bolt/deps/llvm-18.1.8/llvm/lib/Transforms/Scalar/InductiveRangeCheckElimination.cpp

1091 lines
41 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===- InductiveRangeCheckElimination.cpp - -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The InductiveRangeCheckElimination pass splits a loop's iteration space into
// three disjoint ranges. It does that in a way such that the loop running in
// the middle loop provably does not need range checks. As an example, it will
// convert
//
// len = < known positive >
// for (i = 0; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//
// to
//
// len = < known positive >
// limit = smin(n, len)
// // no first segment
// for (i = 0; i < limit; i++) {
// if (0 <= i && i < len) { // this check is fully redundant
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
// for (i = limit; i < n; i++) {
// if (0 <= i && i < len) {
// do_something();
// } else {
// throw_out_of_bounds();
// }
// }
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/PriorityWorklist.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopConstrainer.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <optional>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
cl::init(64));
static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
cl::init(false));
static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
cl::init(false));
static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
cl::Hidden, cl::init(false));
static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
cl::Hidden, cl::init(10));
static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
cl::Hidden, cl::init(true));
static cl::opt<bool> AllowNarrowLatchCondition(
"irce-allow-narrow-latch", cl::Hidden, cl::init(true),
cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
"with narrow latch condition."));
static cl::opt<unsigned> MaxTypeSizeForOverflowCheck(
"irce-max-type-size-for-overflow-check", cl::Hidden, cl::init(32),
cl::desc(
"Maximum size of range check type for which can be produced runtime "
"overflow check of its limit's computation"));
static cl::opt<bool>
PrintScaledBoundaryRangeChecks("irce-print-scaled-boundary-range-checks",
cl::Hidden, cl::init(false));
#define DEBUG_TYPE "irce"
namespace {
/// An inductive range check is conditional branch in a loop with
///
/// 1. a very cold successor (i.e. the branch jumps to that successor very
/// rarely)
///
/// and
///
/// 2. a condition that is provably true for some contiguous range of values
/// taken by the containing loop's induction variable.
///
class InductiveRangeCheck {
const SCEV *Begin = nullptr;
const SCEV *Step = nullptr;
const SCEV *End = nullptr;
Use *CheckUse = nullptr;
static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End);
static void
extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
SmallVectorImpl<InductiveRangeCheck> &Checks,
SmallPtrSetImpl<Value *> &Visited);
static bool parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
ICmpInst::Predicate Pred, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End);
static bool reassociateSubLHS(Loop *L, Value *VariantLHS, Value *InvariantRHS,
ICmpInst::Predicate Pred, ScalarEvolution &SE,
const SCEVAddRecExpr *&Index, const SCEV *&End);
public:
const SCEV *getBegin() const { return Begin; }
const SCEV *getStep() const { return Step; }
const SCEV *getEnd() const { return End; }
void print(raw_ostream &OS) const {
OS << "InductiveRangeCheck:\n";
OS << " Begin: ";
Begin->print(OS);
OS << " Step: ";
Step->print(OS);
OS << " End: ";
End->print(OS);
OS << "\n CheckUse: ";
getCheckUse()->getUser()->print(OS);
OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
}
LLVM_DUMP_METHOD
void dump() {
print(dbgs());
}
Use *getCheckUse() const { return CheckUse; }
/// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
/// R.getEnd() le R.getBegin(), then R denotes the empty range.
class Range {
const SCEV *Begin;
const SCEV *End;
public:
Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
assert(Begin->getType() == End->getType() && "ill-typed range!");
}
Type *getType() const { return Begin->getType(); }
const SCEV *getBegin() const { return Begin; }
const SCEV *getEnd() const { return End; }
bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
if (Begin == End)
return true;
if (IsSigned)
return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
else
return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
}
};
/// This is the value the condition of the branch needs to evaluate to for the
/// branch to take the hot successor (see (1) above).
bool getPassingDirection() { return true; }
/// Computes a range for the induction variable (IndVar) in which the range
/// check is redundant and can be constant-folded away. The induction
/// variable is not required to be the canonical {0,+,1} induction variable.
std::optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
const SCEVAddRecExpr *IndVar,
bool IsLatchSigned) const;
/// Parse out a set of inductive range checks from \p BI and append them to \p
/// Checks.
