) {
|
||
|
bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
|
||
|
bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
|
||
|
|
||
|
// Forbid 512-bit or larger vector pass or return when we disabled ZMM
|
||
|
// instructions.
|
||
|
if (Caller256 || Callee256)
|
||
|
return Diag.Report(CallLoc, diag::err_avx_calling_convention)
|
||
|
<< IsArgument << Ty << "evex512";
|
||
|
|
||
|
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
|
||
|
"avx512f", IsArgument);
|
||
|
}
|
||
|
|
||
|
static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
|
||
|
SourceLocation CallLoc,
|
||
|
const llvm::StringMap<bool> &CallerMap,
|
||
|
const llvm::StringMap<bool> &CalleeMap, QualType Ty,
|
||
|
bool IsArgument) {
|
||
|
uint64_t Size = Ctx.getTypeSize(Ty);
|
||
|
if (Size > 256)
|
||
|
return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
|
||
|
IsArgument);
|
||
|
|
||
|
if (Size > 128)
|
||
|
return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
|
||
|
IsArgument);
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void X86_64TargetCodeGenInfo::checkFunctionCallABI(
|
||
|
CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
|
||
|
const FunctionDecl *Callee, const CallArgList &Args) const {
|
||
|
llvm::StringMap<bool> CallerMap;
|
||
|
llvm::StringMap<bool> CalleeMap;
|
||
|
unsigned ArgIndex = 0;
|
||
|
|
||
|
// We need to loop through the actual call arguments rather than the
|
||
|
// function's parameters, in case this variadic.
|
||
|
for (const CallArg &Arg : Args) {
|
||
|
// The "avx" feature changes how vectors >128 in size are passed. "avx512f"
|
||
|
// additionally changes how vectors >256 in size are passed. Like GCC, we
|
||
|
// warn when a function is called with an argument where this will change.
|
||
|
// Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
|
||
|
// the caller and callee features are mismatched.
|
||
|
// Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
|
||
|
// change its ABI with attribute-target after this call.
|
||
|
if (Arg.getType()->isVectorType() &&
|
||
|
CGM.getContext().getTypeSize(Arg.getType()) > 128) {
|
||
|
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
|
||
|
QualType Ty = Arg.getType();
|
||
|
// The CallArg seems to have desugared the type already, so for clearer
|
||
|
// diagnostics, replace it with the type in the FunctionDecl if possible.
|
||
|
if (ArgIndex < Callee->getNumParams())
|
||
|
Ty = Callee->getParamDecl(ArgIndex)->getType();
|
||
|
|
||
|
if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
|
||
|
CalleeMap, Ty, /*IsArgument*/ true))
|
||
|
return;
|
||
|
}
|
||
|
++ArgIndex;
|
||
|
}
|
||
|
|
||
|
// Check return always, as we don't have a good way of knowing in codegen
|
||
|
// whether this value is used, tail-called, etc.
|
||
|
if (Callee->getReturnType()->isVectorType() &&
|
||
|
CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
|
||
|
initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
|
||
|
checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
|
||
|
CalleeMap, Callee->getReturnType(),
|
||
|
/*IsArgument*/ false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
|
||
|
// If the argument does not end in .lib, automatically add the suffix.
|
||
|
// If the argument contains a space, enclose it in quotes.
|
||
|
// This matches the behavior of MSVC.
|
||
|
bool Quote = Lib.contains(' ');
|
||
|
std::string ArgStr = Quote ? "\"" : "";
|
||
|
ArgStr += Lib;
|
||
|
if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
|
||
|
ArgStr += ".lib";
|
||
|
ArgStr += Quote ? "\"" : "";
|
||
|
return ArgStr;
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
|
||
|
public:
|
||
|
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
||
|
bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
|
||
|
unsigned NumRegisterParameters)
|
||
|
: X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
|
||
|
Win32StructABI, NumRegisterParameters, false) {}
|
||
|
|
||
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
|
CodeGen::CodeGenModule &CGM) const override;
|
||
|
|
||
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
||
|
llvm::SmallString<24> &Opt) const override {
|
||
|
Opt = "/DEFAULTLIB:";
|
||
|
Opt += qualifyWindowsLibrary(Lib);
|
||
|
}
|
||
|
|
||
|
void getDetectMismatchOption(llvm::StringRef Name,
|
||
|
llvm::StringRef Value,
|
||
|
llvm::SmallString<32> &Opt) const override {
|
||
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
void WinX86_32TargetCodeGenInfo::setTargetAttributes(
|
||
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
||
|
X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
||
|
if (GV->isDeclaration())
|
||
|
return;
|
||
|
addStackProbeTargetAttributes(D, GV, CGM);
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
|
||
|
public:
|
||
|
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
|
||
|
X86AVXABILevel AVXLevel)
|
||
|
: TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
|
||
|
SwiftInfo =
|
||
|
std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
|
||
|
}
|
||
|
|
||
|
void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
|
||
|
CodeGen::CodeGenModule &CGM) const override;
|
||
|
|
||
|
int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
|
||
|
return 7;
|
||
|
}
|
||
|
|
||
|
bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
|
||
|
llvm::Value *Address) const override {
|
||
|
llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
|
||
|
|
||
|
// 0-15 are the 16 integer registers.
|
||
|
// 16 is %rip.
|
||
|
AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void getDependentLibraryOption(llvm::StringRef Lib,
|
||
|
llvm::SmallString<24> &Opt) const override {
|
||
|
Opt = "/DEFAULTLIB:";
|
||
|
Opt += qualifyWindowsLibrary(Lib);
|
||
|
}
|
||
|
|
||
|
void getDetectMismatchOption(llvm::StringRef Name,
|
||
|
llvm::StringRef Value,
|
||
|
llvm::SmallString<32> &Opt) const override {
|
||
|
Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
void WinX86_64TargetCodeGenInfo::setTargetAttributes(
|
||
|
const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
|
||
|
TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
|
||
|
if (GV->isDeclaration())
|
||
|
return;
|
||
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
|
||
|
if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
|
||
|
llvm::Function *Fn = cast<llvm::Function>(GV);
|
||
|
Fn->addFnAttr("stackrealign");
|
||
|
}
|
||
|
|
||
|
addX86InterruptAttrs(FD, GV, CGM);
|
||
|
}
|
||
|
|
||
|
addStackProbeTargetAttributes(D, GV, CGM);
|
||
|
}
|
||
|
|
||
|
void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
|
||
|
Class &Hi) const {
|
||
|
// AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
|
||
|
//
|
||
|
// (a) If one of the classes is Memory, the whole argument is passed in
|
||
|
// memory.
|
||
|
//
|
||
|
// (b) If X87UP is not preceded by X87, the whole argument is passed in
|
||
|
// memory.
|
||
|
//
|
||
|
// (c) If the size of the aggregate exceeds two eightbytes and the first
|
||
|
// eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
|
||
|
// argument is passed in memory. NOTE: This is necessary to keep the
|
||
|
// ABI working for processors that don't support the __m256 type.
|
||
|
//
|
||
|
// (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
|
||
|
//
|
||
|
// Some of these are enforced by the merging logic. Others can arise
|
||
|
// only with unions; for example:
|
||
|
// union { _Complex double; unsigned; }
|
||
|
//
|
||
|
// Note that clauses (b) and (c) were added in 0.98.
|
||
|
//
|
||
|
if (Hi == Memory)
|
||
|
Lo = Memory;
|
||
|
if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
|
||
|
Lo = Memory;
|
||
|
if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
|
||
|
Lo = Memory;
|
||
|
if (Hi == SSEUp && Lo != SSE)
|
||
|
Hi = SSE;
|
||
|
}
|
||
|
|
||
|
X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
|
||
|
// AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
|
||
|
// classified recursively so that always two fields are
|
||
|
// considered. The resulting class is calculated according to
|
||
|
// the classes of the fields in the eightbyte:
|
||
|
//
|
||
|
// (a) If both classes are equal, this is the resulting class.
|
||
|
//
|
||
|
// (b) If one of the classes is NO_CLASS, the resulting class is
|
||
|
// the other class.
|
||
|
//
|
||
|
// (c) If one of the classes is MEMORY, the result is the MEMORY
|
||
|
// class.
|
||
|
//
|
||
|
// (d) If one of the classes is INTEGER, the result is the
|
||
|
// INTEGER.
|
||
|
//
|
||
|
// (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
||
|
// MEMORY is used as class.
|
||
|
//
|
||
|
// (f) Otherwise class SSE is used.
|
||
|
|
||
|
// Accum should never be memory (we should have returned) or
|
||
|
// ComplexX87 (because this cannot be passed in a structure).
