425 lines
16 KiB
C++
425 lines
16 KiB
C++
|
//===-- SCCP.cpp ----------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements Interprocedural Sparse Conditional Constant Propagation.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/IPO/SCCP.h"
|
||
|
#include "llvm/ADT/SetVector.h"
|
||
|
#include "llvm/Analysis/AssumptionCache.h"
|
||
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
||
|
#include "llvm/Analysis/PostDominators.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
|
#include "llvm/Analysis/ValueLattice.h"
|
||
|
#include "llvm/Analysis/ValueLatticeUtils.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/IR/AttributeMask.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/DIBuilder.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/ModRef.h"
|
||
|
#include "llvm/Transforms/IPO.h"
|
||
|
#include "llvm/Transforms/IPO/FunctionSpecialization.h"
|
||
|
#include "llvm/Transforms/Scalar/SCCP.h"
|
||
|
#include "llvm/Transforms/Utils/Local.h"
|
||
|
#include "llvm/Transforms/Utils/SCCPSolver.h"
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "sccp"
|
||
|
|
||
|
STATISTIC(NumInstRemoved, "Number of instructions removed");
|
||
|
STATISTIC(NumArgsElimed ,"Number of arguments constant propagated");
|
||
|
STATISTIC(NumGlobalConst, "Number of globals found to be constant");
|
||
|
STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
|
||
|
STATISTIC(NumInstReplaced,
|
||
|
"Number of instructions replaced with (simpler) instruction");
|
||
|
|
||
|
static cl::opt<unsigned> FuncSpecMaxIters(
|
||
|
"funcspec-max-iters", cl::init(10), cl::Hidden, cl::desc(
|
||
|
"The maximum number of iterations function specialization is run"));
|
||
|
|
||
|
static void findReturnsToZap(Function &F,
|
||
|
SmallVector<ReturnInst *, 8> &ReturnsToZap,
|
||
|
SCCPSolver &Solver) {
|
||
|
// We can only do this if we know that nothing else can call the function.
|
||
|
if (!Solver.isArgumentTrackedFunction(&F))
|
||
|
return;
|
||
|
|
||
|
if (Solver.mustPreserveReturn(&F)) {
|
||
|
LLVM_DEBUG(
|
||
|
dbgs()
|
||
|
<< "Can't zap returns of the function : " << F.getName()
|
||
|
<< " due to present musttail or \"clang.arc.attachedcall\" call of "
|
||
|
"it\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
assert(
|
||
|
all_of(F.users(),
|
||
|
[&Solver](User *U) {
|
||
|
if (isa<Instruction>(U) &&
|
||
|
!Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
|
||
|
return true;
|
||
|
// Non-callsite uses are not impacted by zapping. Also, constant
|
||
|
// uses (like blockaddresses) could stuck around, without being
|
||
|
// used in the underlying IR, meaning we do not have lattice
|
||
|
// values for them.
|
||
|
if (!isa<CallBase>(U))
|
||
|
return true;
|
||
|
if (U->getType()->isStructTy()) {
|
||
|
return all_of(Solver.getStructLatticeValueFor(U),
|
||
|
[](const ValueLatticeElement &LV) {
|
||
|
return !SCCPSolver::isOverdefined(LV);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
// We don't consider assume-like intrinsics to be actual address
|
||
|
// captures.