///
/// NB! There may be conditions feeding into \p BI that aren't inductive range
/// checks, and hence don't end up in \p Checks.
static void extractRangeChecksFromBranch(
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed);
};
class InductiveRangeCheckElimination {
ScalarEvolution &SE;
BranchProbabilityInfo *BPI;
DominatorTree &DT;
LoopInfo &LI;
using GetBFIFunc =
std::optional<llvm::function_ref<llvm::BlockFrequencyInfo &()>>;
GetBFIFunc GetBFI;
// Returns true if it is profitable to do a transform basing on estimation of
// number of iterations.
bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
public:
InductiveRangeCheckElimination(ScalarEvolution &SE,
BranchProbabilityInfo *BPI, DominatorTree &DT,
LoopInfo &LI, GetBFIFunc GetBFI = std::nullopt)
: SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
};
} // end anonymous namespace
/// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
/// be interpreted as a range check, return false. Otherwise set `Index` to the
/// SCEV being range checked, and set `End` to the upper or lower limit `Index`
/// is being range checked.
bool InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End) {
auto IsLoopInvariant = [&SE, L](Value *V) {
return SE.isLoopInvariant(SE.getSCEV(V), L);
};
ICmpInst::Predicate Pred = ICI->getPredicate();
Value *LHS = ICI->getOperand(0);
Value *RHS = ICI->getOperand(1);
if (!LHS->getType()->isIntegerTy())
return false;
// Canonicalize to the `Index Pred Invariant` comparison
if (IsLoopInvariant(LHS)) {
std::swap(LHS, RHS);
Pred = CmpInst::getSwappedPredicate(Pred);
} else if (!IsLoopInvariant(RHS))
// Both LHS and RHS are loop variant
return false;
if (parseIvAgaisntLimit(L, LHS, RHS, Pred, SE, Index, End))
return true;
if (reassociateSubLHS(L, LHS, RHS, Pred, SE, Index, End))
return true;
// TODO: support ReassociateAddLHS
return false;
}
// Try to parse range check in the form of "IV vs Limit"
bool InductiveRangeCheck::parseIvAgaisntLimit(Loop *L, Value *LHS, Value *RHS,
ICmpInst::Predicate Pred,
ScalarEvolution &SE,
const SCEVAddRecExpr *&Index,
const SCEV *&End) {
auto SIntMaxSCEV = [&](Type *T) {
unsigned BitWidth = cast<IntegerType>(T)->getBitWidth();
return SE.getConstant(APInt::getSignedMaxValue(BitWidth));
};
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(LHS));
if (!AddRec)
return false;
// We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
// We can potentially do much better here.