|
||
|
assert((Accum != Memory && Accum != ComplexX87) &&
|
||
|
"Invalid accumulated classification during merge.");
|
||
|
if (Accum == Field || Field == NoClass)
|
||
|
return Accum;
|
||
|
if (Field == Memory)
|
||
|
return Memory;
|
||
|
if (Accum == NoClass)
|
||
|
return Field;
|
||
|
if (Accum == Integer || Field == Integer)
|
||
|
return Integer;
|
||
|
if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
|
||
|
Accum == X87 || Accum == X87Up)
|
||
|
return Memory;
|
||
|
return SSE;
|
||
|
}
|
||
|
|
||
|
void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
|
||
|
Class &Hi, bool isNamedArg, bool IsRegCall) const {
|
||
|
// FIXME: This code can be simplified by introducing a simple value class for
|
||
|
// Class pairs with appropriate constructor methods for the various
|
||
|
// situations.
|
||
|
|
||
|
// FIXME: Some of the split computations are wrong; unaligned vectors
|
||
|
// shouldn't be passed in registers for example, so there is no chance they
|
||
|
// can straddle an eightbyte. Verify & simplify.
|
||
|
|
||
|
Lo = Hi = NoClass;
|
||
|
|
||
|
Class &Current = OffsetBase < 64 ? Lo : Hi;
|
||
|
Current = Memory;
|
||
|
|
||
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
||
|
BuiltinType::Kind k = BT->getKind();
|
||
|
|
||
|
if (k == BuiltinType::Void) {
|
||
|
Current = NoClass;
|
||
|
} else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
|
||
|
Lo = Integer;
|
||
|
Hi = Integer;
|
||
|
} else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
|
||
|
Current = Integer;
|
||
|
} else if (k == BuiltinType::Float || k == BuiltinType::Double ||
|
||
|
k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
|
||
|
Current = SSE;
|
||
|
} else if (k == BuiltinType::Float128) {
|
||
|
Lo = SSE;
|
||
|
Hi = SSEUp;
|
||
|
} else if (k == BuiltinType::LongDouble) {
|
||
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
||
|
if (LDF == &llvm::APFloat::IEEEquad()) {
|
||
|
Lo = SSE;
|
||
|
Hi = SSEUp;
|
||
|
} else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
|
||
|
Lo = X87;
|
||
|
Hi = X87Up;
|
||
|
} else if (LDF == &llvm::APFloat::IEEEdouble()) {
|
||
|
Current = SSE;
|
||
|
} else
|
||
|
llvm_unreachable("unexpected long double representation!");
|
||
|
}
|
||
|
// FIXME: _Decimal32 and _Decimal64 are SSE.
|
||
|
// FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const EnumType *ET = Ty->getAs<EnumType>()) {
|
||
|
// Classify the underlying integer type.
|
||
|
classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (Ty->hasPointerRepresentation()) {
|
||
|
Current = Integer;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (Ty->isMemberPointerType()) {
|
||
|
if (Ty->isMemberFunctionPointerType()) {
|
||
|
if (Has64BitPointers) {
|
||
|
// If Has64BitPointers, this is an {i64, i64}, so classify both
|
||
|
// Lo and Hi now.
|
||
|
Lo = Hi = Integer;
|
||
|
} else {
|
||
|
// Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
|
||
|
// straddles an eightbyte boundary, Hi should be classified as well.
|
||
|
uint64_t EB_FuncPtr = (OffsetBase) / 64;
|
||
|
uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
|
||
|
if (EB_FuncPtr != EB_ThisAdj) {
|
||
|
Lo = Hi = Integer;
|
||
|
} else {
|
||
|
Current = Integer;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
Current = Integer;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const VectorType *VT = Ty->getAs<VectorType>()) {
|
||
|
uint64_t Size = getContext().getTypeSize(VT);
|
||
|
if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
|
||
|
// gcc passes the following as integer:
|
||
|
// 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
|
||
|
// 2 bytes - <2 x char>, <1 x short>
|
||
|
// 1 byte - <1 x char>
|
||
|
Current = Integer;
|
||
|
|
||
|
// If this type crosses an eightbyte boundary, it should be
|
||
|
// split.
|
||
|
uint64_t EB_Lo = (OffsetBase) / 64;
|
||
|
uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
|
||
|
if (EB_Lo != EB_Hi)
|
||
|
Hi = Lo;
|
||
|
} else if (Size == 64) {
|
||
|
QualType ElementType = VT->getElementType();
|
||
|
|
||
|
// gcc passes <1 x double> in memory. :(
|
||
|
if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
|
||
|
return;
|
||
|
|
||
|
// gcc passes <1 x long long> as SSE but clang used to unconditionally
|
||
|
// pass them as integer. For platforms where clang is the de facto
|
||
|
// platform compiler, we must continue to use integer.
|
||
|
if (!classifyIntegerMMXAsSSE() &&
|
||
|
(ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
|
||
|
ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
|
||
|
ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
|
||
|
ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
|
||
|
Current = Integer;
|
||
|
else
|
||
|
Current = SSE;
|
||
|
|
||
|
// If this type crosses an eightbyte boundary, it should be
|
||
|
// split.
|
||
|
if (OffsetBase && OffsetBase != 64)
|
||
|
Hi = Lo;
|
||
|
} else if (Size == 128 ||
|
||
|
(isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
|
||
|
QualType ElementType = VT->getElementType();
|
||
|
|
||
|
// gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
|
||
|
if (passInt128VectorsInMem() && Size != 128 &&
|
||
|
(ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
|
||
|
ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
|
||
|
return;
|
||
|
|
||
|
// Arguments of 256-bits are split into four eightbyte chunks. The
|
||
|
// least significant one belongs to class SSE and all the others to class
|
||
|
// SSEUP. The original Lo and Hi design considers that types can't be
|
||
|
// greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
|
||
|
// This design isn't correct for 256-bits, but since there're no cases
|
||
|
// where the upper parts would need to be inspected, avoid adding
|
||
|
// complexity and just consider Hi to match the 64-256 part.
|
||
|
//
|
||
|
// Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
|
||
|
// registers if they are "named", i.e. not part of the "..." of a
|
||
|
// variadic function.
|
||
|
//
|
||
|
// Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
|
||
|
// split into eight eightbyte chunks, one SSE and seven SSEUP.
|
||
|
Lo = SSE;
|
||
|
Hi = SSEUp;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
|
||
|
QualType ET = getContext().getCanonicalType(CT->getElementType());
|
||
|
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
if (ET->isIntegralOrEnumerationType()) {
|
||
|
if (Size <= 64)
|
||
|
Current = Integer;
|
||
|
else if (Size <= 128)
|
||
|
Lo = Hi = Integer;
|
||
|
} else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
|
||
|
ET->isBFloat16Type()) {
|
||
|
Current = SSE;
|
||
|
} else if (ET == getContext().DoubleTy) {
|
||
|
Lo = Hi = SSE;
|
||
|
} else if (ET == getContext().LongDoubleTy) {
|
||
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
||
|
if (LDF == &llvm::APFloat::IEEEquad())
|
||
|
Current = Memory;
|
||
|
else if (LDF == &llvm::APFloat::x87DoubleExtended())
|
||
|
Current = ComplexX87;
|
||
|
else if (LDF == &llvm::APFloat::IEEEdouble())
|
||
|
Lo = Hi = SSE;
|
||
|
else
|
||
|
llvm_unreachable("unexpected long double representation!");
|
||
|
}
|
||
|
|
||
|
// If this complex type crosses an eightbyte boundary then it
|
||
|
// should be split.
|
||
|
uint64_t EB_Real = (OffsetBase) / 64;
|
||
|
uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
|
||
|
if (Hi == NoClass && EB_Real != EB_Imag)
|
||
|
Hi = Lo;
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const auto *EITy = Ty->getAs<BitIntType>()) {
|
||
|
if (EITy->getNumBits() <= 64)
|
||
|
Current = Integer;
|
||
|
else if (EITy->getNumBits() <= 128)
|
||
|
Lo = Hi = Integer;
|
||
|
// Larger values need to get passed in memory.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
|
||
|
// Arrays are treated like structures.
|
||
|
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
|
||
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
||
|
// than eight eightbytes, ..., it has class MEMORY.
|
||
|
// regcall ABI doesn't have limitation to an object. The only limitation
|
||
|
// is the free registers, which will be checked in computeInfo.
|
||
|
if (!IsRegCall && Size > 512)
|
||
|
return;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
|
||
|
// fields, it has class MEMORY.
|
||
|
//
|
||
|
// Only need to check alignment of array base.
|
||
|
if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
|
||
|
return;
|
||
|
|
||
|
// Otherwise implement simplified merge. We could be smarter about
|
||
|
// this, but it isn't worth it and would be harder to verify.
