3221 lines
115 KiB
C
3221 lines
115 KiB
C
|
//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
/// \file
|
||
|
/// This file contains the declarations of the Vectorization Plan base classes:
|
||
|
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
||
|
/// VPBlockBase, together implementing a Hierarchical CFG;
|
||
|
/// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
||
|
/// within VPBasicBlocks;
|
||
|
/// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that
|
||
|
/// also inherit from VPValue.
|
||
|
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
|
||
|
/// instruction;
|
||
|
/// 5. The VPlan class holding a candidate for vectorization;
|
||
|
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
|
||
|
/// These are documented in docs/VectorizationPlan.rst.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||
|
|
||
|
#include "VPlanAnalysis.h"
|
||
|
#include "VPlanValue.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/MapVector.h"
|
||
|
#include "llvm/ADT/SmallBitVector.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/Twine.h"
|
||
|
#include "llvm/ADT/ilist.h"
|
||
|
#include "llvm/ADT/ilist_node.h"
|
||
|
#include "llvm/Analysis/IVDescriptors.h"
|
||
|
#include "llvm/Analysis/LoopInfo.h"
|
||
|
#include "llvm/Analysis/VectorUtils.h"
|
||
|
#include "llvm/IR/DebugLoc.h"
|
||
|
#include "llvm/IR/FMF.h"
|
||
|
#include "llvm/IR/Operator.h"
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <cstddef>
|
||
|
#include <string>
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
class BasicBlock;
|
||
|
class DominatorTree;
|
||
|
class InnerLoopVectorizer;
|
||
|
class IRBuilderBase;
|
||
|
class LoopInfo;
|
||
|
class raw_ostream;
|
||
|
class RecurrenceDescriptor;
|
||
|
class SCEV;
|
||
|
class Type;
|
||
|
class VPBasicBlock;
|
||
|
class VPRegionBlock;
|
||
|
class VPlan;
|
||
|
class VPReplicateRecipe;
|
||
|
class VPlanSlp;
|
||
|
class Value;
|
||
|
class LoopVersioning;
|
||
|
|
||
|
namespace Intrinsic {
|
||
|
typedef unsigned ID;
|
||
|
}
|
||
|
|
||
|
/// Returns a calculation for the total number of elements for a given \p VF.
|
||
|
/// For fixed width vectors this value is a constant, whereas for scalable
|
||
|
/// vectors it is an expression determined at runtime.
|
||
|
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF);
|
||
|
|
||
|
/// Return a value for Step multiplied by VF.
|
||
|
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
|
||
|
int64_t Step);
|
||
|
|
||
|
const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE,
|
||
|
Loop *CurLoop = nullptr);
|
||
|
|
||
|
/// A range of powers-of-2 vectorization factors with fixed start and
|
||
|
/// adjustable end. The range includes start and excludes end, e.g.,:
|
||
|
/// [1, 16) = {1, 2, 4, 8}
|
||
|
struct VFRange {
|
||
|
// A power of 2.
|
||
|
const ElementCount Start;
|
||
|
|
||
|
// A power of 2. If End <= Start range is empty.
|
||
|
ElementCount End;
|
||
|
|
||
|
bool isEmpty() const {
|
||
|
return End.getKnownMinValue() <= Start.getKnownMinValue();
|
||
|
}
|
||
|
|
||
|
VFRange(const ElementCount &Start, const ElementCount &End)
|
||
|
: Start(Start), End(End) {
|
||
|
assert(Start.isScalable() == End.isScalable() &&
|
||
|
"Both Start and End should have the same scalable flag");
|
||
|
assert(isPowerOf2_32(Start.getKnownMinValue()) &&
|
||
|
"Expected Start to be a power of 2");
|
||
|
assert(isPowerOf2_32(End.getKnownMinValue()) &&
|
||
|
"Expected End to be a power of 2");
|
||
|
}
|
||
|
|
||
|
/// Iterator to iterate over vectorization factors in a VFRange.
|
||
|
class iterator
|
||
|
: public iterator_facade_base<iterator, std::forward_iterator_tag,
|
||
|
ElementCount> {
|
||
|
ElementCount VF;
|
||
|
|
||
|
public:
|
||
|
iterator(ElementCount VF) : VF(VF) {}
|
||
|
|
||
|
bool operator==(const iterator &Other) const { return VF == Other.VF; }
|
||
|
|
||
|
ElementCount operator*() const { return VF; }
|
||
|
|
||
|
iterator &operator++() {
|
||
|
VF *= 2;
|
||
|
return *this;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
iterator begin() { return iterator(Start); }
|
||
|
iterator end() {
|
||
|
assert(isPowerOf2_32(End.getKnownMinValue()));
|
||
|
return iterator(End);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
using VPlanPtr = std::unique_ptr<VPlan>;
|
||
|
|
||
|
/// In what follows, the term "input IR" refers to code that is fed into the
|
||
|
/// vectorizer whereas the term "output IR" refers to code that is generated by
|
||
|
/// the vectorizer.
|
||
|
|
||
|
/// VPLane provides a way to access lanes in both fixed width and scalable
|
||
|
/// vectors, where for the latter the lane index sometimes needs calculating
|
||
|
/// as a runtime expression.
|
||
|
class VPLane {
|
||
|
public:
|
||
|
/// Kind describes how to interpret Lane.
|
||
|
enum class Kind : uint8_t {
|
||
|
/// For First, Lane is the index into the first N elements of a
|
||
|
/// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
|
||
|
First,
|
||
|
/// For ScalableLast, Lane is the offset from the start of the last
|
||
|
/// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
|
||
|
/// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
|
||
|
/// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
|
||
|
ScalableLast
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
/// in [0..VF)
|
||
|
unsigned Lane;
|
||
|
|
||
|
/// Indicates how the Lane should be interpreted, as described above.
|
||
|
Kind LaneKind;
|
||
|
|
||
|
public:
|
||
|
VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
|
||
|
|
||
|
static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
|
||
|
|
||
|
static VPLane getLastLaneForVF(const ElementCount &VF) {
|
||
|
unsigned LaneOffset = VF.getKnownMinValue() - 1;
|
||
|
Kind LaneKind;
|
||
|
if (VF.isScalable())
|
||
|
// In this case 'LaneOffset' refers to the offset from the start of the
|
||
|
// last subvector with VF.getKnownMinValue() elements.
|
||
|
LaneKind = VPLane::Kind::ScalableLast;
|
||
|
else
|
||
|
LaneKind = VPLane::Kind::First;
|
||
|
return VPLane(LaneOffset, LaneKind);
|
||
|
}
|
||
|
|
||
|
/// Returns a compile-time known value for the lane index and asserts if the
|
||
|
/// lane can only be calculated at runtime.
|
||
|
unsigned getKnownLane() const {
|
||
|
assert(LaneKind == Kind::First);
|
||
|
return Lane;
|
||
|
}
|
||
|
|
||
|
/// Returns an expression describing the lane index that can be used at
|
||
|
/// runtime.
|
||
|
Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const;
|
||
|
|
||
|
/// Returns the Kind of lane offset.
|
||
|
Kind getKind() const { return LaneKind; }
|
||
|
|
||
|
/// Returns true if this is the first lane of the whole vector.
|
||
|
bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
|
||
|
|
||
|
/// Maps the lane to a cache index based on \p VF.
|
||
|
unsigned mapToCacheIndex(const ElementCount &VF) const {
|
||
|
switch (LaneKind) {
|
||
|
case VPLane::Kind::ScalableLast:
|
||
|
assert(VF.isScalable() && Lane < VF.getKnownMinValue());
|
||
|
return VF.getKnownMinValue() + Lane;
|
||
|
default:
|
||
|
assert(Lane < VF.getKnownMinValue());
|
||
|
return Lane;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Returns the maxmimum number of lanes that we are able to consider
|
||
|
/// caching for \p VF.
|
||
|
static unsigned getNumCachedLanes(const ElementCount &VF) {
|
||
|
return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPIteration represents a single point in the iteration space of the output
|
||
|
/// (vectorized and/or unrolled) IR loop.
|
||
|
struct VPIteration {
|
||
|
/// in [0..UF)
|
||
|
unsigned Part;
|
||
|
|
||
|
VPLane Lane;
|
||
|
|
||
|
VPIteration(unsigned Part, unsigned Lane,
|
||
|
VPLane::Kind Kind = VPLane::Kind::First)
|
||
|
: Part(Part), Lane(Lane, Kind) {}
|
||
|
|
||
|
VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {}
|
||
|
|
||
|
bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); }
|
||
|
};
|
||
|
|
||
|
/// VPTransformState holds information passed down when "executing" a VPlan,
|
||
|
/// needed for generating the output IR.