// If we want to adjust upper bound for the unsigned range check as we do it
// for signed one, we will need to pick Unsigned max
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SGE:
if (match(RHS, m_ConstantInt<0>())) {
Index = AddRec;
End = SIntMaxSCEV(Index->getType());
return true;
}
return false;
case ICmpInst::ICMP_SGT:
if (match(RHS, m_ConstantInt<-1>())) {
Index = AddRec;
End = SIntMaxSCEV(Index->getType());
return true;
}
return false;
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_ULT:
Index = AddRec;
End = SE.getSCEV(RHS);
return true;
case ICmpInst::ICMP_SLE:
case ICmpInst::ICMP_ULE:
const SCEV *One = SE.getOne(RHS->getType());
const SCEV *RHSS = SE.getSCEV(RHS);
bool Signed = Pred == ICmpInst::ICMP_SLE;
if (SE.willNotOverflow(Instruction::BinaryOps::Add, Signed, RHSS, One)) {
Index = AddRec;
End = SE.getAddExpr(RHSS, One);
return true;
}
return false;
}
llvm_unreachable("default clause returns!");
}
// Try to parse range check in the form of "IV - Offset vs Limit" or "Offset -
// IV vs Limit"
bool InductiveRangeCheck::reassociateSubLHS(
Loop *L, Value *VariantLHS, Value *InvariantRHS, ICmpInst::Predicate Pred,
ScalarEvolution &SE, const SCEVAddRecExpr *&Index, const SCEV *&End) {
Value *LHS, *RHS;
if (!match(VariantLHS, m_Sub(m_Value(LHS), m_Value(RHS))))
return false;
const SCEV *IV = SE.getSCEV(LHS);
const SCEV *Offset = SE.getSCEV(RHS);
const SCEV *Limit = SE.getSCEV(InvariantRHS);
bool OffsetSubtracted = false;
if (SE.isLoopInvariant(IV, L))
// "Offset - IV vs Limit"
std::swap(IV, Offset);
else if (SE.isLoopInvariant(Offset, L))
// "IV - Offset vs Limit"
OffsetSubtracted = true;
else
return false;
const auto *AddRec = dyn_cast<SCEVAddRecExpr>(IV);
if (!AddRec)
return false;
// In order to turn "IV - Offset < Limit" into "IV < Limit + Offset", we need
// to be able to freely move values from left side of inequality to right side
// (just as in normal linear arithmetics). Overflows make things much more
// complicated, so we want to avoid this.
//
// Let's prove that the initial subtraction doesn't overflow with all IV's
// values from the safe range constructed for that check.
//
// [Case 1] IV - Offset < Limit
// It doesn't overflow if:
// SINT_MIN <= IV - Offset <= SINT_MAX
// In terms of scaled SINT we need to prove:
// SINT_MIN + Offset <= IV <= SINT_MAX + Offset
// Safe range will be constructed:
// 0 <= IV < Limit + Offset
// It means that 'IV - Offset' doesn't underflow, because:
// SINT_MIN + Offset < 0 <= IV
// and doesn't overflow:
// IV < Limit + Offset <= SINT_MAX + Offset
//
// [Case 2] Offset - IV > Limit
// It doesn't overflow if:
// SINT_MIN <= Offset - IV <= SINT_MAX
// In terms of scaled SINT we need to prove:
// -SINT_MIN >= IV - Offset >= -SINT_MAX
// Offset - SINT_MIN >= IV >= Offset - SINT_MAX
// Safe range will be constructed:
// 0 <= IV < Offset - Limit
// It means that 'Offset - IV' doesn't underflow, because
// Offset - SINT_MAX < 0 <= IV
// and doesn't overflow:
// IV < Offset - Limit <= Offset - SINT_MIN
//
// For the computed upper boundary of the IV's range (Offset +/- Limit) we
// don't know exactly whether it overflows or not. So if we can't prove this
// fact at compile time, we scale boundary computations to a wider type with
// the intention to add runtime overflow check.
auto getExprScaledIfOverflow = [&](Instruction::BinaryOps BinOp,
const SCEV *LHS,
const SCEV *RHS) -> const SCEV * {
const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
SCEV::NoWrapFlags, unsigned);
switch (BinOp) {
default:
llvm_unreachable("Unsupported binary op");
case Instruction::Add:
Operation = &ScalarEvolution::getAddExpr;
break;
case Instruction::Sub:
Operation = &ScalarEvolution::getMinusSCEV;
break;
}
if (SE.willNotOverflow(BinOp, ICmpInst::isSigned(Pred), LHS, RHS,
cast<Instruction>(VariantLHS)))
return (SE.*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0);
// We couldn't prove that the expression does not overflow.