|
||
|
Current = NoClass;
|
||
|
uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
|
||
|
uint64_t ArraySize = AT->getSize().getZExtValue();
|
||
|
|
||
|
// The only case a 256-bit wide vector could be used is when the array
|
||
|
// contains a single 256-bit element. Since Lo and Hi logic isn't extended
|
||
|
// to work for sizes wider than 128, early check and fallback to memory.
|
||
|
//
|
||
|
if (Size > 128 &&
|
||
|
(Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
|
||
|
return;
|
||
|
|
||
|
for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
|
||
|
Class FieldLo, FieldHi;
|
||
|
classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
|
||
|
Lo = merge(Lo, FieldLo);
|
||
|
Hi = merge(Hi, FieldHi);
|
||
|
if (Lo == Memory || Hi == Memory)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
postMerge(Size, Lo, Hi);
|
||
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
|
||
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
|
||
|
// than eight eightbytes, ..., it has class MEMORY.
|
||
|
if (Size > 512)
|
||
|
return;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
|
||
|
// copy constructor or a non-trivial destructor, it is passed by invisible
|
||
|
// reference.
|
||
|
if (getRecordArgABI(RT, getCXXABI()))
|
||
|
return;
|
||
|
|
||
|
const RecordDecl *RD = RT->getDecl();
|
||
|
|
||
|
// Assume variable sized types are passed in memory.
|
||
|
if (RD->hasFlexibleArrayMember())
|
||
|
return;
|
||
|
|
||
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
||
|
|
||
|
// Reset Lo class, this will be recomputed.
|
||
|
Current = NoClass;
|
||
|
|
||
|
// If this is a C++ record, classify the bases first.
|
||
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
|
for (const auto &I : CXXRD->bases()) {
|
||
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
||
|
"Unexpected base class!");
|
||
|
const auto *Base =
|
||
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
||
|
|
||
|
// Classify this field.
|
||
|
//
|
||
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
|
||
|
// single eightbyte, each is classified separately. Each eightbyte gets
|
||
|
// initialized to class NO_CLASS.
|
||
|
Class FieldLo, FieldHi;
|
||
|
uint64_t Offset =
|
||
|
OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
|
||
|
classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
||
|
Lo = merge(Lo, FieldLo);
|
||
|
Hi = merge(Hi, FieldHi);
|
||
|
if (Lo == Memory || Hi == Memory) {
|
||
|
postMerge(Size, Lo, Hi);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Classify the fields one at a time, merging the results.
|
||
|
unsigned idx = 0;
|
||
|
bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
|
||
|
LangOptions::ClangABI::Ver11 ||
|
||
|
getContext().getTargetInfo().getTriple().isPS();
|
||
|
bool IsUnion = RT->isUnionType() && !UseClang11Compat;
|
||
|
|
||
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
|
i != e; ++i, ++idx) {
|
||
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
||
|
bool BitField = i->isBitField();
|
||
|
|
||
|
// Ignore padding bit-fields.
|
||
|
if (BitField && i->isUnnamedBitfield())
|
||
|
continue;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
|
||
|
// eight eightbytes, or it contains unaligned fields, it has class MEMORY.
|
||
|
//
|
||
|
// The only case a 256-bit or a 512-bit wide vector could be used is when
|
||
|
// the struct contains a single 256-bit or 512-bit element. Early check
|
||
|
// and fallback to memory.
|
||
|
//
|
||
|
// FIXME: Extended the Lo and Hi logic properly to work for size wider
|
||
|
// than 128.
|
||
|
if (Size > 128 &&
|
||
|
((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
|
||
|
Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
|
||
|
Lo = Memory;
|
||
|
postMerge(Size, Lo, Hi);
|
||
|
return;
|
||
|
}
|
||
|
// Note, skip this test for bit-fields, see below.
|
||
|
if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
|
||
|
Lo = Memory;
|
||
|
postMerge(Size, Lo, Hi);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Classify this field.
|
||
|
//
|
||
|
// AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
|
||
|
// exceeds a single eightbyte, each is classified
|
||
|
// separately. Each eightbyte gets initialized to class
|
||
|
// NO_CLASS.
|
||
|
Class FieldLo, FieldHi;
|
||
|
|
||
|
// Bit-fields require special handling, they do not force the
|
||
|
// structure to be passed in memory even if unaligned, and
|
||
|
// therefore they can straddle an eightbyte.
|
||
|
if (BitField) {
|
||
|
assert(!i->isUnnamedBitfield());
|
||
|
uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
|
||
|
uint64_t Size = i->getBitWidthValue(getContext());
|
||
|
|
||
|
uint64_t EB_Lo = Offset / 64;
|
||
|
uint64_t EB_Hi = (Offset + Size - 1) / 64;
|
||
|
|
||
|
if (EB_Lo) {
|
||
|
assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
|
||
|
FieldLo = NoClass;
|
||
|
FieldHi = Integer;
|
||
|
} else {
|
||
|
FieldLo = Integer;
|
||
|
FieldHi = EB_Hi ? Integer : NoClass;
|
||
|
}
|
||
|
} else
|
||
|
classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
|
||
|
Lo = merge(Lo, FieldLo);
|
||
|
Hi = merge(Hi, FieldHi);
|
||
|
if (Lo == Memory || Hi == Memory)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
postMerge(Size, Lo, Hi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
|
||
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
||
|
// place naturally.
|
||
|
if (!isAggregateTypeForABI(Ty)) {
|
||
|
// Treat an enum type as its underlying type.
|
||
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
|
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
if (Ty->isBitIntType())
|
||
|
return getNaturalAlignIndirect(Ty);
|
||
|
|
||
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
||
|
: ABIArgInfo::getDirect());
|
||
|
}
|
||
|
|
||
|
return getNaturalAlignIndirect(Ty);
|
||
|
}
|
||
|
|
||
|
bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
|
||
|
if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
|
||
|
uint64_t Size = getContext().getTypeSize(VecTy);
|
||
|
unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
|
||
|
if (Size <= 64 || Size > LargestVector)
|
||
|
return true;
|
||
|
QualType EltTy = VecTy->getElementType();
|
||
|
if (passInt128VectorsInMem() &&
|
||
|
(EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
|
||
|
EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
|
||
|
unsigned freeIntRegs) const {
|
||
|
// If this is a scalar LLVM value then assume LLVM will pass it in the right
|
||
|
// place naturally.
|
||
|
//
|
||
|
// This assumption is optimistic, as there could be free registers available
|
||
|
// when we need to pass this argument in memory, and LLVM could try to pass
|
||
|
// the argument in the free register. This does not seem to happen currently,
|
||
|
// but this code would be much safer if we could mark the argument with
|
||
|
// 'onstack'. See PR12193.
|
||
|
if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
|
||
|
!Ty->isBitIntType()) {
|
||
|
// Treat an enum type as its underlying type.
|
||
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
|
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
|
||
|
: ABIArgInfo::getDirect());
|
||
|
}
|
||
|
|
||
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
|
||
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
||
|
|
||
|
// Compute the byval alignment. We specify the alignment of the byval in all
|
||
|
// cases so that the mid-level optimizer knows the alignment of the byval.
|
||
|
unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
|
||
|
|
||
|
// Attempt to avoid passing indirect results using byval when possible. This
|
||
|
// is important for good codegen.
|
||
|
//
|
||
|
// We do this by coercing the value into a scalar type which the backend can
|
||
|
// handle naturally (i.e., without using byval).
|
||
|
//
|
||
|
// For simplicity, we currently only do this when we have exhausted all of the
|
||
|
// free integer registers. Doing this when there are free integer registers
|
||
|
// would require more care, as we would have to ensure that the coerced value
|
||
|
// did not claim the unused register. That would require either reording the
|
||
|
// arguments to the function (so that any subsequent inreg values came first),
|
||
|
// or only doing this optimization when there were no following arguments that
|
||
|
// might be inreg.
|
||
|
//
|
||
|
// We currently expect it to be rare (particularly in well written code) for
|
||
|
// arguments to be passed on the stack when there are still free integer
|
||
|
// registers available (this would typically imply large structs being passed
|
||
|
// by value), so this seems like a fair tradeoff for now.
|
||
|
//
|
||
|
// We can revisit this if the backend grows support for 'onstack' parameter
|
||
|
// attributes. See PR12193.
|
||
|
if (freeIntRegs == 0) {
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
|
||
|
// If this type fits in an eightbyte, coerce it into the matching integral
|
||
|
// type, which will end up on the stack (with alignment 8).
|
||
|
if (Align == 8 && Size <= 64)
|
||
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
|
||
|
Size));
|
||
|
}
|
||
|
|
||
|
return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
|
||
|
}
|
||
|
|
||
|
/// The ABI specifies that a value should be passed in a full vector XMM/YMM
|
||
|
/// register. Pick an LLVM IR type that will be passed as a vector register.
|
||
|
llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
|
||
|
// Wrapper structs/arrays that only contain vectors are passed just like
|
||
|
// vectors; strip them off if present.
|
||
|
if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
|
||
|
Ty = QualType(InnerTy, 0);
|
||
|
|
||
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
||
|
if (isa<llvm::VectorType>(IRType)) {
|
||
|
// Don't pass vXi128 vectors in their native type, the backend can't
|
||
|
// legalize them.
|
||
|
if (passInt128VectorsInMem() &&
|
||
|
cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
|
||
|
// Use a vXi64 vector.