|
||
|
struct VPTransformState {
|
||
|
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
|
||
|
DominatorTree *DT, IRBuilderBase &Builder,
|
||
|
InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx)
|
||
|
: VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
|
||
|
LVer(nullptr), TypeAnalysis(Ctx) {}
|
||
|
|
||
|
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
||
|
ElementCount VF;
|
||
|
unsigned UF;
|
||
|
|
||
|
/// Hold the indices to generate specific scalar instructions. Null indicates
|
||
|
/// that all instances are to be generated, using either scalar or vector
|
||
|
/// instructions.
|
||
|
std::optional<VPIteration> Instance;
|
||
|
|
||
|
struct DataState {
|
||
|
/// A type for vectorized values in the new loop. Each value from the
|
||
|
/// original loop, when vectorized, is represented by UF vector values in
|
||
|
/// the new unrolled loop, where UF is the unroll factor.
|
||
|
typedef SmallVector<Value *, 2> PerPartValuesTy;
|
||
|
|
||
|
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
|
||
|
|
||
|
using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>;
|
||
|
DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars;
|
||
|
} Data;
|
||
|
|
||
|
/// Get the generated Value for a given VPValue and a given Part. Note that
|
||
|
/// as some Defs are still created by ILV and managed in its ValueMap, this
|
||
|
/// method will delegate the call to ILV in such cases in order to provide
|
||
|
/// callers a consistent API.
|
||
|
/// \see set.
|
||
|
Value *get(VPValue *Def, unsigned Part);
|
||
|
|
||
|
/// Get the generated Value for a given VPValue and given Part and Lane.
|
||
|
Value *get(VPValue *Def, const VPIteration &Instance);
|
||
|
|
||
|
bool hasVectorValue(VPValue *Def, unsigned Part) {
|
||
|
auto I = Data.PerPartOutput.find(Def);
|
||
|
return I != Data.PerPartOutput.end() && Part < I->second.size() &&
|
||
|
I->second[Part];
|
||
|
}
|
||
|
|
||
|
bool hasScalarValue(VPValue *Def, VPIteration Instance) {
|
||
|
auto I = Data.PerPartScalars.find(Def);
|
||
|
if (I == Data.PerPartScalars.end())
|
||
|
return false;
|
||
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
||
|
return Instance.Part < I->second.size() &&
|
||
|
CacheIdx < I->second[Instance.Part].size() &&
|
||
|
I->second[Instance.Part][CacheIdx];
|
||
|
}
|
||
|
|
||
|
/// Set the generated Value for a given VPValue and a given Part.
|
||
|
void set(VPValue *Def, Value *V, unsigned Part) {
|
||
|
if (!Data.PerPartOutput.count(Def)) {
|
||
|
DataState::PerPartValuesTy Entry(UF);
|
||
|
Data.PerPartOutput[Def] = Entry;
|
||
|
}
|
||
|
Data.PerPartOutput[Def][Part] = V;
|
||
|
}
|
||
|
/// Reset an existing vector value for \p Def and a given \p Part.
|
||
|
void reset(VPValue *Def, Value *V, unsigned Part) {
|
||
|
auto Iter = Data.PerPartOutput.find(Def);
|
||
|
assert(Iter != Data.PerPartOutput.end() &&
|
||
|
"need to overwrite existing value");
|
||
|
Iter->second[Part] = V;
|
||
|
}
|
||
|
|
||
|
/// Set the generated scalar \p V for \p Def and the given \p Instance.
|
||
|
void set(VPValue *Def, Value *V, const VPIteration &Instance) {
|
||
|
auto Iter = Data.PerPartScalars.insert({Def, {}});
|
||
|
auto &PerPartVec = Iter.first->second;
|
||
|
while (PerPartVec.size() <= Instance.Part)
|
||
|
PerPartVec.emplace_back();
|
||
|
auto &Scalars = PerPartVec[Instance.Part];
|
||
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
||
|
while (Scalars.size() <= CacheIdx)
|
||
|
Scalars.push_back(nullptr);
|
||
|
assert(!Scalars[CacheIdx] && "should overwrite existing value");
|
||
|
Scalars[CacheIdx] = V;
|
||
|
}
|
||
|
|
||
|
/// Reset an existing scalar value for \p Def and a given \p Instance.
|
||
|
void reset(VPValue *Def, Value *V, const VPIteration &Instance) {
|
||
|
auto Iter = Data.PerPartScalars.find(Def);
|
||
|
assert(Iter != Data.PerPartScalars.end() &&
|
||
|
"need to overwrite existing value");
|
||
|
assert(Instance.Part < Iter->second.size() &&
|
||
|
"need to overwrite existing value");
|
||
|
unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF);
|
||
|
assert(CacheIdx < Iter->second[Instance.Part].size() &&
|
||
|
"need to overwrite existing value");
|
||
|
Iter->second[Instance.Part][CacheIdx] = V;
|
||
|
}
|
||
|
|
||
|
/// Add additional metadata to \p To that was not present on \p Orig.
|
||
|
///
|
||
|
/// Currently this is used to add the noalias annotations based on the
|
||
|
/// inserted memchecks. Use this for instructions that are *cloned* into the
|
||
|
/// vector loop.
|
||
|
void addNewMetadata(Instruction *To, const Instruction *Orig);
|
||
|
|
||
|
/// Add metadata from one instruction to another.
|
||
|
///
|
||
|
/// This includes both the original MDs from \p From and additional ones (\see
|
||
|
/// addNewMetadata). Use this for *newly created* instructions in the vector
|
||
|
/// loop.
|
||
|
void addMetadata(Instruction *To, Instruction *From);
|
||
|
|
||
|
/// Similar to the previous function but it adds the metadata to a
|
||
|
/// vector of instructions.
|
||
|
void addMetadata(ArrayRef<Value *> To, Instruction *From);
|
||
|
|
||
|
/// Set the debug location in the builder using the debug location \p DL.
|
||
|
void setDebugLocFrom(DebugLoc DL);
|
||
|
|
||
|
/// Construct the vector value of a scalarized value \p V one lane at a time.
|
||
|
void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance);
|
||
|
|
||
|
/// Hold state information used when constructing the CFG of the output IR,
|
||
|
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
||
|
struct CFGState {
|
||
|
/// The previous VPBasicBlock visited. Initially set to null.
|
||
|
VPBasicBlock *PrevVPBB = nullptr;
|
||
|
|
||
|
/// The previous IR BasicBlock created or used. Initially set to the new
|
||
|
/// header BasicBlock.
|
||
|
BasicBlock *PrevBB = nullptr;
|
||
|
|
||
|
/// The last IR BasicBlock in the output IR. Set to the exit block of the
|
||
|
/// vector loop.
|
||
|
BasicBlock *ExitBB = nullptr;
|
||
|
|
||
|
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
|
||
|
/// of replication, maps the BasicBlock of the last replica created.
|
||
|
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
|
||
|
|
||
|
CFGState() = default;
|
||
|
|
||
|
/// Returns the BasicBlock* mapped to the pre-header of the loop region
|
||
|
/// containing \p R.
|
||
|
BasicBlock *getPreheaderBBFor(VPRecipeBase *R);
|
||
|
} CFG;
|
||
|
|
||
|
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
||
|
LoopInfo *LI;
|
||
|
|
||
|
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
|
||
|
DominatorTree *DT;
|
||
|
|
||
|
/// Hold a reference to the IRBuilder used to generate output IR code.
|
||
|
IRBuilderBase &Builder;
|
||
|
|
||
|
VPValue2ValueTy VPValue2Value;
|
||
|
|
||
|
/// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
|
||
|
Value *CanonicalIV = nullptr;
|
||
|
|
||
|
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
|
||
|
InnerLoopVectorizer *ILV;
|
||
|
|
||
|
/// Pointer to the VPlan code is generated for.
|
||
|
VPlan *Plan;
|
||
|
|
||
|
/// The loop object for the current parent region, or nullptr.
|
||
|
Loop *CurrentVectorLoop = nullptr;
|
||
|
|
||
|
/// LoopVersioning. It's only set up (non-null) if memchecks were
|
||
|
/// used.
|
||
|
///
|
||
|
/// This is currently only used to add no-alias metadata based on the
|
||
|
/// memchecks. The actually versioning is performed manually.
|
||
|
LoopVersioning *LVer = nullptr;
|
||
|
|
||
|
/// Map SCEVs to their expanded values. Populated when executing
|
||
|
/// VPExpandSCEVRecipes.
|
||
|
DenseMap<const SCEV *, Value *> ExpandedSCEVs;
|
||
|
|
||
|
/// VPlan-based type analysis.
|
||
|
VPTypeAnalysis TypeAnalysis;
|
||
|
};
|
||
|
|
||
|
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
||
|
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
||
|
class VPBlockBase {
|
||
|
friend class VPBlockUtils;
|
||
|
|
||
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
||
|
|
||
|
/// An optional name for the block.