// Than scale it to a wider type to check overflow at runtime.
auto *Ty = cast<IntegerType>(LHS->getType());
if (Ty->getBitWidth() > MaxTypeSizeForOverflowCheck)
return nullptr;
auto WideTy = IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
return (SE.*Operation)(SE.getSignExtendExpr(LHS, WideTy),
SE.getSignExtendExpr(RHS, WideTy), SCEV::FlagAnyWrap,
0);
};
if (OffsetSubtracted)
// "IV - Offset < Limit" -> "IV" < Offset + Limit
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Offset, Limit);
else {
// "Offset - IV > Limit" -> "IV" < Offset - Limit
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Sub, Offset, Limit);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
// "Expr <= Limit" -> "Expr < Limit + 1"
if (Pred == ICmpInst::ICMP_SLE && Limit)
Limit = getExprScaledIfOverflow(Instruction::BinaryOps::Add, Limit,
SE.getOne(Limit->getType()));
if (Limit) {
Index = AddRec;
End = Limit;
return true;
}
}
return false;
}
void InductiveRangeCheck::extractRangeChecksFromCond(
Loop *L, ScalarEvolution &SE, Use &ConditionUse,
SmallVectorImpl<InductiveRangeCheck> &Checks,
SmallPtrSetImpl<Value *> &Visited) {
Value *Condition = ConditionUse.get();
if (!Visited.insert(Condition).second)
return;
// TODO: Do the same for OR, XOR, NOT etc?
if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
Checks, Visited);
extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
Checks, Visited);
return;
}
ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
if (!ICI)
return;
const SCEV *End = nullptr;
const SCEVAddRecExpr *IndexAddRec = nullptr;
if (!parseRangeCheckICmp(L, ICI, SE, IndexAddRec, End))
return;
assert(IndexAddRec && "IndexAddRec was not computed");
assert(End && "End was not computed");
if ((IndexAddRec->getLoop() != L) || !IndexAddRec->isAffine())
return;
InductiveRangeCheck IRC;
IRC.End = End;
IRC.Begin = IndexAddRec->getStart();
IRC.Step = IndexAddRec->getStepRecurrence(SE);
IRC.CheckUse = &ConditionUse;
Checks.push_back(IRC);
}
void InductiveRangeCheck::extractRangeChecksFromBranch(
BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
SmallVectorImpl<InductiveRangeCheck> &Checks, bool &Changed) {
if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
return;
unsigned IndexLoopSucc = L->contains(BI->getSuccessor(0)) ? 0 : 1;
assert(L->contains(BI->getSuccessor(IndexLoopSucc)) &&
"No edges coming to loop?");
BranchProbability LikelyTaken(15, 16);
if (!SkipProfitabilityChecks && BPI &&
BPI->getEdgeProbability(BI->getParent(), IndexLoopSucc) < LikelyTaken)
return;
// IRCE expects branch's true edge comes to loop. Invert branch for opposite
// case.
if (IndexLoopSucc != 0) {
IRBuilder<> Builder(BI);
InvertBranch(BI, Builder);
if (BPI)
BPI->swapSuccEdgesProbabilities(BI->getParent());
Changed = true;
}
SmallPtrSet<Value *, 8> Visited;
InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
Checks, Visited);
}
/// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
/// signed or unsigned extension of \p S to type \p Ty.
static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
bool Signed) {
return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
}
// Compute a safe set of limits for the main loop to run in -- effectively the
// intersection of `Range' and the iteration space of the original loop.