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
|
||
|
Size / 64);
|
||
|
}
|
||
|
|
||
|
return IRType;
|
||
|
}
|
||
|
|
||
|
if (IRType->getTypeID() == llvm::Type::FP128TyID)
|
||
|
return IRType;
|
||
|
|
||
|
// We couldn't find the preferred IR vector type for 'Ty'.
|
||
|
uint64_t Size = getContext().getTypeSize(Ty);
|
||
|
assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
|
||
|
|
||
|
|
||
|
// Return a LLVM IR vector type based on the size of 'Ty'.
|
||
|
return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
|
||
|
Size / 64);
|
||
|
}
|
||
|
|
||
|
/// BitsContainNoUserData - Return true if the specified [start,end) bit range
|
||
|
/// is known to either be off the end of the specified type or being in
|
||
|
/// alignment padding. The user type specified is known to be at most 128 bits
|
||
|
/// in size, and have passed through X86_64ABIInfo::classify with a successful
|
||
|
/// classification that put one of the two halves in the INTEGER class.
|
||
|
///
|
||
|
/// It is conservatively correct to return false.
|
||
|
static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
|
||
|
unsigned EndBit, ASTContext &Context) {
|
||
|
// If the bytes being queried are off the end of the type, there is no user
|
||
|
// data hiding here. This handles analysis of builtins, vectors and other
|
||
|
// types that don't contain interesting padding.
|
||
|
unsigned TySize = (unsigned)Context.getTypeSize(Ty);
|
||
|
if (TySize <= StartBit)
|
||
|
return true;
|
||
|
|
||
|
if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
|
||
|
unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
|
||
|
unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
|
||
|
|
||
|
// Check each element to see if the element overlaps with the queried range.
|
||
|
for (unsigned i = 0; i != NumElts; ++i) {
|
||
|
// If the element is after the span we care about, then we're done..
|
||
|
unsigned EltOffset = i*EltSize;
|
||
|
if (EltOffset >= EndBit) break;
|
||
|
|
||
|
unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
|
||
|
if (!BitsContainNoUserData(AT->getElementType(), EltStart,
|
||
|
EndBit-EltOffset, Context))
|
||
|
return false;
|
||
|
}
|
||
|
// If it overlaps no elements, then it is safe to process as padding.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (const RecordType *RT = Ty->getAs<RecordType>()) {
|
||
|
const RecordDecl *RD = RT->getDecl();
|
||
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
||
|
|
||
|
// If this is a C++ record, check the bases first.
|
||
|
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
||
|
for (const auto &I : CXXRD->bases()) {
|
||
|
assert(!I.isVirtual() && !I.getType()->isDependentType() &&
|
||
|
"Unexpected base class!");
|
||
|
const auto *Base =
|
||
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
||
|
|
||
|
// If the base is after the span we care about, ignore it.
|
||
|
unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
|
||
|
if (BaseOffset >= EndBit) continue;
|
||
|
|
||
|
unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
|
||
|
if (!BitsContainNoUserData(I.getType(), BaseStart,
|
||
|
EndBit-BaseOffset, Context))
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Verify that no field has data that overlaps the region of interest. Yes
|
||
|
// this could be sped up a lot by being smarter about queried fields,
|
||
|
// however we're only looking at structs up to 16 bytes, so we don't care
|
||
|
// much.
|
||
|
unsigned idx = 0;
|
||
|
for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
|
||
|
i != e; ++i, ++idx) {
|
||
|
unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
|
||
|
|
||
|
// If we found a field after the region we care about, then we're done.
|
||
|
if (FieldOffset >= EndBit) break;
|
||
|
|
||
|
unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
|
||
|
if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
|
||
|
Context))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// If nothing in this record overlapped the area of interest, then we're
|
||
|
// clean.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// getFPTypeAtOffset - Return a floating point type at the specified offset.
|
||
|
static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
||
|
const llvm::DataLayout &TD) {
|
||
|
if (IROffset == 0 && IRType->isFloatingPointTy())
|
||
|
return IRType;
|
||
|
|
||
|
// If this is a struct, recurse into the field at the specified offset.
|
||
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
||
|
if (!STy->getNumContainedTypes())
|
||
|
return nullptr;
|
||
|
|
||
|
const llvm::StructLayout *SL = TD.getStructLayout(STy);
|
||
|
unsigned Elt = SL->getElementContainingOffset(IROffset);
|
||
|
IROffset -= SL->getElementOffset(Elt);
|
||
|
return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
|
||
|
}
|
||
|
|
||
|
// If this is an array, recurse into the field at the specified offset.
|
||
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
||
|
llvm::Type *EltTy = ATy->getElementType();
|
||
|
unsigned EltSize = TD.getTypeAllocSize(EltTy);
|
||
|
IROffset -= IROffset / EltSize * EltSize;
|
||
|
return getFPTypeAtOffset(EltTy, IROffset, TD);
|
||
|
}
|
||
|
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
/// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
|
||
|
/// low 8 bytes of an XMM register, corresponding to the SSE class.
|
||
|
llvm::Type *X86_64ABIInfo::
|
||
|
GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
||
|
QualType SourceTy, unsigned SourceOffset) const {
|
||
|
const llvm::DataLayout &TD = getDataLayout();
|
||
|
unsigned SourceSize =
|
||
|
(unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
|
||
|
llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
|
||
|
if (!T0 || T0->isDoubleTy())
|
||
|
return llvm::Type::getDoubleTy(getVMContext());
|
||
|
|
||
|
// Get the adjacent FP type.
|
||
|
llvm::Type *T1 = nullptr;
|
||
|
unsigned T0Size = TD.getTypeAllocSize(T0);
|
||
|
if (SourceSize > T0Size)
|
||
|
T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
|
||
|
if (T1 == nullptr) {
|
||
|
// Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
|
||
|
// to its alignment.
|
||
|
if (T0->is16bitFPTy() && SourceSize > 4)
|
||
|
T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
|
||
|
// If we can't get a second FP type, return a simple half or float.
|
||
|
// avx512fp16-abi.c:pr51813_2 shows it works to return float for
|
||
|
// {float, i8} too.
|
||
|
if (T1 == nullptr)
|
||
|
return T0;
|
||
|
}
|
||
|
|
||
|
if (T0->isFloatTy() && T1->isFloatTy())
|
||
|
return llvm::FixedVectorType::get(T0, 2);
|
||
|
|
||
|
if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
|
||
|
llvm::Type *T2 = nullptr;
|
||
|
if (SourceSize > 4)
|
||
|
T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
|
||
|
if (T2 == nullptr)
|
||
|
return llvm::FixedVectorType::get(T0, 2);
|
||
|
return llvm::FixedVectorType::get(T0, 4);
|
||
|
}
|
||
|
|
||
|
if (T0->is16bitFPTy() || T1->is16bitFPTy())
|
||
|
return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
|
||
|
|
||
|
return llvm::Type::getDoubleTy(getVMContext());
|
||
|
}
|
||
|
|
||
|
|
||
|
/// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
|
||
|
/// an 8-byte GPR. This means that we either have a scalar or we are talking
|
||
|
/// about the high or low part of an up-to-16-byte struct. This routine picks
|
||
|
/// the best LLVM IR type to represent this, which may be i64 or may be anything
|
||
|
/// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
|
||
|
/// etc).
|
||
|
///
|
||
|
/// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
|
||
|
/// the source type. IROffset is an offset in bytes into the LLVM IR type that
|
||
|
/// the 8-byte value references. PrefType may be null.
|
||
|
///
|
||
|
/// SourceTy is the source-level type for the entire argument. SourceOffset is
|
||
|
/// an offset into this that we're processing (which is always either 0 or 8).
|
||
|
///
|
||
|
llvm::Type *X86_64ABIInfo::
|
||
|
GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
|
||
|
QualType SourceTy, unsigned SourceOffset) const {
|
||
|
// If we're dealing with an un-offset LLVM IR type, then it means that we're
|
||
|
// returning an 8-byte unit starting with it. See if we can safely use it.
|
||
|
if (IROffset == 0) {
|
||
|
// Pointers and int64's always fill the 8-byte unit.