|
||
|
if (auto *II = dyn_cast<IntrinsicInst>(U)) {
|
||
|
if (II->isAssumeLikeIntrinsic())
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return !SCCPSolver::isOverdefined(Solver.getLatticeValueFor(U));
|
||
|
}) &&
|
||
|
"We can only zap functions where all live users have a concrete value");
|
||
|
|
||
|
for (BasicBlock &BB : F) {
|
||
|
if (CallInst *CI = BB.getTerminatingMustTailCall()) {
|
||
|
LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
|
||
|
<< "musttail call : " << *CI << "\n");
|
||
|
(void)CI;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
|
||
|
if (!isa<UndefValue>(RI->getOperand(0)))
|
||
|
ReturnsToZap.push_back(RI);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool runIPSCCP(
|
||
|
Module &M, const DataLayout &DL, FunctionAnalysisManager *FAM,
|
||
|
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
|
||
|
std::function<TargetTransformInfo &(Function &)> GetTTI,
|
||
|
std::function<AssumptionCache &(Function &)> GetAC,
|
||
|
std::function<DominatorTree &(Function &)> GetDT,
|
||
|
std::function<BlockFrequencyInfo &(Function &)> GetBFI,
|
||
|
bool IsFuncSpecEnabled) {
|
||
|
SCCPSolver Solver(DL, GetTLI, M.getContext());
|
||
|
FunctionSpecializer Specializer(Solver, M, FAM, GetBFI, GetTLI, GetTTI,
|
||
|
GetAC);
|
||
|
|
||
|
// Loop over all functions, marking arguments to those with their addresses
|
||
|
// taken or that are external as overdefined.
|
||
|
for (Function &F : M) {
|
||
|
if (F.isDeclaration())
|
||
|
continue;
|
||
|
|
||
|
DominatorTree &DT = GetDT(F);
|
||
|
AssumptionCache &AC = GetAC(F);
|
||
|
Solver.addPredicateInfo(F, DT, AC);
|
||
|
|
||
|
// Determine if we can track the function's return values. If so, add the
|
||
|
// function to the solver's set of return-tracked functions.
|
||
|
if (canTrackReturnsInterprocedurally(&F))
|
||
|
Solver.addTrackedFunction(&F);
|
||
|
|
||
|
// Determine if we can track the function's arguments. If so, add the
|
||
|
// function to the solver's set of argument-tracked functions.
|
||
|
if (canTrackArgumentsInterprocedurally(&F)) {
|
||
|
Solver.addArgumentTrackedFunction(&F);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Assume the function is called.
|
||
|
Solver.markBlockExecutable(&F.front());
|
||
|
|
||
|
// Assume nothing about the incoming arguments.
|
||
|
for (Argument &AI : F.args())
|
||
|
Solver.markOverdefined(&AI);
|
||
|
}
|
||
|
|
||
|
// Determine if we can track any of the module's global variables. If so, add
|
||
|
// the global variables we can track to the solver's set of tracked global
|
||
|
// variables.
|
||
|
for (GlobalVariable &G : M.globals()) {
|
||
|
G.removeDeadConstantUsers();
|
||
|
if (canTrackGlobalVariableInterprocedurally(&G))
|
||
|
Solver.trackValueOfGlobalVariable(&G);
|
||
|
}
|
||
|
|
||
|
// Solve for constants.
|
||
|
Solver.solveWhileResolvedUndefsIn(M);
|
||
|
|
||
|
if (IsFuncSpecEnabled) {
|
||
|
unsigned Iters = 0;
|
||
|
while (Iters++ < FuncSpecMaxIters && Specializer.run());
|
||
|
}
|
||
|
|
||
|
// Iterate over all of the instructions in the module, replacing them with
|
||
|
// constants if we have found them to be of constant values.
|
||
|
bool MadeChanges = false;
|
||
|
for (Function &F : M) {
|
||
|
if (F.isDeclaration())
|
||
|
continue;
|
||
|
|
||
|
SmallVector<BasicBlock *, 512> BlocksToErase;
|
||
|
|
||
|
if (Solver.isBlockExecutable(&F.front())) {
|
||
|
bool ReplacedPointerArg = false;
|
||
|
for (Argument &Arg : F.args()) {
|
||
|
if (!Arg.use_empty() && Solver.tryToReplaceWithConstant(&Arg)) {
|
||
|
ReplacedPointerArg |= Arg.getType()->isPointerTy();
|
||
|
++NumArgsElimed;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we replaced an argument, we may now also access a global (currently
|
||
|
// classified as "other" memory). Update memory attribute to reflect this.