// Return std::nullopt if unable to compute the set of subranges.
static std::optional<LoopConstrainer::SubRanges>
calculateSubRanges(ScalarEvolution &SE, const Loop &L,
InductiveRangeCheck::Range &Range,
const LoopStructure &MainLoopStructure) {
auto *RTy = cast<IntegerType>(Range.getType());
// We only support wide range checks and narrow latches.
if (!AllowNarrowLatchCondition && RTy != MainLoopStructure.ExitCountTy)
return std::nullopt;
if (RTy->getBitWidth() < MainLoopStructure.ExitCountTy->getBitWidth())
return std::nullopt;
LoopConstrainer::SubRanges Result;
bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
// I think we can be more aggressive here and make this nuw / nsw if the
// addition that feeds into the icmp for the latch's terminating branch is nuw
// / nsw. In any case, a wrapping 2's complement addition is safe.
const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
RTy, SE, IsSignedPredicate);
const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
SE, IsSignedPredicate);
bool Increasing = MainLoopStructure.IndVarIncreasing;
// We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
// [Smallest, GreatestSeen] is the range of values the induction variable
// takes.
const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
const SCEV *One = SE.getOne(RTy);
if (Increasing) {
Smallest = Start;
Greatest = End;
// No overflow, because the range [Smallest, GreatestSeen] is not empty.
GreatestSeen = SE.getMinusSCEV(End, One);
} else {
// These two computations may sign-overflow. Here is why that is okay:
//
// We know that the induction variable does not sign-overflow on any
// iteration except the last one, and it starts at `Start` and ends at
// `End`, decrementing by one every time.
//
// * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
// induction variable is decreasing we know that the smallest value
// the loop body is actually executed with is `INT_SMIN` == `Smallest`.
//
// * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
// that case, `Clamp` will always return `Smallest` and
// [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
// will be an empty range. Returning an empty range is always safe.
Smallest = SE.getAddExpr(End, One);
Greatest = SE.getAddExpr(Start, One);
GreatestSeen = Start;
}
auto Clamp = [&SE, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
return IsSignedPredicate
? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
: SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
};
// In some cases we can prove that we don't need a pre or post loop.
ICmpInst::Predicate PredLE =
IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
ICmpInst::Predicate PredLT =
IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
bool ProvablyNoPreloop =
SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
if (!ProvablyNoPreloop)
Result.LowLimit = Clamp(Range.getBegin());
bool ProvablyNoPostLoop =
SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
if (!ProvablyNoPostLoop)
Result.HighLimit = Clamp(Range.getEnd());
return Result;
}
/// Computes and returns a range of values for the induction variable (IndVar)
/// in which the range check can be safely elided. If it cannot compute such a
/// range, returns std::nullopt.
std::optional<InductiveRangeCheck::Range>
InductiveRangeCheck::computeSafeIterationSpace(ScalarEvolution &SE,
const SCEVAddRecExpr *IndVar,
bool IsLatchSigned) const {
// We can deal when types of latch check and range checks don't match in case
// if latch check is more narrow.
auto *IVType = dyn_cast<IntegerType>(IndVar->getType());
auto *RCType = dyn_cast<IntegerType>(getBegin()->getType());
auto *EndType = dyn_cast<IntegerType>(getEnd()->getType());
// Do not work with pointer types.
if (!IVType || !RCType)
return std::nullopt;
if (IVType->getBitWidth() > RCType->getBitWidth())
return std::nullopt;
// IndVar is of the form "A + B * I" (where "I" is the canonical induction
// variable, that may or may not exist as a real llvm::Value in the loop) and
// this inductive range check is a range check on the "C + D * I" ("C" is
// getBegin() and "D" is getStep()). We rewrite the value being range
// checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
//
// The actual inequalities we solve are of the form
//
// 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
//
// Here L stands for upper limit of the safe iteration space.
// The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
// overflows when calculating (0 - M) and (L - M) we, depending on type of
// IV's iteration space, limit the calculations by borders of the iteration
// space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
// If we figured out that "anything greater than (-M) is safe", we strengthen
// this to "everything greater than 0 is safe", assuming that values between
// -M and 0 just do not exist in unsigned iteration space, and we don't want
// to deal with overflown values.