|
||
|
if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
|
||
|
IRType->isIntegerTy(64))
|
||
|
return IRType;
|
||
|
|
||
|
// If we have a 1/2/4-byte integer, we can use it only if the rest of the
|
||
|
// goodness in the source type is just tail padding. This is allowed to
|
||
|
// kick in for struct {double,int} on the int, but not on
|
||
|
// struct{double,int,int} because we wouldn't return the second int. We
|
||
|
// have to do this analysis on the source type because we can't depend on
|
||
|
// unions being lowered a specific way etc.
|
||
|
if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
|
||
|
IRType->isIntegerTy(32) ||
|
||
|
(isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
|
||
|
unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
|
||
|
cast<llvm::IntegerType>(IRType)->getBitWidth();
|
||
|
|
||
|
if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
|
||
|
SourceOffset*8+64, getContext()))
|
||
|
return IRType;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
|
||
|
// If this is a struct, recurse into the field at the specified offset.
|
||
|
const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
|
||
|
if (IROffset < SL->getSizeInBytes()) {
|
||
|
unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
|
||
|
IROffset -= SL->getElementOffset(FieldIdx);
|
||
|
|
||
|
return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
|
||
|
SourceTy, SourceOffset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
|
||
|
llvm::Type *EltTy = ATy->getElementType();
|
||
|
unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
|
||
|
unsigned EltOffset = IROffset/EltSize*EltSize;
|
||
|
return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
|
||
|
SourceOffset);
|
||
|
}
|
||
|
|
||
|
// Okay, we don't have any better idea of what to pass, so we pass this in an
|
||
|
// integer register that isn't too big to fit the rest of the struct.
|
||
|
unsigned TySizeInBytes =
|
||
|
(unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
|
||
|
|
||
|
assert(TySizeInBytes != SourceOffset && "Empty field?");
|
||
|
|
||
|
// It is always safe to classify this as an integer type up to i64 that
|
||
|
// isn't larger than the structure.
|
||
|
return llvm::IntegerType::get(getVMContext(),
|
||
|
std::min(TySizeInBytes-SourceOffset, 8U)*8);
|
||
|
}
|
||
|
|
||
|
|
||
|
/// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
|
||
|
/// be used as elements of a two register pair to pass or return, return a
|
||
|
/// first class aggregate to represent them. For example, if the low part of
|
||
|
/// a by-value argument should be passed as i32* and the high part as float,
|
||
|
/// return {i32*, float}.
|
||
|
static llvm::Type *
|
||
|
GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
|
||
|
const llvm::DataLayout &TD) {
|
||
|
// In order to correctly satisfy the ABI, we need to the high part to start
|
||
|
// at offset 8. If the high and low parts we inferred are both 4-byte types
|
||
|
// (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
|
||
|
// the second element at offset 8. Check for this:
|
||
|
unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
|
||
|
llvm::Align HiAlign = TD.getABITypeAlign(Hi);
|
||
|
unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
|
||
|
assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
|
||
|
|
||
|
// To handle this, we have to increase the size of the low part so that the
|
||
|
// second element will start at an 8 byte offset. We can't increase the size
|
||
|
// of the second element because it might make us access off the end of the
|
||
|
// struct.
|
||
|
if (HiStart != 8) {
|
||
|
// There are usually two sorts of types the ABI generation code can produce
|
||
|
// for the low part of a pair that aren't 8 bytes in size: half, float or
|
||
|
// i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
|
||
|
// NaCl).
|
||
|
// Promote these to a larger type.
|
||
|
if (Lo->isHalfTy() || Lo->isFloatTy())
|
||
|
Lo = llvm::Type::getDoubleTy(Lo->getContext());
|
||
|
else {
|
||
|
assert((Lo->isIntegerTy() || Lo->isPointerTy())
|
||
|
&& "Invalid/unknown lo type");
|
||
|
Lo = llvm::Type::getInt64Ty(Lo->getContext());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
|
||
|
|
||
|
// Verify that the second element is at an 8-byte offset.
|
||
|
assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
|
||
|
"Invalid x86-64 argument pair!");
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
ABIArgInfo X86_64ABIInfo::
|
||
|
classifyReturnType(QualType RetTy) const {
|
||
|
// AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
|
||
|
// classification algorithm.
|
||
|
X86_64ABIInfo::Class Lo, Hi;
|
||
|
classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
|
||
|
|
||
|
// Check some invariants.
|
||
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
||
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
||
|
|
||
|
llvm::Type *ResType = nullptr;
|
||
|
switch (Lo) {
|
||
|
case NoClass:
|
||
|
if (Hi == NoClass)
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
// If the low part is just padding, it takes no register, leave ResType
|
||
|
// null.
|
||
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
||
|
"Unknown missing lo part");
|
||
|
break;
|
||
|
|
||
|
case SSEUp:
|
||
|
case X87Up:
|
||
|
llvm_unreachable("Invalid classification for lo word.");
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
|
||
|
// hidden argument.
|
||
|
case Memory:
|
||
|
return getIndirectReturnResult(RetTy);
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
|
||
|
// available register of the sequence %rax, %rdx is used.
|
||
|
case Integer:
|
||
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
||
|
|
||
|
// If we have a sign or zero extended integer, make sure to return Extend
|
||
|
// so that the parameter gets the right LLVM IR attributes.
|
||
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
||
|
// Treat an enum type as its underlying type.
|
||
|
if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
|
||
|
RetTy = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
if (RetTy->isIntegralOrEnumerationType() &&
|
||
|
isPromotableIntegerTypeForABI(RetTy))
|
||
|
return ABIArgInfo::getExtend(RetTy);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
|
||
|
// available SSE register of the sequence %xmm0, %xmm1 is used.
|
||
|
case SSE:
|
||
|
ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
|
||
|
// returned on the X87 stack in %st0 as 80-bit x87 number.
|
||
|
case X87:
|
||
|
ResType = llvm::Type::getX86_FP80Ty(getVMContext());
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
|
||
|
// part of the value is returned in %st0 and the imaginary part in
|
||
|
// %st1.
|
||
|
case ComplexX87:
|
||
|
assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
|
||
|
ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
|
||
|
llvm::Type::getX86_FP80Ty(getVMContext()));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
llvm::Type *HighPart = nullptr;
|
||
|
switch (Hi) {
|
||
|
// Memory was handled previously and X87 should
|
||
|
// never occur as a hi class.
|
||
|
case Memory:
|
||
|
case X87:
|
||
|
llvm_unreachable("Invalid classification for hi word.");
|
||
|
|
||
|
case ComplexX87: // Previously handled.
|
||
|
case NoClass:
|
||
|
break;
|
||
|
|
||
|
case Integer:
|
||
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
||
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
|
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
break;
|
||
|
case SSE:
|
||
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
||
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
|
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
|
||
|
// is passed in the next available eightbyte chunk if the last used
|
||
|
// vector register.
|
||
|
//
|
||
|
// SSEUP should always be preceded by SSE, just widen.
|
||
|
case SSEUp:
|
||
|
assert(Lo == SSE && "Unexpected SSEUp classification.");
|
||
|
ResType = GetByteVectorType(RetTy);
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
|
||
|
// returned together with the previous X87 value in %st0.
|
||
|
case X87Up:
|
||
|
// If X87Up is preceded by X87, we don't need to do
|
||
|
// anything. However, in some cases with unions it may not be
|
||
|
// preceded by X87. In such situations we follow gcc and pass the
|
||
|
// extra bits in an SSE reg.
|
||
|
if (Lo != X87) {
|
||
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
|
||
|
if (Lo == NoClass) // Return HighPart at offset 8 in memory.
|
||
|
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// If a high part was specified, merge it together with the low part. It is
|
||
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
||
|
// first class struct aggregate with the high and low part: {low, high}
|
||
|
if (HighPart)
|
||
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
||
|
|
||
|
return ABIArgInfo::getDirect(ResType);
|
||
|
}
|
||
|
|
||
|
ABIArgInfo
|
||
|
X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
|
||
|
unsigned &neededInt, unsigned &neededSSE,
|
||
|
bool isNamedArg, bool IsRegCall) const {
|
||
|
Ty = useFirstFieldIfTransparentUnion(Ty);
|
||
|
|
||
|
X86_64ABIInfo::Class Lo, Hi;
|
||
|
classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
|
||
|
|
||
|
// Check some invariants.
|
||
|
// FIXME: Enforce these by construction.
|
||
|
assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
|
||
|
assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
|
||
|
|
||
|
neededInt = 0;
|
||
|
neededSSE = 0;
|
||
|
llvm::Type *ResType = nullptr;
|
||
|
switch (Lo) {
|
||
|
case NoClass:
|
||
|
if (Hi == NoClass)
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
// If the low part is just padding, it takes no register, leave ResType
|
||
|
// null.
|
||
|
assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
|
||
|
"Unknown missing lo part");
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
|
||
|
// on the stack.