|
||
|
if (ReplacedPointerArg) {
|
||
|
auto UpdateAttrs = [&](AttributeList AL) {
|
||
|
MemoryEffects ME = AL.getMemoryEffects();
|
||
|
if (ME == MemoryEffects::unknown())
|
||
|
return AL;
|
||
|
|
||
|
ME |= MemoryEffects(IRMemLocation::Other,
|
||
|
ME.getModRef(IRMemLocation::ArgMem));
|
||
|
return AL.addFnAttribute(
|
||
|
F.getContext(),
|
||
|
Attribute::getWithMemoryEffects(F.getContext(), ME));
|
||
|
};
|
||
|
|
||
|
F.setAttributes(UpdateAttrs(F.getAttributes()));
|
||
|
for (User *U : F.users()) {
|
||
|
auto *CB = dyn_cast<CallBase>(U);
|
||
|
if (!CB || CB->getCalledFunction() != &F)
|
||
|
continue;
|
||
|
|
||
|
CB->setAttributes(UpdateAttrs(CB->getAttributes()));
|
||
|
}
|
||
|
}
|
||
|
MadeChanges |= ReplacedPointerArg;
|
||
|
}
|
||
|
|
||
|
SmallPtrSet<Value *, 32> InsertedValues;
|
||
|
for (BasicBlock &BB : F) {
|
||
|
if (!Solver.isBlockExecutable(&BB)) {
|
||
|
LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
|
||
|
++NumDeadBlocks;
|
||
|
|
||
|
MadeChanges = true;
|
||
|
|
||
|
if (&BB != &F.front())
|
||
|
BlocksToErase.push_back(&BB);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
MadeChanges |= Solver.simplifyInstsInBlock(
|
||
|
BB, InsertedValues, NumInstRemoved, NumInstReplaced);
|
||
|
}
|
||
|
|
||
|
DominatorTree *DT = FAM->getCachedResult<DominatorTreeAnalysis>(F);
|
||
|
PostDominatorTree *PDT = FAM->getCachedResult<PostDominatorTreeAnalysis>(F);
|
||
|
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
|
||
|
// Change dead blocks to unreachable. We do it after replacing constants
|
||
|
// in all executable blocks, because changeToUnreachable may remove PHI
|
||
|
// nodes in executable blocks we found values for. The function's entry
|
||
|
// block is not part of BlocksToErase, so we have to handle it separately.
|
||
|
for (BasicBlock *BB : BlocksToErase) {
|
||
|
NumInstRemoved += changeToUnreachable(BB->getFirstNonPHIOrDbg(),
|
||
|
/*PreserveLCSSA=*/false, &DTU);
|
||
|
}
|
||
|
if (!Solver.isBlockExecutable(&F.front()))
|
||
|
NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHIOrDbg(),
|
||
|
/*PreserveLCSSA=*/false, &DTU);
|
||
|
|
||
|
BasicBlock *NewUnreachableBB = nullptr;
|
||
|
for (BasicBlock &BB : F)
|
||
|
MadeChanges |= Solver.removeNonFeasibleEdges(&BB, DTU, NewUnreachableBB);
|
||
|
|
||
|
for (BasicBlock *DeadBB : BlocksToErase)
|
||
|
if (!DeadBB->hasAddressTaken())
|
||
|
DTU.deleteBB(DeadBB);
|
||
|
|
||
|
for (BasicBlock &BB : F) {
|
||
|
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
|
||
|
if (Solver.getPredicateInfoFor(&Inst)) {
|
||
|
if (auto *II = dyn_cast<IntrinsicInst>(&Inst)) {
|
||
|
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
|
||
|
Value *Op = II->getOperand(0);
|
||
|
Inst.replaceAllUsesWith(Op);
|
||
|
Inst.eraseFromParent();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we inferred constant or undef return values for a function, we replaced
|
||
|
// all call uses with the inferred value. This means we don't need to bother
|
||
|
// actually returning anything from the function. Replace all return
|
||
|
// instructions with return undef.