|
||
|
std::string Name;
|
||
|
|
||
|
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
||
|
/// it is a topmost VPBlockBase.
|
||
|
VPRegionBlock *Parent = nullptr;
|
||
|
|
||
|
/// List of predecessor blocks.
|
||
|
SmallVector<VPBlockBase *, 1> Predecessors;
|
||
|
|
||
|
/// List of successor blocks.
|
||
|
SmallVector<VPBlockBase *, 1> Successors;
|
||
|
|
||
|
/// VPlan containing the block. Can only be set on the entry block of the
|
||
|
/// plan.
|
||
|
VPlan *Plan = nullptr;
|
||
|
|
||
|
/// Add \p Successor as the last successor to this block.
|
||
|
void appendSuccessor(VPBlockBase *Successor) {
|
||
|
assert(Successor && "Cannot add nullptr successor!");
|
||
|
Successors.push_back(Successor);
|
||
|
}
|
||
|
|
||
|
/// Add \p Predecessor as the last predecessor to this block.
|
||
|
void appendPredecessor(VPBlockBase *Predecessor) {
|
||
|
assert(Predecessor && "Cannot add nullptr predecessor!");
|
||
|
Predecessors.push_back(Predecessor);
|
||
|
}
|
||
|
|
||
|
/// Remove \p Predecessor from the predecessors of this block.
|
||
|
void removePredecessor(VPBlockBase *Predecessor) {
|
||
|
auto Pos = find(Predecessors, Predecessor);
|
||
|
assert(Pos && "Predecessor does not exist");
|
||
|
Predecessors.erase(Pos);
|
||
|
}
|
||
|
|
||
|
/// Remove \p Successor from the successors of this block.
|
||
|
void removeSuccessor(VPBlockBase *Successor) {
|
||
|
auto Pos = find(Successors, Successor);
|
||
|
assert(Pos && "Successor does not exist");
|
||
|
Successors.erase(Pos);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
VPBlockBase(const unsigned char SC, const std::string &N)
|
||
|
: SubclassID(SC), Name(N) {}
|
||
|
|
||
|
public:
|
||
|
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
||
|
/// that are actually instantiated. Values of this enumeration are kept in the
|
||
|
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
||
|
/// type identification.
|
||
|
using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
|
||
|
|
||
|
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
|
||
|
|
||
|
virtual ~VPBlockBase() = default;
|
||
|
|
||
|
const std::string &getName() const { return Name; }
|
||
|
|
||
|
void setName(const Twine &newName) { Name = newName.str(); }
|
||
|
|
||
|
/// \return an ID for the concrete type of this object.
|
||
|
/// This is used to implement the classof checks. This should not be used
|
||
|
/// for any other purpose, as the values may change as LLVM evolves.
|
||
|
unsigned getVPBlockID() const { return SubclassID; }
|
||
|
|
||
|
VPRegionBlock *getParent() { return Parent; }
|
||
|
const VPRegionBlock *getParent() const { return Parent; }
|
||
|
|
||
|
/// \return A pointer to the plan containing the current block.
|
||
|
VPlan *getPlan();
|
||
|
const VPlan *getPlan() const;
|
||
|
|
||
|
/// Sets the pointer of the plan containing the block. The block must be the
|
||
|
/// entry block into the VPlan.
|
||
|
void setPlan(VPlan *ParentPlan);
|
||
|
|
||
|
void setParent(VPRegionBlock *P) { Parent = P; }
|
||
|
|
||
|
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
||
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||
|
const VPBasicBlock *getEntryBasicBlock() const;
|
||
|
VPBasicBlock *getEntryBasicBlock();
|
||
|
|
||
|
/// \return the VPBasicBlock that is the exiting this VPBlockBase,
|
||
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||
|
const VPBasicBlock *getExitingBasicBlock() const;
|
||
|
VPBasicBlock *getExitingBasicBlock();
|
||
|
|
||
|
const VPBlocksTy &getSuccessors() const { return Successors; }
|
||
|
VPBlocksTy &getSuccessors() { return Successors; }
|
||
|
|
||
|
iterator_range<VPBlockBase **> successors() { return Successors; }
|
||
|
|
||
|
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
||
|
VPBlocksTy &getPredecessors() { return Predecessors; }
|
||
|
|
||
|
/// \return the successor of this VPBlockBase if it has a single successor.
|
||
|
/// Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleSuccessor() const {
|
||
|
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
||
|
}
|
||
|
|
||
|
/// \return the predecessor of this VPBlockBase if it has a single
|
||
|
/// predecessor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSinglePredecessor() const {
|
||
|
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
||
|
}
|
||
|
|
||
|
size_t getNumSuccessors() const { return Successors.size(); }
|
||
|
size_t getNumPredecessors() const { return Predecessors.size(); }
|
||
|
|
||
|
/// An Enclosing Block of a block B is any block containing B, including B
|
||
|
/// itself. \return the closest enclosing block starting from "this", which
|
||
|
/// has successors. \return the root enclosing block if all enclosing blocks
|
||
|
/// have no successors.
|
||
|
VPBlockBase *getEnclosingBlockWithSuccessors();
|
||
|
|
||
|
/// \return the closest enclosing block starting from "this", which has
|
||
|
/// predecessors. \return the root enclosing block if all enclosing blocks
|
||
|
/// have no predecessors.
|
||
|
VPBlockBase *getEnclosingBlockWithPredecessors();
|
||
|
|
||
|
/// \return the successors either attached directly to this VPBlockBase or, if
|
||
|
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
||
|
/// successors of its own, search recursively for the first enclosing
|
||
|
/// VPRegionBlock that has successors and return them. If no such
|
||
|
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
||
|
/// VPBlockBase reached.
|
||
|
const VPBlocksTy &getHierarchicalSuccessors() {
|
||
|
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
||
|
}
|
||
|
|
||
|
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
||
|
/// hierarchical successor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleHierarchicalSuccessor() {
|
||
|
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
||
|
}
|
||
|
|
||
|
/// \return the predecessors either attached directly to this VPBlockBase or,
|
||
|
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
||
|
/// predecessors of its own, search recursively for the first enclosing
|
||
|
/// VPRegionBlock that has predecessors and return them. If no such
|
||
|
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
||
|
/// VPBlockBase reached.
|
||
|
const VPBlocksTy &getHierarchicalPredecessors() {
|
||
|
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
||
|
}
|
||
|
|
||
|
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
||
|
/// single hierarchical predecessor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleHierarchicalPredecessor() {
|
||
|
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
||
|
}
|
||
|
|
||
|
/// Set a given VPBlockBase \p Successor as the single successor of this
|
||
|
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
|
||
|
/// This VPBlockBase must have no successors.
|
||
|
void setOneSuccessor(VPBlockBase *Successor) {
|
||
|
assert(Successors.empty() && "Setting one successor when others exist.");
|
||
|
assert(Successor->getParent() == getParent() &&
|
||
|
"connected blocks must have the same parent");
|
||
|
appendSuccessor(Successor);
|
||
|
}
|
||
|
|
||
|
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
||
|
/// successors of this VPBlockBase. This VPBlockBase is not added as
|
||
|
/// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
|
||
|
/// successors.
|
||
|
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
|
||
|
assert(Successors.empty() && "Setting two successors when others exist.");
|
||
|
appendSuccessor(IfTrue);
|
||
|
appendSuccessor(IfFalse);
|
||
|
}
|
||
|
|
||
|
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
|
||
|
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
|
||
|
/// as successor of any VPBasicBlock in \p NewPreds.
|
||
|
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
|
||
|
assert(Predecessors.empty() && "Block predecessors already set.");
|
||
|
for (auto *Pred : NewPreds)
|
||
|
appendPredecessor(Pred);
|
||
|
}
|
||
|
|
||
|
/// Remove all the predecessor of this block.
|
||
|
void clearPredecessors() { Predecessors.clear(); }
|
||
|
|
||
|
/// Remove all the successors of this block.
|
||
|
void clearSuccessors() { Successors.clear(); }
|
||
|
|
||
|
/// The method which generates the output IR that correspond to this
|
||
|
/// VPBlockBase, thereby "executing" the VPlan.
|
||
|
virtual void execute(VPTransformState *State) = 0;
|
||
|
|
||
|
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
|
||
|
static void deleteCFG(VPBlockBase *Entry);
|
||
|
|
||
|
/// Return true if it is legal to hoist instructions into this block.
|
||
|
bool isLegalToHoistInto() {
|
||
|
// There are currently no constraints that prevent an instruction to be
|
||
|
// hoisted into a VPBlockBase.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Replace all operands of VPUsers in the block with \p NewValue and also
|
||
|
/// replaces all uses of VPValues defined in the block with NewValue.