|
||
|
case Memory:
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
|
||
|
// COMPLEX_X87, it is passed in memory.
|
||
|
case X87:
|
||
|
case ComplexX87:
|
||
|
if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
|
||
|
++neededInt;
|
||
|
return getIndirectResult(Ty, freeIntRegs);
|
||
|
|
||
|
case SSEUp:
|
||
|
case X87Up:
|
||
|
llvm_unreachable("Invalid classification for lo word.");
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
|
||
|
// available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
|
||
|
// and %r9 is used.
|
||
|
case Integer:
|
||
|
++neededInt;
|
||
|
|
||
|
// Pick an 8-byte type based on the preferred type.
|
||
|
ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
|
||
|
|
||
|
// If we have a sign or zero extended integer, make sure to return Extend
|
||
|
// so that the parameter gets the right LLVM IR attributes.
|
||
|
if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
|
||
|
// Treat an enum type as its underlying type.
|
||
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
|
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
if (Ty->isIntegralOrEnumerationType() &&
|
||
|
isPromotableIntegerTypeForABI(Ty))
|
||
|
return ABIArgInfo::getExtend(Ty);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
|
||
|
// available SSE register is used, the registers are taken in the
|
||
|
// order from %xmm0 to %xmm7.
|
||
|
case SSE: {
|
||
|
llvm::Type *IRType = CGT.ConvertType(Ty);
|
||
|
ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
|
||
|
++neededSSE;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
llvm::Type *HighPart = nullptr;
|
||
|
switch (Hi) {
|
||
|
// Memory was handled previously, ComplexX87 and X87 should
|
||
|
// never occur as hi classes, and X87Up must be preceded by X87,
|
||
|
// which is passed in memory.
|
||
|
case Memory:
|
||
|
case X87:
|
||
|
case ComplexX87:
|
||
|
llvm_unreachable("Invalid classification for hi word.");
|
||
|
|
||
|
case NoClass: break;
|
||
|
|
||
|
case Integer:
|
||
|
++neededInt;
|
||
|
// Pick an 8-byte type based on the preferred type.
|
||
|
HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
||
|
|
||
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
||
|
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
break;
|
||
|
|
||
|
// X87Up generally doesn't occur here (long double is passed in
|
||
|
// memory), except in situations involving unions.
|
||
|
case X87Up:
|
||
|
case SSE:
|
||
|
HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
|
||
|
|
||
|
if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
|
||
|
return ABIArgInfo::getDirect(HighPart, 8);
|
||
|
|
||
|
++neededSSE;
|
||
|
break;
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
|
||
|
// eightbyte is passed in the upper half of the last used SSE
|
||
|
// register. This only happens when 128-bit vectors are passed.
|
||
|
case SSEUp:
|
||
|
assert(Lo == SSE && "Unexpected SSEUp classification");
|
||
|
ResType = GetByteVectorType(Ty);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// If a high part was specified, merge it together with the low part. It is
|
||
|
// known to pass in the high eightbyte of the result. We do this by forming a
|
||
|
// first class struct aggregate with the high and low part: {low, high}
|
||
|
if (HighPart)
|
||
|
ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
|
||
|
|
||
|
return ABIArgInfo::getDirect(ResType);
|
||
|
}
|
||
|
|
||
|
ABIArgInfo
|
||
|
X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
|
||
|
unsigned &NeededSSE,
|
||
|
unsigned &MaxVectorWidth) const {
|
||
|
auto RT = Ty->getAs<RecordType>();
|
||
|
assert(RT && "classifyRegCallStructType only valid with struct types");
|
||
|
|
||
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
||
|
return getIndirectReturnResult(Ty);
|
||
|
|
||
|
// Sum up bases
|
||
|
if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
||
|
if (CXXRD->isDynamicClass()) {
|
||
|
NeededInt = NeededSSE = 0;
|
||
|
return getIndirectReturnResult(Ty);
|
||
|
}
|
||
|
|
||
|
for (const auto &I : CXXRD->bases())
|
||
|
if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
|
||
|
MaxVectorWidth)
|
||
|
.isIndirect()) {
|
||
|
NeededInt = NeededSSE = 0;
|
||
|
return getIndirectReturnResult(Ty);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Sum up members
|
||
|
for (const auto *FD : RT->getDecl()->fields()) {
|
||
|
QualType MTy = FD->getType();
|
||
|
if (MTy->isRecordType() && !MTy->isUnionType()) {
|
||
|
if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
|
||
|
MaxVectorWidth)
|
||
|
.isIndirect()) {
|
||
|
NeededInt = NeededSSE = 0;
|
||
|
return getIndirectReturnResult(Ty);
|
||
|
}
|
||
|
} else {
|
||
|
unsigned LocalNeededInt, LocalNeededSSE;
|
||
|
if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
|
||
|
true, true)
|
||
|
.isIndirect()) {
|
||
|
NeededInt = NeededSSE = 0;
|
||
|
return getIndirectReturnResult(Ty);
|
||
|
}
|
||
|
if (const auto *AT = getContext().getAsConstantArrayType(MTy))
|
||
|
MTy = AT->getElementType();
|
||
|
if (const auto *VT = MTy->getAs<VectorType>())
|
||
|
if (getContext().getTypeSize(VT) > MaxVectorWidth)
|
||
|
MaxVectorWidth = getContext().getTypeSize(VT);
|
||
|
NeededInt += LocalNeededInt;
|
||
|
NeededSSE += LocalNeededSSE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
ABIArgInfo
|
||
|
X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
|
||
|
unsigned &NeededSSE,
|
||
|
unsigned &MaxVectorWidth) const {
|
||
|
|
||
|
NeededInt = 0;
|
||
|
NeededSSE = 0;
|
||
|
MaxVectorWidth = 0;
|
||
|
|
||
|
return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
|
||
|
MaxVectorWidth);
|
||
|
}
|
||
|
|
||
|
void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
|
|
||
|
const unsigned CallingConv = FI.getCallingConvention();
|
||
|
// It is possible to force Win64 calling convention on any x86_64 target by
|
||
|
// using __attribute__((ms_abi)). In such case to correctly emit Win64
|
||
|
// compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
|
||
|
if (CallingConv == llvm::CallingConv::Win64) {
|
||
|
WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
|
||
|
Win64ABIInfo.computeInfo(FI);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
|
||
|
|
||
|
// Keep track of the number of assigned registers.
|
||
|
unsigned FreeIntRegs = IsRegCall ? 11 : 6;
|
||
|
unsigned FreeSSERegs = IsRegCall ? 16 : 8;
|
||
|
unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
|
||
|
|
||
|
if (!::classifyReturnType(getCXXABI(), FI, *this)) {
|
||
|
if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
|
||
|
!FI.getReturnType()->getTypePtr()->isUnionType()) {
|
||
|
FI.getReturnInfo() = classifyRegCallStructType(
|
||
|
FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
|
||
|
if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
|
||
|
FreeIntRegs -= NeededInt;
|
||
|
FreeSSERegs -= NeededSSE;
|
||
|
} else {
|
||
|
FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
|
||
|
}
|
||
|
} else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
|
||
|
getContext().getCanonicalType(FI.getReturnType()
|
||
|
->getAs<ComplexType>()
|
||
|
->getElementType()) ==
|
||
|
getContext().LongDoubleTy)
|
||
|
// Complex Long Double Type is passed in Memory when Regcall
|
||
|
// calling convention is used.
|
||
|
FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
|
||
|
else
|
||
|
FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
|
||
|
}
|
||
|
|
||
|
// If the return value is indirect, then the hidden argument is consuming one
|
||
|
// integer register.
|
||
|
if (FI.getReturnInfo().isIndirect())
|
||
|
--FreeIntRegs;
|
||
|
else if (NeededSSE && MaxVectorWidth > 0)
|
||
|
FI.setMaxVectorWidth(MaxVectorWidth);
|
||
|
|
||
|
// The chain argument effectively gives us another free register.
|
||
|
if (FI.isChainCall())
|
||
|
++FreeIntRegs;
|
||
|
|
||
|
unsigned NumRequiredArgs = FI.getNumRequiredArgs();
|
||
|
// AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
|
||
|
// get assigned (in left-to-right order) for passing as follows...
|
||
|
unsigned ArgNo = 0;
|
||
|
for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
|
||
|
it != ie; ++it, ++ArgNo) {
|
||
|
bool IsNamedArg = ArgNo < NumRequiredArgs;
|
||
|
|
||
|
if (IsRegCall && it->type->isStructureOrClassType())
|
||
|
it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
|
||
|
MaxVectorWidth);
|
||
|
else
|
||
|
it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
|
||
|
NeededSSE, IsNamedArg);
|
||
|
|
||
|
// AMD64-ABI 3.2.3p3: If there are no registers available for any
|
||
|
// eightbyte of an argument, the whole argument is passed on the
|
||
|
// stack. If registers have already been assigned for some
|
||
|
// eightbytes of such an argument, the assignments get reverted.