|
||
|
//
|
||
|
// Do this in two stages: first identify the functions we should process, then
|
||
|
// actually zap their returns. This is important because we can only do this
|
||
|
// if the address of the function isn't taken. In cases where a return is the
|
||
|
// last use of a function, the order of processing functions would affect
|
||
|
// whether other functions are optimizable.
|
||
|
SmallVector<ReturnInst*, 8> ReturnsToZap;
|
||
|
|
||
|
for (const auto &I : Solver.getTrackedRetVals()) {
|
||
|
Function *F = I.first;
|
||
|
const ValueLatticeElement &ReturnValue = I.second;
|
||
|
|
||
|
// If there is a known constant range for the return value, add !range
|
||
|
// metadata to the function's call sites.
|
||
|
if (ReturnValue.isConstantRange() &&
|
||
|
!ReturnValue.getConstantRange().isSingleElement()) {
|
||
|
// Do not add range metadata if the return value may include undef.
|
||
|
if (ReturnValue.isConstantRangeIncludingUndef())
|
||
|
continue;
|
||
|
|
||
|
auto &CR = ReturnValue.getConstantRange();
|
||
|
for (User *User : F->users()) {
|
||
|
auto *CB = dyn_cast<CallBase>(User);
|
||
|
if (!CB || CB->getCalledFunction() != F)
|
||
|
continue;
|
||
|
|
||
|
// Do not touch existing metadata for now.
|
||
|
// TODO: We should be able to take the intersection of the existing
|
||
|
// metadata and the inferred range.
|
||
|
if (CB->getMetadata(LLVMContext::MD_range))
|
||
|
continue;
|
||
|
|
||
|
LLVMContext &Context = CB->getParent()->getContext();
|
||
|
Metadata *RangeMD[] = {
|
||
|
ConstantAsMetadata::get(ConstantInt::get(Context, CR.getLower())),
|
||
|
ConstantAsMetadata::get(ConstantInt::get(Context, CR.getUpper()))};
|
||
|
CB->setMetadata(LLVMContext::MD_range, MDNode::get(Context, RangeMD));
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
if (F->getReturnType()->isVoidTy())
|
||
|
continue;
|
||
|
if (SCCPSolver::isConstant(ReturnValue) || ReturnValue.isUnknownOrUndef())
|
||
|
findReturnsToZap(*F, ReturnsToZap, Solver);
|
||
|
}
|
||
|
|
||
|
for (auto *F : Solver.getMRVFunctionsTracked()) {
|
||
|
assert(F->getReturnType()->isStructTy() &&
|
||
|
"The return type should be a struct");
|
||
|
StructType *STy = cast<StructType>(F->getReturnType());
|
||
|
if (Solver.isStructLatticeConstant(F, STy))
|
||
|
findReturnsToZap(*F, ReturnsToZap, Solver);
|
||
|
}
|
||
|
|
||
|
// Zap all returns which we've identified as zap to change.
|
||
|
SmallSetVector<Function *, 8> FuncZappedReturn;
|
||
|
for (ReturnInst *RI : ReturnsToZap) {
|
||
|
Function *F = RI->getParent()->getParent();
|
||
|
RI->setOperand(0, UndefValue::get(F->getReturnType()));
|
||
|
// Record all functions that are zapped.
|
||
|
FuncZappedReturn.insert(F);
|
||
|
}
|
||
|
|
||
|
// Remove the returned attribute for zapped functions and the
|
||
|
// corresponding call sites.