|
||
|
virtual void dropAllReferences(VPValue *NewValue) = 0;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
void printAsOperand(raw_ostream &OS, bool PrintType) const {
|
||
|
OS << getName();
|
||
|
}
|
||
|
|
||
|
/// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
|
||
|
/// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
||
|
/// consequtive numbers.
|
||
|
///
|
||
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
||
|
/// individual blocks is consistent with the whole VPlan printing.
|
||
|
virtual void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const = 0;
|
||
|
|
||
|
/// Print plain-text dump of this VPlan to \p O.
|
||
|
void print(raw_ostream &O) const {
|
||
|
VPSlotTracker SlotTracker(getPlan());
|
||
|
print(O, "", SlotTracker);
|
||
|
}
|
||
|
|
||
|
/// Print the successors of this block to \p O, prefixing all lines with \p
|
||
|
/// Indent.
|
||
|
void printSuccessors(raw_ostream &O, const Twine &Indent) const;
|
||
|
|
||
|
/// Dump this VPBlockBase to dbgs().
|
||
|
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A value that is used outside the VPlan. The operand of the user needs to be
|
||
|
/// added to the associated LCSSA phi node.
|
||
|
class VPLiveOut : public VPUser {
|
||
|
PHINode *Phi;
|
||
|
|
||
|
public:
|
||
|
VPLiveOut(PHINode *Phi, VPValue *Op)
|
||
|
: VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {}
|
||
|
|
||
|
static inline bool classof(const VPUser *U) {
|
||
|
return U->getVPUserID() == VPUser::VPUserID::LiveOut;
|
||
|
}
|
||
|
|
||
|
/// Fixup the wrapped LCSSA phi node in the unique exit block. This simply
|
||
|
/// means we need to add the appropriate incoming value from the middle
|
||
|
/// block as exiting edges from the scalar epilogue loop (if present) are
|
||
|
/// already in place, and we exit the vector loop exclusively to the middle
|
||
|
/// block.
|
||
|
void fixPhi(VPlan &Plan, VPTransformState &State);
|
||
|
|
||
|
/// Returns true if the VPLiveOut uses scalars of operand \p Op.
|
||
|
bool usesScalars(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
PHINode *getPhi() const { return Phi; }
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the VPLiveOut to \p O.
|
||
|
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
||
|
/// instructions. VPRecipeBase owns the VPValues it defines through VPDef
|
||
|
/// and is responsible for deleting its defined values. Single-value
|
||
|
/// recipes must inherit from VPSingleDef instead of inheriting from both
|
||
|
/// VPRecipeBase and VPValue separately.
|
||
|
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
|
||
|
public VPDef,
|
||
|
public VPUser {
|
||
|
friend VPBasicBlock;
|
||
|
friend class VPBlockUtils;
|
||
|
|
||
|
/// Each VPRecipe belongs to a single VPBasicBlock.
|
||
|
VPBasicBlock *Parent = nullptr;
|
||
|
|
||
|
/// The debug location for the recipe.
|
||
|
DebugLoc DL;
|
||
|
|
||
|
public:
|
||
|
VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
||
|
DebugLoc DL = {})
|
||
|
: VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands,
|
||
|
DebugLoc DL = {})
|
||
|
: VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {}
|
||
|
virtual ~VPRecipeBase() = default;
|
||
|
|
||
|
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
||
|
VPBasicBlock *getParent() { return Parent; }
|
||
|
const VPBasicBlock *getParent() const { return Parent; }
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPRecipe, thereby "executing" the VPlan.
|
||
|
virtual void execute(VPTransformState &State) = 0;
|
||
|
|
||
|
/// Insert an unlinked recipe into a basic block immediately before
|
||
|
/// the specified recipe.
|
||
|
void insertBefore(VPRecipeBase *InsertPos);
|
||
|
/// Insert an unlinked recipe into \p BB immediately before the insertion
|
||
|
/// point \p IP;
|
||
|
void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
|
||
|
|
||
|
/// Insert an unlinked Recipe into a basic block immediately after
|
||
|
/// the specified Recipe.
|
||
|
void insertAfter(VPRecipeBase *InsertPos);
|
||
|
|
||
|
/// Unlink this recipe from its current VPBasicBlock and insert it into
|
||
|
/// the VPBasicBlock that MovePos lives in, right after MovePos.
|
||
|
void moveAfter(VPRecipeBase *MovePos);
|
||
|
|
||
|
/// Unlink this recipe and insert into BB before I.
|
||
|
///
|
||
|
/// \pre I is a valid iterator into BB.
|
||
|
void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
|
||
|
|
||
|
/// This method unlinks 'this' from the containing basic block, but does not
|
||
|
/// delete it.
|
||
|
void removeFromParent();
|
||
|
|
||
|
/// This method unlinks 'this' from the containing basic block and deletes it.
|
||
|
///
|
||
|
/// \returns an iterator pointing to the element after the erased one
|
||
|
iplist<VPRecipeBase>::iterator eraseFromParent();
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPDef *D) {
|
||
|
// All VPDefs are also VPRecipeBases.
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static inline bool classof(const VPUser *U) {
|
||
|
return U->getVPUserID() == VPUser::VPUserID::Recipe;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe may have side-effects.
|
||
|
bool mayHaveSideEffects() const;
|
||
|
|
||
|
/// Returns true for PHI-like recipes.
|
||
|
bool isPhi() const {
|
||
|
return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe may read from memory.
|
||
|
bool mayReadFromMemory() const;
|
||
|
|
||
|
/// Returns true if the recipe may write to memory.
|
||
|
bool mayWriteToMemory() const;
|
||
|
|
||
|
/// Returns true if the recipe may read from or write to memory.
|
||
|
bool mayReadOrWriteMemory() const {
|
||
|
return mayReadFromMemory() || mayWriteToMemory();
|
||
|
}
|
||
|
|
||
|
/// Returns the debug location of the recipe.
|
||
|
DebugLoc getDebugLoc() const { return DL; }
|
||
|
};
|
||
|
|
||
|
// Helper macro to define common classof implementations for recipes.
|
||
|
#define VP_CLASSOF_IMPL(VPDefID) \
|
||
|
static inline bool classof(const VPDef *D) { \
|
||
|
return D->getVPDefID() == VPDefID; \
|
||
|
} \
|
||
|
static inline bool classof(const VPValue *V) { \
|
||
|
auto *R = V->getDefiningRecipe(); \
|
||
|
return R && R->getVPDefID() == VPDefID; \
|
||
|
} \
|
||
|
static inline bool classof(const VPUser *U) { \
|
||
|
auto *R = dyn_cast<VPRecipeBase>(U); \
|
||
|
return R && R->getVPDefID() == VPDefID; \
|
||
|
} \
|
||
|
static inline bool classof(const VPRecipeBase *R) { \
|
||
|
return R->getVPDefID() == VPDefID; \
|
||
|
} \
|
||
|
static inline bool classof(const VPSingleDefRecipe *R) { \
|
||
|
return R->getVPDefID() == VPDefID; \
|
||
|
}
|
||
|
|
||
|
/// VPSingleDef is a base class for recipes for modeling a sequence of one or
|
||
|
/// more output IR that define a single result VPValue.
|
||
|
/// Note that VPRecipeBase must be inherited from before VPValue.
|
||
|
class VPSingleDefRecipe : public VPRecipeBase, public VPValue {
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
||
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
||
|
|
||
|
VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands,
|
||
|
DebugLoc DL = {})
|
||
|
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV,
|
||
|
DebugLoc DL = {})
|
||
|
: VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {}
|
||
|
|
||
|
static inline bool classof(const VPRecipeBase *R) {
|
||
|
switch (R->getVPDefID()) {
|
||
|
case VPRecipeBase::VPDerivedIVSC:
|
||
|
case VPRecipeBase::VPExpandSCEVSC:
|
||
|
case VPRecipeBase::VPInstructionSC:
|
||
|
case VPRecipeBase::VPReductionSC:
|
||
|
case VPRecipeBase::VPReplicateSC:
|
||
|
case VPRecipeBase::VPScalarIVStepsSC:
|
||
|
case VPRecipeBase::VPVectorPointerSC:
|
||
|
case VPRecipeBase::VPWidenCallSC:
|
||
|
case VPRecipeBase::VPWidenCanonicalIVSC:
|
||
|
case VPRecipeBase::VPWidenCastSC:
|
||
|
case VPRecipeBase::VPWidenGEPSC:
|
||
|
case VPRecipeBase::VPWidenSC:
|
||
|
case VPRecipeBase::VPWidenSelectSC:
|
||
|
case VPRecipeBase::VPBlendSC:
|
||
|
case VPRecipeBase::VPPredInstPHISC:
|
||
|
case VPRecipeBase::VPCanonicalIVPHISC:
|
||
|
case VPRecipeBase::VPActiveLaneMaskPHISC:
|
||
|
case VPRecipeBase::VPFirstOrderRecurrencePHISC:
|
||
|
case VPRecipeBase::VPWidenPHISC:
|
||
|
case VPRecipeBase::VPWidenIntOrFpInductionSC:
|
||
|
case VPRecipeBase::VPWidenPointerInductionSC:
|
||
|
case VPRecipeBase::VPReductionPHISC:
|
||
|
return true;
|
||
|
case VPRecipeBase::VPInterleaveSC:
|
||
|
case VPRecipeBase::VPBranchOnMaskSC:
|
||
|
case VPRecipeBase::VPWidenMemoryInstructionSC:
|
||
|
// TODO: Widened stores don't define a value, but widened loads do. Split
|
||
|
// the recipes to be able to make widened loads VPSingleDefRecipes.