if (!IndVar->isAffine())
return std::nullopt;
const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
const SCEVConstant *B = dyn_cast<SCEVConstant>(
NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
if (!B)
return std::nullopt;
assert(!B->isZero() && "Recurrence with zero step?");
const SCEV *C = getBegin();
const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
if (D != B)
return std::nullopt;
assert(!D->getValue()->isZero() && "Recurrence with zero step?");
unsigned BitWidth = RCType->getBitWidth();
const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
const SCEV *SIntMin = SE.getConstant(APInt::getSignedMinValue(BitWidth));
// Subtract Y from X so that it does not go through border of the IV
// iteration space. Mathematically, it is equivalent to:
//
// ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
//
// In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
// any width of bit grid). But after we take min/max, the result is
// guaranteed to be within [INT_MIN, INT_MAX].
//
// In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
// values, depending on type of latch condition that defines IV iteration
// space.
auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
// FIXME: The current implementation assumes that X is in [0, SINT_MAX].
// This is required to ensure that SINT_MAX - X does not overflow signed and
// that X - Y does not overflow unsigned if Y is negative. Can we lift this
// restriction and make it work for negative X either?
if (IsLatchSigned) {
// X is a number from signed range, Y is interpreted as signed.
// Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
// thing we should care about is that we didn't cross SINT_MAX.
// So, if Y is positive, we subtract Y safely.
// Rule 1: Y > 0 ---> Y.
// If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
// Rule 2: Y >=s (X - SINT_MAX) ---> Y.
// If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
// Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
// It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
SCEV::FlagNSW);
} else
// X is a number from unsigned range, Y is interpreted as signed.
// Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
// thing we should care about is that we didn't cross zero.
// So, if Y is negative, we subtract Y safely.
// Rule 1: Y <s 0 ---> Y.
// If 0 <= Y <= X, we subtract Y safely.
// Rule 2: Y <=s X ---> Y.
// If 0 <= X < Y, we should stop at 0 and can only subtract X.
// Rule 3: Y >s X ---> X.
// It gives us smin(X, Y) to subtract in all cases.
return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
};
const SCEV *M = SE.getMinusSCEV(C, A);
const SCEV *Zero = SE.getZero(M->getType());
// This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
auto SCEVCheckNonNegative = [&](const SCEV *X) {
const Loop *L = IndVar->getLoop();
const SCEV *Zero = SE.getZero(X->getType());
const SCEV *One = SE.getOne(X->getType());
// Can we trivially prove that X is a non-negative or negative value?
if (isKnownNonNegativeInLoop(X, L, SE))
return One;
else if (isKnownNegativeInLoop(X, L, SE))
return Zero;
// If not, we will have to figure it out during the execution.
// Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
const SCEV *NegOne = SE.getNegativeSCEV(One);
return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
};
// This function returns SCEV equal to 1 if X will not overflow in terms of
// range check type, 0 otherwise.
auto SCEVCheckWillNotOverflow = [&](const SCEV *X) {
// X doesn't overflow if SINT_MAX >= X.
// Then if (SINT_MAX - X) >= 0, X doesn't overflow
const SCEV *SIntMaxExt = SE.getSignExtendExpr(SIntMax, X->getType());
const SCEV *OverflowCheck =
SCEVCheckNonNegative(SE.getMinusSCEV(SIntMaxExt, X));
// X doesn't underflow if X >= SINT_MIN.
// Then if (X - SINT_MIN) >= 0, X doesn't underflow
const SCEV *SIntMinExt = SE.getSignExtendExpr(SIntMin, X->getType());
const SCEV *UnderflowCheck =
SCEVCheckNonNegative(SE.getMinusSCEV(X, SIntMinExt));
return SE.getMulExpr(OverflowCheck, UnderflowCheck);
};
// FIXME: Current implementation of ClampedSubtract implicitly assumes that
// X is non-negative (in sense of a signed value). We need to re-implement
// this function in a way that it will correctly handle negative X as well.
// We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
// end up with a negative X and produce wrong results. So currently we ensure
// that if getEnd() is negative then both ends of the safe range are zero.