|
||
|
// Also remove any attributes that convert an undef return value into
|
||
|
// immediate undefined behavior
|
||
|
AttributeMask UBImplyingAttributes =
|
||
|
AttributeFuncs::getUBImplyingAttributes();
|
||
|
for (Function *F : FuncZappedReturn) {
|
||
|
for (Argument &A : F->args())
|
||
|
F->removeParamAttr(A.getArgNo(), Attribute::Returned);
|
||
|
F->removeRetAttrs(UBImplyingAttributes);
|
||
|
for (Use &U : F->uses()) {
|
||
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
||
|
if (!CB) {
|
||
|
assert(isa<BlockAddress>(U.getUser()) ||
|
||
|
(isa<Constant>(U.getUser()) &&
|
||
|
all_of(U.getUser()->users(), [](const User *UserUser) {
|
||
|
return cast<IntrinsicInst>(UserUser)->isAssumeLikeIntrinsic();
|
||
|
})));
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
for (Use &Arg : CB->args())
|
||
|
CB->removeParamAttr(CB->getArgOperandNo(&Arg), Attribute::Returned);
|
||
|
CB->removeRetAttrs(UBImplyingAttributes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we inferred constant or undef values for globals variables, we can
|
||
|
// delete the global and any stores that remain to it.
|
||
|
for (const auto &I : make_early_inc_range(Solver.getTrackedGlobals())) {
|
||
|
GlobalVariable *GV = I.first;
|
||
|
if (SCCPSolver::isOverdefined(I.second))
|
||
|
continue;
|
||
|
LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
|
||
|
<< "' is constant!\n");
|
||
|
while (!GV->use_empty()) {
|
||
|
StoreInst *SI = cast<StoreInst>(GV->user_back());
|
||
|
SI->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
// Try to create a debug constant expression for the global variable
|
||
|
// initializer value.
|
||
|
SmallVector<DIGlobalVariableExpression *, 1> GVEs;
|
||
|
GV->getDebugInfo(GVEs);
|
||
|
if (GVEs.size() == 1) {
|
||
|
DIBuilder DIB(M);
|
||
|
if (DIExpression *InitExpr = getExpressionForConstant(
|
||
|
DIB, *GV->getInitializer(), *GV->getValueType()))
|
||
|
GVEs[0]->replaceOperandWith(1, InitExpr);
|
||
|
}
|
||
|
|
||
|
MadeChanges = true;
|
||
|
M.eraseGlobalVariable(GV);
|
||
|
++NumGlobalConst;
|
||
|
}
|
||
|
|
||
|
return MadeChanges;
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses IPSCCPPass::run(Module &M, ModuleAnalysisManager &AM) {
|
||
|
const DataLayout &DL = M.getDataLayout();
|
||
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
||
|
auto GetTLI = [&FAM](Function &F) -> const TargetLibraryInfo & {
|
||
|
return FAM.getResult<TargetLibraryAnalysis>(F);
|
||
|
};
|
||
|
auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
|
||
|
return FAM.getResult<TargetIRAnalysis>(F);
|
||
|
};
|
||
|
auto GetAC = [&FAM](Function &F) -> AssumptionCache & {
|
||
|
return FAM.getResult<AssumptionAnalysis>(F);
|
||
|
};
|
||
|
auto GetDT = [&FAM](Function &F) -> DominatorTree & {
|
||
|
return FAM.getResult<DominatorTreeAnalysis>(F);
|
||
|
};
|
||
|
auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
|
||
|
return FAM.getResult<BlockFrequencyAnalysis>(F);
|
||
|
};
|
||
|
|
||
|
|
||
|
if (!runIPSCCP(M, DL, &FAM, GetTLI, GetTTI, GetAC, GetDT, GetBFI,
|
||
|
isFuncSpecEnabled()))
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
PreservedAnalyses PA;
|
||
|
PA.preserve<DominatorTreeAnalysis>();
|
||
|
PA.preserve<PostDominatorTreeAnalysis>();
|
||
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
||
|
return PA;
|
||
|
}
|