|
||
|
return false;
|
||
|
}
|
||
|
llvm_unreachable("Unhandled VPDefID");
|
||
|
}
|
||
|
|
||
|
static inline bool classof(const VPUser *U) {
|
||
|
auto *R = dyn_cast<VPRecipeBase>(U);
|
||
|
return R && classof(R);
|
||
|
}
|
||
|
|
||
|
/// Returns the underlying instruction.
|
||
|
Instruction *getUnderlyingInstr() {
|
||
|
return cast<Instruction>(getUnderlyingValue());
|
||
|
}
|
||
|
const Instruction *getUnderlyingInstr() const {
|
||
|
return cast<Instruction>(getUnderlyingValue());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Class to record LLVM IR flag for a recipe along with it.
|
||
|
class VPRecipeWithIRFlags : public VPSingleDefRecipe {
|
||
|
enum class OperationType : unsigned char {
|
||
|
Cmp,
|
||
|
OverflowingBinOp,
|
||
|
DisjointOp,
|
||
|
PossiblyExactOp,
|
||
|
GEPOp,
|
||
|
FPMathOp,
|
||
|
NonNegOp,
|
||
|
Other
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
struct WrapFlagsTy {
|
||
|
char HasNUW : 1;
|
||
|
char HasNSW : 1;
|
||
|
|
||
|
WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {}
|
||
|
};
|
||
|
|
||
|
protected:
|
||
|
struct GEPFlagsTy {
|
||
|
char IsInBounds : 1;
|
||
|
GEPFlagsTy(bool IsInBounds) : IsInBounds(IsInBounds) {}
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
struct DisjointFlagsTy {
|
||
|
char IsDisjoint : 1;
|
||
|
};
|
||
|
struct ExactFlagsTy {
|
||
|
char IsExact : 1;
|
||
|
};
|
||
|
struct NonNegFlagsTy {
|
||
|
char NonNeg : 1;
|
||
|
};
|
||
|
struct FastMathFlagsTy {
|
||
|
char AllowReassoc : 1;
|
||
|
char NoNaNs : 1;
|
||
|
char NoInfs : 1;
|
||
|
char NoSignedZeros : 1;
|
||
|
char AllowReciprocal : 1;
|
||
|
char AllowContract : 1;
|
||
|
char ApproxFunc : 1;
|
||
|
|
||
|
FastMathFlagsTy(const FastMathFlags &FMF);
|
||
|
};
|
||
|
|
||
|
OperationType OpType;
|
||
|
|
||
|
union {
|
||
|
CmpInst::Predicate CmpPredicate;
|
||
|
WrapFlagsTy WrapFlags;
|
||
|
DisjointFlagsTy DisjointFlags;
|
||
|
ExactFlagsTy ExactFlags;
|
||
|
GEPFlagsTy GEPFlags;
|
||
|
NonNegFlagsTy NonNegFlags;
|
||
|
FastMathFlagsTy FMFs;
|
||
|
unsigned AllFlags;
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(SC, Operands, DL) {
|
||
|
OpType = OperationType::Other;
|
||
|
AllFlags = 0;
|
||
|
}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I)
|
||
|
: VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) {
|
||
|
if (auto *Op = dyn_cast<CmpInst>(&I)) {
|
||
|
OpType = OperationType::Cmp;
|
||
|
CmpPredicate = Op->getPredicate();
|
||
|
} else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) {
|
||
|
OpType = OperationType::DisjointOp;
|
||
|
DisjointFlags.IsDisjoint = Op->isDisjoint();
|
||
|
} else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) {
|
||
|
OpType = OperationType::OverflowingBinOp;
|
||
|
WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()};
|
||
|
} else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) {
|
||
|
OpType = OperationType::PossiblyExactOp;
|
||
|
ExactFlags.IsExact = Op->isExact();
|
||
|
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
||
|
OpType = OperationType::GEPOp;
|
||
|
GEPFlags.IsInBounds = GEP->isInBounds();
|
||
|
} else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) {
|
||
|
OpType = OperationType::NonNegOp;
|
||
|
NonNegFlags.NonNeg = PNNI->hasNonNeg();
|
||
|
} else if (auto *Op = dyn_cast<FPMathOperator>(&I)) {
|
||
|
OpType = OperationType::FPMathOp;
|
||
|
FMFs = Op->getFastMathFlags();
|
||
|
} else {
|
||
|
OpType = OperationType::Other;
|
||
|
AllFlags = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
||
|
CmpInst::Predicate Pred, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp),
|
||
|
CmpPredicate(Pred) {}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
||
|
WrapFlagsTy WrapFlags, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(SC, Operands, DL),
|
||
|
OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {}
|
||
|
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
||
|
FastMathFlags FMFs, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp),
|
||
|
FMFs(FMFs) {}
|
||
|
|
||
|
protected:
|
||
|
template <typename IterT>
|
||
|
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
|
||
|
GEPFlagsTy GEPFlags, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp),
|
||
|
GEPFlags(GEPFlags) {}
|
||
|
|
||
|
public:
|
||
|
static inline bool classof(const VPRecipeBase *R) {
|
||
|
return R->getVPDefID() == VPRecipeBase::VPInstructionSC ||
|
||
|
R->getVPDefID() == VPRecipeBase::VPWidenSC ||
|
||
|
R->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
|
||
|
R->getVPDefID() == VPRecipeBase::VPWidenCastSC ||
|
||
|
R->getVPDefID() == VPRecipeBase::VPReplicateSC ||
|
||
|
R->getVPDefID() == VPRecipeBase::VPVectorPointerSC;
|
||
|
}
|
||
|
|
||
|
/// Drop all poison-generating flags.
|
||
|
void dropPoisonGeneratingFlags() {
|
||
|
// NOTE: This needs to be kept in-sync with
|
||
|
// Instruction::dropPoisonGeneratingFlags.
|
||
|
switch (OpType) {
|
||
|
case OperationType::OverflowingBinOp:
|
||
|
WrapFlags.HasNUW = false;
|
||
|
WrapFlags.HasNSW = false;
|
||
|
break;
|
||
|
case OperationType::DisjointOp:
|
||
|
DisjointFlags.IsDisjoint = false;
|
||
|
break;
|
||
|
case OperationType::PossiblyExactOp:
|
||
|
ExactFlags.IsExact = false;
|
||
|
break;
|
||
|
case OperationType::GEPOp:
|
||
|
GEPFlags.IsInBounds = false;
|
||
|
break;
|
||
|
case OperationType::FPMathOp:
|
||
|
FMFs.NoNaNs = false;
|
||
|
FMFs.NoInfs = false;
|
||
|
break;
|
||
|
case OperationType::NonNegOp:
|
||
|
NonNegFlags.NonNeg = false;
|
||
|
break;
|
||
|
case OperationType::Cmp:
|
||
|
case OperationType::Other:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Set the IR flags for \p I.
|
||
|
void setFlags(Instruction *I) const {
|
||
|
switch (OpType) {
|
||
|
case OperationType::OverflowingBinOp:
|
||
|
I->setHasNoUnsignedWrap(WrapFlags.HasNUW);
|
||
|
I->setHasNoSignedWrap(WrapFlags.HasNSW);
|
||
|
break;
|
||
|
case OperationType::DisjointOp:
|
||
|
cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint);
|
||
|
break;
|
||
|
case OperationType::PossiblyExactOp:
|
||
|
I->setIsExact(ExactFlags.IsExact);
|
||
|
break;
|
||
|
case OperationType::GEPOp:
|
||
|
cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds);
|
||
|
break;
|
||
|
case OperationType::FPMathOp:
|
||
|
I->setHasAllowReassoc(FMFs.AllowReassoc);
|
||
|
I->setHasNoNaNs(FMFs.NoNaNs);
|
||
|
I->setHasNoInfs(FMFs.NoInfs);
|
||
|
I->setHasNoSignedZeros(FMFs.NoSignedZeros);
|
||
|
I->setHasAllowReciprocal(FMFs.AllowReciprocal);
|
||
|
I->setHasAllowContract(FMFs.AllowContract);
|
||
|
I->setHasApproxFunc(FMFs.ApproxFunc);
|
||
|
break;
|
||
|
case OperationType::NonNegOp:
|
||
|
I->setNonNeg(NonNegFlags.NonNeg);
|
||
|
break;
|
||
|
case OperationType::Cmp:
|
||
|
case OperationType::Other:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
CmpInst::Predicate getPredicate() const {
|
||
|
assert(OpType == OperationType::Cmp &&
|
||
|
"recipe doesn't have a compare predicate");
|
||
|
return CmpPredicate;
|
||
|
}
|
||
|
|
||
|
bool isInBounds() const {
|
||
|
assert(OpType == OperationType::GEPOp &&
|
||
|
"recipe doesn't have inbounds flag");
|
||
|
return GEPFlags.IsInBounds;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe has fast-math flags.