// Note that this may pessimize elimination of unsigned range checks against
// negative values.
const SCEV *REnd = getEnd();
const SCEV *EndWillNotOverflow = SE.getOne(RCType);
auto PrintRangeCheck = [&](raw_ostream &OS) {
auto L = IndVar->getLoop();
OS << "irce: in function ";
OS << L->getHeader()->getParent()->getName();
OS << ", in ";
L->print(OS);
OS << "there is range check with scaled boundary:\n";
print(OS);
};
if (EndType->getBitWidth() > RCType->getBitWidth()) {
assert(EndType->getBitWidth() == RCType->getBitWidth() * 2);
if (PrintScaledBoundaryRangeChecks)
PrintRangeCheck(errs());
// End is computed with extended type but will be truncated to a narrow one
// type of range check. Therefore we need a check that the result will not
// overflow in terms of narrow type.
EndWillNotOverflow =
SE.getTruncateExpr(SCEVCheckWillNotOverflow(REnd), RCType);
REnd = SE.getTruncateExpr(REnd, RCType);
}
const SCEV *RuntimeChecks =
SE.getMulExpr(SCEVCheckNonNegative(REnd), EndWillNotOverflow);
const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), RuntimeChecks);
const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), RuntimeChecks);
return InductiveRangeCheck::Range(Begin, End);
}
static std::optional<InductiveRangeCheck::Range>
IntersectSignedRange(ScalarEvolution &SE,
const std::optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2) {
if (R2.isEmpty(SE, /* IsSigned */ true))
return std::nullopt;
if (!R1)
return R2;
auto &R1Value = *R1;
// We never return empty ranges from this function, and R1 is supposed to be
// a result of intersection. Thus, R1 is never empty.
assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
"We should never have empty R1!");
// TODO: we could widen the smaller range and have this work; but for now we
// bail out to keep things simple.
if (R1Value.getType() != R2.getType())
return std::nullopt;
const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
// If the resulting range is empty, just return std::nullopt.
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
if (Ret.isEmpty(SE, /* IsSigned */ true))
return std::nullopt;
return Ret;
}
static std::optional<InductiveRangeCheck::Range>
IntersectUnsignedRange(ScalarEvolution &SE,
const std::optional<InductiveRangeCheck::Range> &R1,
const InductiveRangeCheck::Range &R2) {
if (R2.isEmpty(SE, /* IsSigned */ false))
return std::nullopt;
if (!R1)
return R2;
auto &R1Value = *R1;
// We never return empty ranges from this function, and R1 is supposed to be
// a result of intersection. Thus, R1 is never empty.
assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
"We should never have empty R1!");
// TODO: we could widen the smaller range and have this work; but for now we
// bail out to keep things simple.
if (R1Value.getType() != R2.getType())
return std::nullopt;
const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
// If the resulting range is empty, just return std::nullopt.
auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
if (Ret.isEmpty(SE, /* IsSigned */ false))
return std::nullopt;
return Ret;
}
PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
// There are no loops in the function. Return before computing other expensive
// analyses.
if (LI.empty())
return PreservedAnalyses::all();
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
// Get BFI analysis result on demand. Please note that modification of
// CFG invalidates this analysis and we should handle it.
auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
return AM.getResult<BlockFrequencyAnalysis>(F);
};
InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
bool Changed = false;
{
bool CFGChanged = false;
for (const auto &L : LI) {
CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
/*PreserveLCSSA=*/false);
Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
}
Changed |= CFGChanged;
if (CFGChanged && !SkipProfitabilityChecks) {
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<BlockFrequencyAnalysis>();
AM.invalidate(F, PA);
}
}
SmallPriorityWorklist<Loop *, 4> Worklist;
appendLoopsToWorklist(LI, Worklist);
auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
if (!IsSubloop)
appendLoopsToWorklist(*NL, Worklist);
};
while (!Worklist.empty()) {
Loop *L = Worklist.pop_back_val();
if (IRCE.run(L, LPMAddNewLoop)) {
Changed = true;
if (!SkipProfitabilityChecks) {
PreservedAnalyses PA = PreservedAnalyses::all();
PA.abandon<BlockFrequencyAnalysis>();
AM.invalidate(F, PA);
}
}
}
if (!Changed)
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
bool
InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
LoopStructure &LS) {
if (SkipProfitabilityChecks)
return true;
if (GetBFI) {
BlockFrequencyInfo &BFI = (*GetBFI)();
uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
<< "the estimated number of iterations basing on "
"frequency info is " << (hFreq / phFreq) << "\n";);
return false;
}
return true;
}
if (!BPI)
return true;
BranchProbability ExitProbability =
BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
<< "the exit probability is too big " << ExitProbability
<< "\n";);
return false;
}
return true;
}
bool InductiveRangeCheckElimination::run(
Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
if (L->getBlocks().size() >= LoopSizeCutoff) {
LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
return false;
}
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
return false;
}
LLVMContext &Context = Preheader->getContext();
SmallVector<InductiveRangeCheck, 16> RangeChecks;
bool Changed = false;
for (auto *BBI : L->getBlocks())
if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
RangeChecks, Changed);
if (RangeChecks.empty())
return Changed;
auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
OS << "irce: looking at loop "; L->print(OS);
OS << "irce: loop has " << RangeChecks.size()
<< " inductive range checks: \n";
for (InductiveRangeCheck &IRC : RangeChecks)
IRC.print(OS);
};
LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
if (PrintRangeChecks)
PrintRecognizedRangeChecks(errs());
const char *FailureReason = nullptr;
std::optional<LoopStructure> MaybeLoopStructure =
LoopStructure::parseLoopStructure(SE, *L, AllowUnsignedLatchCondition,
FailureReason);
if (!MaybeLoopStructure) {
LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
<< FailureReason << "\n";);
return Changed;
}
LoopStructure LS = *MaybeLoopStructure;
if (!isProfitableToTransform(*L, LS))
return Changed;
const SCEVAddRecExpr *IndVar =
cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
std::optional<InductiveRangeCheck::Range> SafeIterRange;
SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
// Basing on the type of latch predicate, we interpret the IV iteration range
// as signed or unsigned range. We use different min/max functions (signed or
// unsigned) when intersecting this range with safe iteration ranges implied
// by range checks.
auto IntersectRange =
LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
for (InductiveRangeCheck &IRC : RangeChecks) {
auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
LS.IsSignedPredicate);
if (Result) {
auto MaybeSafeIterRange = IntersectRange(SE, SafeIterRange, *Result);
if (MaybeSafeIterRange) {
assert(!MaybeSafeIterRange->isEmpty(SE, LS.IsSignedPredicate) &&
"We should never return empty ranges!");
RangeChecksToEliminate.push_back(IRC);
SafeIterRange = *MaybeSafeIterRange;
}
}
}
if (!SafeIterRange)
return Changed;
std::optional<LoopConstrainer::SubRanges> MaybeSR =
calculateSubRanges(SE, *L, *SafeIterRange, LS);
if (!MaybeSR) {
LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
return false;
}
LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
SafeIterRange->getBegin()->getType(), *MaybeSR);
if (LC.run()) {
Changed = true;
auto PrintConstrainedLoopInfo = [L]() {
dbgs() << "irce: in function ";
dbgs() << L->getHeader()->getParent()->getName() << ": ";
dbgs() << "constrained ";
L->print(dbgs());
};
LLVM_DEBUG(PrintConstrainedLoopInfo());
if (PrintChangedLoops)
PrintConstrainedLoopInfo();
// Optimize away the now-redundant range checks.
for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
? ConstantInt::getTrue(Context)
: ConstantInt::getFalse(Context);
IRC.getCheckUse()->set(FoldedRangeCheck);
}
}
return Changed;
}