|
||
|
if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
|
||
|
FreeIntRegs -= NeededInt;
|
||
|
FreeSSERegs -= NeededSSE;
|
||
|
if (MaxVectorWidth > FI.getMaxVectorWidth())
|
||
|
FI.setMaxVectorWidth(MaxVectorWidth);
|
||
|
} else {
|
||
|
it->info = getIndirectResult(it->type, FreeIntRegs);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
|
||
|
Address VAListAddr, QualType Ty) {
|
||
|
Address overflow_arg_area_p =
|
||
|
CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
|
||
|
llvm::Value *overflow_arg_area =
|
||
|
CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
|
||
|
// byte boundary if alignment needed by type exceeds 8 byte boundary.
|
||
|
// It isn't stated explicitly in the standard, but in practice we use
|
||
|
// alignment greater than 16 where necessary.
|
||
|
CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
|
||
|
if (Align > CharUnits::fromQuantity(8)) {
|
||
|
overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
|
||
|
Align);
|
||
|
}
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
|
||
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
||
|
llvm::Value *Res = overflow_arg_area;
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
|
||
|
// l->overflow_arg_area + sizeof(type).
|
||
|
// AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
|
||
|
// an 8 byte boundary.
|
||
|
|
||
|
uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
|
||
|
llvm::Value *Offset =
|
||
|
llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
|
||
|
overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
|
||
|
Offset, "overflow_arg_area.next");
|
||
|
CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
|
||
|
return Address(Res, LTy, Align);
|
||
|
}
|
||
|
|
||
|
Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const {
|
||
|
// Assume that va_list type is correct; should be pointer to LLVM type:
|
||
|
// struct {
|
||
|
// i32 gp_offset;
|
||
|
// i32 fp_offset;
|
||
|
// i8* overflow_arg_area;
|
||
|
// i8* reg_save_area;
|
||
|
// };
|
||
|
unsigned neededInt, neededSSE;
|
||
|
|
||
|
Ty = getContext().getCanonicalType(Ty);
|
||
|
ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
|
||
|
/*isNamedArg*/false);
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
|
||
|
// in the registers. If not go to step 7.
|
||
|
if (!neededInt && !neededSSE)
|
||
|
return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
|
||
|
// general purpose registers needed to pass type and num_fp to hold
|
||
|
// the number of floating point registers needed.
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
|
||
|
// registers. In the case: l->gp_offset > 48 - num_gp * 8 or
|
||
|
// l->fp_offset > 304 - num_fp * 16 go to step 7.
|
||
|
//
|
||
|
// NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
|
||
|
// register save space).
|
||
|
|
||
|
llvm::Value *InRegs = nullptr;
|
||
|
Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
|
||
|
llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
|
||
|
if (neededInt) {
|
||
|
gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
|
||
|
gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
|
||
|
InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
|
||
|
InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
|
||
|
}
|
||
|
|
||
|
if (neededSSE) {
|
||
|
fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
|
||
|
fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
|
||
|
llvm::Value *FitsInFP =
|
||
|
llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
|
||
|
FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
|
||
|
InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
|
||
|
}
|
||
|
|
||
|
llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
|
||
|
llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
|
||
|
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
|
||
|
CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
|
||
|
|
||
|
// Emit code to load the value if it was passed in registers.
|
||
|
|
||
|
CGF.EmitBlock(InRegBlock);
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
|
||
|
// an offset of l->gp_offset and/or l->fp_offset. This may require
|
||
|
// copying to a temporary location in case the parameter is passed
|
||
|
// in different register classes or requires an alignment greater
|
||
|
// than 8 for general purpose registers and 16 for XMM registers.
|
||
|
//
|
||
|
// FIXME: This really results in shameful code when we end up needing to
|
||
|
// collect arguments from different places; often what should result in a
|
||
|
// simple assembling of a structure from scattered addresses has many more
|
||
|
// loads than necessary. Can we clean this up?
|
||
|
llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
|
||
|
llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
|
||
|
CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
|
||
|
|
||
|
Address RegAddr = Address::invalid();
|
||
|
if (neededInt && neededSSE) {
|
||
|
// FIXME: Cleanup.
|
||
|
assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
|
||
|
llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
|
||
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
||
|
Tmp = Tmp.withElementType(ST);
|
||
|
assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
|
||
|
llvm::Type *TyLo = ST->getElementType(0);
|
||
|
llvm::Type *TyHi = ST->getElementType(1);
|
||
|
assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
|
||
|
"Unexpected ABI info for mixed regs");
|
||
|
llvm::Value *GPAddr =
|
||
|
CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
|
||
|
llvm::Value *FPAddr =
|
||
|
CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
|
||
|
llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
|
||
|
llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
|
||
|
|
||
|
// Copy the first element.
|
||
|
// FIXME: Our choice of alignment here and below is probably pessimistic.
|
||
|
llvm::Value *V = CGF.Builder.CreateAlignedLoad(
|
||
|
TyLo, RegLoAddr,
|
||
|
CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
|
||
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
||
|
|
||
|
// Copy the second element.
|
||
|
V = CGF.Builder.CreateAlignedLoad(
|
||
|
TyHi, RegHiAddr,
|
||
|
CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
|
||
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
||
|
|
||
|
RegAddr = Tmp.withElementType(LTy);
|
||
|
} else if (neededInt) {
|
||
|
RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
|
||
|
LTy, CharUnits::fromQuantity(8));
|
||
|
|
||
|
// Copy to a temporary if necessary to ensure the appropriate alignment.
|
||
|
auto TInfo = getContext().getTypeInfoInChars(Ty);
|
||
|
uint64_t TySize = TInfo.Width.getQuantity();
|
||
|
CharUnits TyAlign = TInfo.Align;
|
||
|
|
||
|
// Copy into a temporary if the type is more aligned than the
|
||
|
// register save area.
|
||
|
if (TyAlign.getQuantity() > 8) {
|
||
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
||
|
CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
|
||
|
RegAddr = Tmp;
|
||
|
}
|
||
|
|
||
|
} else if (neededSSE == 1) {
|
||
|
RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
|
||
|
LTy, CharUnits::fromQuantity(16));
|
||
|
} else {
|
||
|
assert(neededSSE == 2 && "Invalid number of needed registers!");
|
||
|
// SSE registers are spaced 16 bytes apart in the register save
|
||
|
// area, we need to collect the two eightbytes together.
|
||
|
// The ABI isn't explicit about this, but it seems reasonable
|
||
|
// to assume that the slots are 16-byte aligned, since the stack is
|
||
|
// naturally 16-byte aligned and the prologue is expected to store
|
||
|
// all the SSE registers to the RSA.
|
||
|
Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
|
||
|
fp_offset),
|
||
|
CGF.Int8Ty, CharUnits::fromQuantity(16));
|
||
|
Address RegAddrHi =
|
||
|
CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
|
||
|
CharUnits::fromQuantity(16));
|
||
|
llvm::Type *ST = AI.canHaveCoerceToType()
|
||
|
? AI.getCoerceToType()
|
||
|
: llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
|
||
|
llvm::Value *V;
|
||
|
Address Tmp = CGF.CreateMemTemp(Ty);
|
||
|
Tmp = Tmp.withElementType(ST);
|
||
|
V = CGF.Builder.CreateLoad(
|
||
|
RegAddrLo.withElementType(ST->getStructElementType(0)));
|
||
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
|
||
|
V = CGF.Builder.CreateLoad(
|
||
|
RegAddrHi.withElementType(ST->getStructElementType(1)));
|
||
|
CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
|
||
|
|
||
|
RegAddr = Tmp.withElementType(LTy);
|
||
|
}
|
||
|
|
||
|
// AMD64-ABI 3.5.7p5: Step 5. Set:
|
||
|
// l->gp_offset = l->gp_offset + num_gp * 8
|
||
|
// l->fp_offset = l->fp_offset + num_fp * 16.
|
||
|
if (neededInt) {
|
||
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
|
||
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
|
||
|
gp_offset_p);
|
||
|
}
|
||
|
if (neededSSE) {
|
||
|
llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
|
||
|
CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
|
||
|
fp_offset_p);
|
||
|
}
|
||
|
CGF.EmitBranch(ContBlock);
|
||
|
|
||
|
// Emit code to load the value if it was passed in memory.
|
||
|
|
||
|
CGF.EmitBlock(InMemBlock);
|
||
|
Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
|
||
|
|
||
|
// Return the appropriate result.