|
||
|
bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; }
|
||
|
|
||
|
FastMathFlags getFastMathFlags() const;
|
||
|
|
||
|
bool hasNoUnsignedWrap() const {
|
||
|
assert(OpType == OperationType::OverflowingBinOp &&
|
||
|
"recipe doesn't have a NUW flag");
|
||
|
return WrapFlags.HasNUW;
|
||
|
}
|
||
|
|
||
|
bool hasNoSignedWrap() const {
|
||
|
assert(OpType == OperationType::OverflowingBinOp &&
|
||
|
"recipe doesn't have a NSW flag");
|
||
|
return WrapFlags.HasNSW;
|
||
|
}
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
void printFlags(raw_ostream &O) const;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// This is a concrete Recipe that models a single VPlan-level instruction.
|
||
|
/// While as any Recipe it may generate a sequence of IR instructions when
|
||
|
/// executed, these instructions would always form a single-def expression as
|
||
|
/// the VPInstruction is also a single def-use vertex.
|
||
|
class VPInstruction : public VPRecipeWithIRFlags {
|
||
|
friend class VPlanSlp;
|
||
|
|
||
|
public:
|
||
|
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
|
||
|
enum {
|
||
|
FirstOrderRecurrenceSplice =
|
||
|
Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
|
||
|
// values of a first-order recurrence.
|
||
|
Not,
|
||
|
SLPLoad,
|
||
|
SLPStore,
|
||
|
ActiveLaneMask,
|
||
|
CalculateTripCountMinusVF,
|
||
|
// Increment the canonical IV separately for each unrolled part.
|
||
|
CanonicalIVIncrementForPart,
|
||
|
BranchOnCount,
|
||
|
BranchOnCond,
|
||
|
ComputeReductionResult,
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
typedef unsigned char OpcodeTy;
|
||
|
OpcodeTy Opcode;
|
||
|
|
||
|
/// An optional name that can be used for the generated IR instruction.
|
||
|
const std::string Name;
|
||
|
|
||
|
/// Utility method serving execute(): generates a single instance of the
|
||
|
/// modeled instruction. \returns the generated value for \p Part.
|
||
|
/// In some cases an existing value is returned rather than a generated
|
||
|
/// one.
|
||
|
Value *generateInstruction(VPTransformState &State, unsigned Part);
|
||
|
|
||
|
#if !defined(NDEBUG)
|
||
|
/// Return true if the VPInstruction is a floating point math operation, i.e.
|
||
|
/// has fast-math flags.
|
||
|
bool isFPMathOp() const;
|
||
|
#endif
|
||
|
|
||
|
protected:
|
||
|
void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
|
||
|
|
||
|
public:
|
||
|
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
|
||
|
const Twine &Name = "")
|
||
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL),
|
||
|
Opcode(Opcode), Name(Name.str()) {}
|
||
|
|
||
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
||
|
DebugLoc DL = {}, const Twine &Name = "")
|
||
|
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
|
||
|
|
||
|
VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A,
|
||
|
VPValue *B, DebugLoc DL = {}, const Twine &Name = "");
|
||
|
|
||
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
||
|
WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "")
|
||
|
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL),
|
||
|
Opcode(Opcode), Name(Name.str()) {}
|
||
|
|
||
|
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
|
||
|
FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = "");
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPInstructionSC)
|
||
|
|
||
|
unsigned getOpcode() const { return Opcode; }
|
||
|
|
||
|
/// Generate the instruction.
|
||
|
/// TODO: We currently execute only per-part unless a specific instance is
|
||
|
/// provided.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the VPInstruction to \p O.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
|
||
|
/// Print the VPInstruction to dbgs() (for debugging).
|
||
|
LLVM_DUMP_METHOD void dump() const;
|
||
|
#endif
|
||
|
|
||
|
/// Return true if this instruction may modify memory.
|
||
|
bool mayWriteToMemory() const {
|
||
|
// TODO: we can use attributes of the called function to rule out memory
|
||
|
// modifications.
|
||
|
return Opcode == Instruction::Store || Opcode == Instruction::Call ||
|
||
|
Opcode == Instruction::Invoke || Opcode == SLPStore;
|
||
|
}
|
||
|
|
||
|
bool hasResult() const {
|
||
|
// CallInst may or may not have a result, depending on the called function.
|
||
|
// Conservatively return calls have results for now.
|
||
|
switch (getOpcode()) {
|
||
|
case Instruction::Ret:
|
||
|
case Instruction::Br:
|
||
|
case Instruction::Store:
|
||
|
case Instruction::Switch:
|
||
|
case Instruction::IndirectBr:
|
||
|
case Instruction::Resume:
|
||
|
case Instruction::CatchRet:
|
||
|
case Instruction::Unreachable:
|
||
|
case Instruction::Fence:
|
||
|
case Instruction::AtomicRMW:
|
||
|
case VPInstruction::BranchOnCond:
|
||
|
case VPInstruction::BranchOnCount:
|
||
|
return false;
|
||
|
default:
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
if (getOperand(0) != Op)
|
||
|
return false;
|
||
|
switch (getOpcode()) {
|
||
|
default:
|
||
|
return false;
|
||
|
case VPInstruction::ActiveLaneMask:
|
||
|
case VPInstruction::CalculateTripCountMinusVF:
|
||
|
case VPInstruction::CanonicalIVIncrementForPart:
|
||
|
case VPInstruction::BranchOnCount:
|
||
|
return true;
|
||
|
};
|
||
|
llvm_unreachable("switch should return");
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
||
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
if (getOperand(0) != Op)
|
||
|
return false;
|
||
|
switch (getOpcode()) {
|
||
|
default:
|
||
|
return false;
|
||
|
case VPInstruction::BranchOnCount:
|
||
|
return true;
|
||
|
};
|
||
|
llvm_unreachable("switch should return");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPWidenRecipe is a recipe for producing a copy of vector type its
|
||
|
/// ingredient. This recipe covers most of the traditional vectorization cases
|
||
|
/// where each ingredient transforms into a vectorized version of itself.
|
||
|
class VPWidenRecipe : public VPRecipeWithIRFlags {
|
||
|
unsigned Opcode;
|
||
|
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I),
|
||
|
Opcode(I.getOpcode()) {}
|
||
|
|
||
|
~VPWidenRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenSC)
|
||
|
|
||
|
/// Produce widened copies of all Ingredients.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
unsigned getOpcode() const { return Opcode; }
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// VPWidenCastRecipe is a recipe to create vector cast instructions.
|
||
|
class VPWidenCastRecipe : public VPRecipeWithIRFlags {
|
||
|
/// Cast instruction opcode.
|
||
|
Instruction::CastOps Opcode;
|
||
|
|
||
|
/// Result type for the cast.
|
||
|
Type *ResultTy;
|
||
|
|
||
|
public:
|
||
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy,
|
||
|
CastInst &UI)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode),
|
||
|
ResultTy(ResultTy) {
|
||
|
assert(UI.getOpcode() == Opcode &&
|
||
|
"opcode of underlying cast doesn't match");
|
||
|
assert(UI.getType() == ResultTy &&
|
||
|
"result type of underlying cast doesn't match");
|
||
|
}
|
||
|
|
||
|
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode),
|
||
|
ResultTy(ResultTy) {}
|
||
|
|
||
|
~VPWidenCastRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenCastSC)
|
||
|
|
||
|
/// Produce widened copies of the cast.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
Instruction::CastOps getOpcode() const { return Opcode; }
|
||
|
|
||
|
/// Returns the result type of the cast.
|
||
|
Type *getResultType() const { return ResultTy; }
|
||
|
};
|
||
|
|
||
|
/// A recipe for widening Call instructions.
|
||
|
class VPWidenCallRecipe : public VPSingleDefRecipe {
|
||
|
/// ID of the vector intrinsic to call when widening the call. If set the
|
||
|
/// Intrinsic::not_intrinsic, a library call will be used instead.
|
||
|
Intrinsic::ID VectorIntrinsicID;
|
||
|
/// If this recipe represents a library call, Variant stores a pointer to
|
||
|
/// the chosen function. There is a 1:1 mapping between a given VF and the
|
||
|
/// chosen vectorized variant, so there will be a different vplan for each
|
||
|
/// VF with a valid variant.
|
||
|
Function *Variant;
|
||
|
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments,
|
||
|
Intrinsic::ID VectorIntrinsicID, DebugLoc DL = {},
|
||
|
Function *Variant = nullptr)
|
||
|
: VPSingleDefRecipe(VPDef::VPWidenCallSC, CallArguments, &I, DL),
|
||
|
VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {}
|
||
|
|
||
|
~VPWidenCallRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenCallSC)
|
||
|
|
||
|
/// Produce a widened version of the call instruction.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A recipe for widening select instructions.
|
||
|
struct VPWidenSelectRecipe : public VPSingleDefRecipe {
|
||
|
template <typename IterT>
|
||
|
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands)
|
||
|
: VPSingleDefRecipe(VPDef::VPWidenSelectSC, Operands, &I,
|
||
|
I.getDebugLoc()) {}
|
||
|
|
||
|
~VPWidenSelectRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC)
|
||
|
|
||
|
/// Produce a widened version of the select instruction.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
VPValue *getCond() const {
|
||
|
return getOperand(0);
|
||
|
}
|
||
|
|
||
|
bool isInvariantCond() const {
|
||
|
return getCond()->isDefinedOutsideVectorRegions();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling GEP instructions.
|
||
|
class VPWidenGEPRecipe : public VPRecipeWithIRFlags {
|
||
|
bool isPointerLoopInvariant() const {
|
||
|
return getOperand(0)->isDefinedOutsideVectorRegions();
|
||
|
}
|
||
|
|
||
|
bool isIndexLoopInvariant(unsigned I) const {
|
||
|
return getOperand(I + 1)->isDefinedOutsideVectorRegions();
|
||
|
}
|
||
|
|
||
|
bool areAllOperandsInvariant() const {
|
||
|
return all_of(operands(), [](VPValue *Op) {
|
||
|
return Op->isDefinedOutsideVectorRegions();
|
||
|
});
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {}
|
||
|
|
||
|
~VPWidenGEPRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC)
|
||
|
|
||
|
/// Generate the gep nodes.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A recipe to compute the pointers for widened memory accesses of IndexTy for
|
||
|
/// all parts. If IsReverse is true, compute pointers for accessing the input in
|
||
|
/// reverse order per part.
|
||
|
class VPVectorPointerRecipe : public VPRecipeWithIRFlags {
|
||
|
Type *IndexedTy;
|
||
|
bool IsReverse;
|
||
|
|
||
|
public:
|
||
|
VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, bool IsReverse,
|
||
|
bool IsInBounds, DebugLoc DL)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr),
|
||
|
GEPFlagsTy(IsInBounds), DL),
|
||
|
IndexedTy(IndexedTy), IsReverse(IsReverse) {}
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC)
|
||
|
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A pure virtual base class for all recipes modeling header phis, including
|
||
|
/// phis for first order recurrences, pointer inductions and reductions. The
|
||
|
/// start value is the first operand of the recipe and the incoming value from
|
||
|
/// the backedge is the second operand.
|
||
|
///
|
||
|
/// Inductions are modeled using the following sub-classes:
|
||
|
/// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop,
|
||
|
/// starting at a specified value (zero for the main vector loop, the resume
|
||
|
/// value for the epilogue vector loop) and stepping by 1. The induction
|
||
|
/// controls exiting of the vector loop by comparing against the vector trip
|
||
|
/// count. Produces a single scalar PHI for the induction value per
|
||
|
/// iteration.
|
||
|
/// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and
|
||
|
/// floating point inductions with arbitrary start and step values. Produces
|
||
|
/// a vector PHI per-part.
|
||
|
/// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding
|
||
|
/// value of an IV with different start and step values. Produces a single
|
||
|
/// scalar value per iteration
|
||
|
/// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a
|
||
|
/// canonical or derived induction.
|
||
|
/// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a
|
||
|
/// pointer induction. Produces either a vector PHI per-part or scalar values
|
||
|
/// per-lane based on the canonical induction.
|
||
|
class VPHeaderPHIRecipe : public VPSingleDefRecipe {
|
||
|
protected:
|
||
|
VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr,
|
||
|
VPValue *Start = nullptr, DebugLoc DL = {})
|
||
|
: VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>(), UnderlyingInstr, DL) {
|
||
|
if (Start)
|
||
|
addOperand(Start);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
~VPHeaderPHIRecipe() override = default;
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPRecipeBase *B) {
|
||
|
return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC &&
|
||
|
B->getVPDefID() <= VPDef::VPLastHeaderPHISC;
|
||
|
}
|
||
|
static inline bool classof(const VPValue *V) {
|
||
|
auto *B = V->getDefiningRecipe();
|
||
|
return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC &&
|
||
|
B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC;
|
||
|
}
|
||
|
|
||
|
/// Generate the phi nodes.
|
||
|
void execute(VPTransformState &State) override = 0;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override = 0;
|
||
|
#endif
|
||
|
|
||
|
/// Returns the start value of the phi, if one is set.
|
||
|
VPValue *getStartValue() {
|
||
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
||
|
}
|
||
|
VPValue *getStartValue() const {
|
||
|
return getNumOperands() == 0 ? nullptr : getOperand(0);
|
||
|
}
|
||
|
|
||
|
/// Update the start value of the recipe.
|
||
|
void setStartValue(VPValue *V) { setOperand(0, V); }
|
||
|
|
||
|
/// Returns the incoming value from the loop backedge.
|
||
|
virtual VPValue *getBackedgeValue() {
|
||
|
return getOperand(1);
|
||
|
}
|
||
|
|
||
|
/// Returns the backedge value as a recipe. The backedge value is guaranteed
|
||
|
/// to be a recipe.
|
||
|
virtual VPRecipeBase &getBackedgeRecipe() {
|
||
|
return *getBackedgeValue()->getDefiningRecipe();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
||
|
/// producing their vector values.
|
||
|
class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe {
|
||
|
PHINode *IV;
|
||
|
TruncInst *Trunc;
|
||
|
const InductionDescriptor &IndDesc;
|
||
|
|
||
|
public:
|
||
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
||
|
const InductionDescriptor &IndDesc)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV),
|
||
|
Trunc(nullptr), IndDesc(IndDesc) {
|
||
|
addOperand(Step);
|
||
|
}
|
||
|
|
||
|
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
|
||
|
const InductionDescriptor &IndDesc,
|
||
|
TruncInst *Trunc)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start),
|
||
|
IV(IV), Trunc(Trunc), IndDesc(IndDesc) {
|
||
|
addOperand(Step);
|
||
|
}
|
||
|
|
||
|
~VPWidenIntOrFpInductionRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC)
|
||
|
|
||
|
/// Generate the vectorized and scalarized versions of the phi node as
|
||
|
/// needed by their users.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
VPValue *getBackedgeValue() override {
|
||
|
// TODO: All operands of base recipe must exist and be at same index in
|
||
|
// derived recipe.
|
||
|
llvm_unreachable(
|
||
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
||
|
}
|
||
|
|
||
|
VPRecipeBase &getBackedgeRecipe() override {
|
||
|
// TODO: All operands of base recipe must exist and be at same index in
|
||
|
// derived recipe.
|
||
|
llvm_unreachable(
|
||
|
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
|
||
|
}
|
||
|
|
||
|
/// Returns the step value of the induction.
|
||
|
VPValue *getStepValue() { return getOperand(1); }
|
||
|
const VPValue *getStepValue() const { return getOperand(1); }
|
||
|
|
||
|
/// Returns the first defined value as TruncInst, if it is one or nullptr
|
||
|
/// otherwise.
|
||
|
TruncInst *getTruncInst() { return Trunc; }
|
||
|
const TruncInst *getTruncInst() const { return Trunc; }
|
||
|
|
||
|
PHINode *getPHINode() { return IV; }
|
||
|
|
||
|
/// Returns the induction descriptor for the recipe.
|
||
|
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
|
||
|
|
||
|
/// Returns true if the induction is canonical, i.e. starting at 0 and
|
||
|
/// incremented by UF * VF (= the original IV is incremented by 1).
|
||
|
bool isCanonical() const;
|
||
|
|
||
|
/// Returns the scalar type of the induction.
|
||
|
Type *getScalarType() const {
|
||
|
return Trunc ? Trunc->getType() : IV->getType();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe {
|
||
|
const InductionDescriptor &IndDesc;
|
||
|
|
||
|
bool IsScalarAfterVectorization;
|
||
|
|
||
|
public:
|
||
|
/// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
|
||
|
/// Start.