|
||
|
|
||
|
CGF.EmitBlock(ContBlock);
|
||
|
Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
|
||
|
"vaarg.addr");
|
||
|
return ResAddr;
|
||
|
}
|
||
|
|
||
|
Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const {
|
||
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
||
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
||
|
uint64_t Width = getContext().getTypeSize(Ty);
|
||
|
bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
|
||
|
|
||
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
||
|
CGF.getContext().getTypeInfoInChars(Ty),
|
||
|
CharUnits::fromQuantity(8),
|
||
|
/*allowHigherAlign*/ false);
|
||
|
}
|
||
|
|
||
|
ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
|
||
|
QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const {
|
||
|
const Type *Base = nullptr;
|
||
|
uint64_t NumElts = 0;
|
||
|
|
||
|
if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
|
||
|
isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
|
||
|
FreeSSERegs -= NumElts;
|
||
|
return getDirectX86Hva();
|
||
|
}
|
||
|
return current;
|
||
|
}
|
||
|
|
||
|
ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
|
||
|
bool IsReturnType, bool IsVectorCall,
|
||
|
bool IsRegCall) const {
|
||
|
|
||
|
if (Ty->isVoidType())
|
||
|
return ABIArgInfo::getIgnore();
|
||
|
|
||
|
if (const EnumType *EnumTy = Ty->getAs<EnumType>())
|
||
|
Ty = EnumTy->getDecl()->getIntegerType();
|
||
|
|
||
|
TypeInfo Info = getContext().getTypeInfo(Ty);
|
||
|
uint64_t Width = Info.Width;
|
||
|
CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
|
||
|
|
||
|
const RecordType *RT = Ty->getAs<RecordType>();
|
||
|
if (RT) {
|
||
|
if (!IsReturnType) {
|
||
|
if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
|
||
|
return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
|
||
|
}
|
||
|
|
||
|
if (RT->getDecl()->hasFlexibleArrayMember())
|
||
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
||
|
|
||
|
}
|
||
|
|
||
|
const Type *Base = nullptr;
|
||
|
uint64_t NumElts = 0;
|
||
|
// vectorcall adds the concept of a homogenous vector aggregate, similar to
|
||
|
// other targets.
|
||
|
if ((IsVectorCall || IsRegCall) &&
|
||
|
isHomogeneousAggregate(Ty, Base, NumElts)) {
|
||
|
if (IsRegCall) {
|
||
|
if (FreeSSERegs >= NumElts) {
|
||
|
FreeSSERegs -= NumElts;
|
||
|
if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
|
||
|
return ABIArgInfo::getDirect();
|
||
|
return ABIArgInfo::getExpand();
|
||
|
}
|
||
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
||
|
} else if (IsVectorCall) {
|
||
|
if (FreeSSERegs >= NumElts &&
|
||
|
(IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
|
||
|
FreeSSERegs -= NumElts;
|
||
|
return ABIArgInfo::getDirect();
|
||
|
} else if (IsReturnType) {
|
||
|
return ABIArgInfo::getExpand();
|
||
|
} else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
|
||
|
// HVAs are delayed and reclassified in the 2nd step.
|
||
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Ty->isMemberPointerType()) {
|
||
|
// If the member pointer is represented by an LLVM int or ptr, pass it
|
||
|
// directly.
|
||
|
llvm::Type *LLTy = CGT.ConvertType(Ty);
|
||
|
if (LLTy->isPointerTy() || LLTy->isIntegerTy())
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
|
||
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
||
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
||
|
if (Width > 64 || !llvm::isPowerOf2_64(Width))
|
||
|
return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
|
||
|
|
||
|
// Otherwise, coerce it to a small integer.
|
||
|
return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
|
||
|
}
|
||
|
|
||
|
if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
|
||
|
switch (BT->getKind()) {
|
||
|
case BuiltinType::Bool:
|
||
|
// Bool type is always extended to the ABI, other builtin types are not
|
||
|
// extended.
|
||
|
return ABIArgInfo::getExtend(Ty);
|
||
|
|
||
|
case BuiltinType::LongDouble:
|
||
|
// Mingw64 GCC uses the old 80 bit extended precision floating point
|
||
|
// unit. It passes them indirectly through memory.
|
||
|
if (IsMingw64) {
|
||
|
const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
|
||
|
if (LDF == &llvm::APFloat::x87DoubleExtended())
|
||
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case BuiltinType::Int128:
|
||
|
case BuiltinType::UInt128:
|
||
|
// If it's a parameter type, the normal ABI rule is that arguments larger
|
||
|
// than 8 bytes are passed indirectly. GCC follows it. We follow it too,
|
||
|
// even though it isn't particularly efficient.
|
||
|
if (!IsReturnType)
|
||
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
||
|
|
||
|
// Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
|
||
|
// Clang matches them for compatibility.
|
||
|
return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
|
||
|
llvm::Type::getInt64Ty(getVMContext()), 2));
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Ty->isBitIntType()) {
|
||
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
||
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
||
|
// However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
|
||
|
// or 8 bytes anyway as long is it fits in them, so we don't have to check
|
||
|
// the power of 2.
|
||
|
if (Width <= 64)
|
||
|
return ABIArgInfo::getDirect();
|
||
|
return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
|
||
|
}
|
||
|
|
||
|
return ABIArgInfo::getDirect();
|
||
|
}
|
||
|
|
||
|
void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
|
||
|
const unsigned CC = FI.getCallingConvention();
|
||
|
bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
|
||
|
bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
|
||
|
|
||
|
// If __attribute__((sysv_abi)) is in use, use the SysV argument
|
||
|
// classification rules.
|
||
|
if (CC == llvm::CallingConv::X86_64_SysV) {
|
||
|
X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
|
||
|
SysVABIInfo.computeInfo(FI);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
unsigned FreeSSERegs = 0;
|
||
|
if (IsVectorCall) {
|
||
|
// We can use up to 4 SSE return registers with vectorcall.
|
||
|
FreeSSERegs = 4;
|
||
|
} else if (IsRegCall) {
|
||
|
// RegCall gives us 16 SSE registers.
|
||
|
FreeSSERegs = 16;
|
||
|
}
|
||
|
|
||
|
if (!getCXXABI().classifyReturnType(FI))
|
||
|
FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
|
||
|
IsVectorCall, IsRegCall);
|
||
|
|
||
|
if (IsVectorCall) {
|
||
|
// We can use up to 6 SSE register parameters with vectorcall.
|
||
|
FreeSSERegs = 6;
|
||
|
} else if (IsRegCall) {
|
||
|
// RegCall gives us 16 SSE registers, we can reuse the return registers.
|
||
|
FreeSSERegs = 16;
|
||
|
}
|
||
|
|
||
|
unsigned ArgNum = 0;
|
||
|
unsigned ZeroSSERegs = 0;
|
||
|
for (auto &I : FI.arguments()) {
|
||
|
// Vectorcall in x64 only permits the first 6 arguments to be passed as
|
||
|
// XMM/YMM registers. After the sixth argument, pretend no vector
|
||
|
// registers are left.
|
||
|
unsigned *MaybeFreeSSERegs =
|
||
|
(IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
|
||
|
I.info =
|
||
|
classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
|
||
|
++ArgNum;
|
||
|
}
|
||
|
|
||
|
if (IsVectorCall) {
|
||
|
// For vectorcall, assign aggregate HVAs to any free vector registers in a
|
||
|
// second pass.
|
||
|
for (auto &I : FI.arguments())
|
||
|
I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
|
||
|
QualType Ty) const {
|
||
|
// MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
|
||
|
// not 1, 2, 4, or 8 bytes, must be passed by reference."
|
||
|
uint64_t Width = getContext().getTypeSize(Ty);
|
||
|
bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
|
||
|
|
||
|
return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
|
||
|
CGF.getContext().getTypeInfoInChars(Ty),
|
||
|
CharUnits::fromQuantity(8),
|
||
|
/*allowHigherAlign*/ false);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
|
||
|
CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
|
||
|
unsigned NumRegisterParameters, bool SoftFloatABI) {
|
||
|
bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
|
||
|
CGM.getTriple(), CGM.getCodeGenOpts());
|
||
|
return std::make_unique<X86_32TargetCodeGenInfo>(
|
||
|
CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
|
||
|
NumRegisterParameters, SoftFloatABI);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
|
||
|
CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
|
||
|
unsigned NumRegisterParameters) {
|
||
|
bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
|
||
|
CGM.getTriple(), CGM.getCodeGenOpts());
|
||
|
return std::make_unique<WinX86_32TargetCodeGenInfo>(
|
||
|
CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
|
||
|
NumRegisterParameters);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<TargetCodeGenInfo>
|
||
|
CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
|
||
|
X86AVXABILevel AVXLevel) {
|
||
|
return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<TargetCodeGenInfo>
|
||
|
CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
|
||
|
X86AVXABILevel AVXLevel) {
|
||
|
return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
|
||
|
}
|