|
||
|
VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step,
|
||
|
const InductionDescriptor &IndDesc,
|
||
|
bool IsScalarAfterVectorization)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi),
|
||
|
IndDesc(IndDesc),
|
||
|
IsScalarAfterVectorization(IsScalarAfterVectorization) {
|
||
|
addOperand(Start);
|
||
|
addOperand(Step);
|
||
|
}
|
||
|
|
||
|
~VPWidenPointerInductionRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC)
|
||
|
|
||
|
/// Generate vector values for the pointer induction.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
/// Returns true if only scalar values will be generated.
|
||
|
bool onlyScalarsGenerated(ElementCount VF);
|
||
|
|
||
|
/// Returns the induction descriptor for the recipe.
|
||
|
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling header phis that are widened in the vector loop.
|
||
|
/// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
|
||
|
/// managed in the recipe directly.
|
||
|
class VPWidenPHIRecipe : public VPHeaderPHIRecipe {
|
||
|
/// List of incoming blocks. Only used in the VPlan native path.
|
||
|
SmallVector<VPBasicBlock *, 2> IncomingBlocks;
|
||
|
|
||
|
public:
|
||
|
/// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start.
|
||
|
VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) {
|
||
|
if (Start)
|
||
|
addOperand(Start);
|
||
|
}
|
||
|
|
||
|
~VPWidenPHIRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenPHISC)
|
||
|
|
||
|
/// Generate the phi/select nodes.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
|
||
|
void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
|
||
|
addOperand(IncomingV);
|
||
|
IncomingBlocks.push_back(IncomingBlock);
|
||
|
}
|
||
|
|
||
|
/// Returns the \p I th incoming VPBasicBlock.
|
||
|
VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
|
||
|
|
||
|
/// Returns the \p I th incoming VPValue.
|
||
|
VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling first-order recurrence phis. The start value is the
|
||
|
/// first operand of the recipe and the incoming value from the backedge is the
|
||
|
/// second operand.
|
||
|
struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
|
||
|
VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {}
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC)
|
||
|
|
||
|
static inline bool classof(const VPHeaderPHIRecipe *R) {
|
||
|
return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC;
|
||
|
}
|
||
|
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling reduction phis. The start value is the first operand
|
||
|
/// of the recipe and the incoming value from the backedge is the second
|
||
|
/// operand.
|
||
|
class VPReductionPHIRecipe : public VPHeaderPHIRecipe {
|
||
|
/// Descriptor for the reduction.
|
||
|
const RecurrenceDescriptor &RdxDesc;
|
||
|
|
||
|
/// The phi is part of an in-loop reduction.
|
||
|
bool IsInLoop;
|
||
|
|
||
|
/// The phi is part of an ordered reduction. Requires IsInLoop to be true.
|
||
|
bool IsOrdered;
|
||
|
|
||
|
public:
|
||
|
/// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
|
||
|
/// RdxDesc.
|
||
|
VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
|
||
|
VPValue &Start, bool IsInLoop = false,
|
||
|
bool IsOrdered = false)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start),
|
||
|
RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) {
|
||
|
assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
|
||
|
}
|
||
|
|
||
|
~VPReductionPHIRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPReductionPHISC)
|
||
|
|
||
|
static inline bool classof(const VPHeaderPHIRecipe *R) {
|
||
|
return R->getVPDefID() == VPDef::VPReductionPHISC;
|
||
|
}
|
||
|
|
||
|
/// Generate the phi/select nodes.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
const RecurrenceDescriptor &getRecurrenceDescriptor() const {
|
||
|
return RdxDesc;
|
||
|
}
|
||
|
|
||
|
/// Returns true, if the phi is part of an ordered reduction.
|
||
|
bool isOrdered() const { return IsOrdered; }
|
||
|
|
||
|
/// Returns true, if the phi is part of an in-loop reduction.
|
||
|
bool isInLoop() const { return IsInLoop; }
|
||
|
};
|
||
|
|
||
|
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
|
||
|
/// instructions.
|
||
|
class VPBlendRecipe : public VPSingleDefRecipe {
|
||
|
public:
|
||
|
/// The blend operation is a User of the incoming values and of their
|
||
|
/// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
|
||
|
/// might be incoming with a full mask for which there is no VPValue.
|
||
|
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
|
||
|
: VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) {
|
||
|
assert(Operands.size() > 0 &&
|
||
|
((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
|
||
|
"Expected either a single incoming value or a positive even number "
|
||
|
"of operands");
|
||
|
}
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPBlendSC)
|
||
|
|
||
|
/// Return the number of incoming values, taking into account that a single
|
||
|
/// incoming value has no mask.
|
||
|
unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
|
||
|
|
||
|
/// Return incoming value number \p Idx.
|
||
|
VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
|
||
|
|
||
|
/// Return mask number \p Idx.
|
||
|
VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
|
||
|
|
||
|
/// Generate the phi/select nodes.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
// Recursing through Blend recipes only, must terminate at header phi's the
|
||
|
// latest.
|
||
|
return all_of(users(),
|
||
|
[this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
|
||
|
/// or stores into one wide load/store and shuffles. The first operand of a
|
||
|
/// VPInterleave recipe is the address, followed by the stored values, followed
|
||
|
/// by an optional mask.
|
||
|
class VPInterleaveRecipe : public VPRecipeBase {
|
||
|
const InterleaveGroup<Instruction> *IG;
|
||
|
|
||
|
/// Indicates if the interleave group is in a conditional block and requires a
|
||
|
/// mask.
|
||
|
bool HasMask = false;
|
||
|
|
||
|
/// Indicates if gaps between members of the group need to be masked out or if
|
||
|
/// unusued gaps can be loaded speculatively.
|
||
|
bool NeedsMaskForGaps = false;
|
||
|
|
||
|
public:
|
||
|
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
|
||
|
ArrayRef<VPValue *> StoredValues, VPValue *Mask,
|
||
|
bool NeedsMaskForGaps)
|
||
|
: VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG),
|
||
|
NeedsMaskForGaps(NeedsMaskForGaps) {
|
||
|
for (unsigned i = 0; i < IG->getFactor(); ++i)
|
||
|
if (Instruction *I = IG->getMember(i)) {
|
||
|
if (I->getType()->isVoidTy())
|
||
|
continue;
|
||
|
new VPValue(I, this);
|
||
|
}
|
||
|
|
||
|
for (auto *SV : StoredValues)
|
||
|
addOperand(SV);
|
||
|
if (Mask) {
|
||
|
HasMask = true;
|
||
|
addOperand(Mask);
|
||
|
}
|
||
|
}
|
||
|
~VPInterleaveRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPInterleaveSC)
|
||
|
|
||
|
/// Return the address accessed by this recipe.
|
||
|
VPValue *getAddr() const {
|
||
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
||
|
}
|
||
|
|
||
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
||
|
/// by a nullptr.
|
||
|
VPValue *getMask() const {
|
||
|
// Mask is optional and therefore the last, currently 2nd operand.
|
||
|
return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
|
||
|
}
|
||
|
|
||
|
/// Return the VPValues stored by this interleave group. If it is a load
|
||
|
/// interleave group, return an empty ArrayRef.
|
||
|
ArrayRef<VPValue *> getStoredValues() const {
|
||
|
// The first operand is the address, followed by the stored values, followed
|
||
|
// by an optional mask.
|
||
|
return ArrayRef<VPValue *>(op_begin(), getNumOperands())
|
||
|
.slice(1, getNumStoreOperands());
|
||
|
}
|
||
|
|
||
|
/// Generate the wide load or store, and shuffles.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
|
||
|
|
||
|
/// Returns the number of stored operands of this interleave group. Returns 0
|
||
|
/// for load interleave groups.
|
||
|
unsigned getNumStoreOperands() const {
|
||
|
return getNumOperands() - (HasMask ? 2 : 1);
|
||
|
}
|
||
|
|
||
|
/// The recipe only uses the first lane of the address.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe to represent inloop reduction operations, performing a reduction on
|
||
|
/// a vector operand into a scalar value, and adding the result to a chain.
|
||
|
/// The Operands are {ChainOp, VecOp, [Condition]}.
|
||
|
class VPReductionRecipe : public VPSingleDefRecipe {
|
||
|
/// The recurrence decriptor for the reduction in question.
|
||
|
const RecurrenceDescriptor &RdxDesc;
|
||
|
|
||
|
public:
|
||
|
VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I,
|
||
|
VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp)
|
||
|
: VPSingleDefRecipe(VPDef::VPReductionSC,
|
||
|
ArrayRef<VPValue *>({ChainOp, VecOp}), I),
|
||
|
RdxDesc(R) {
|
||
|
if (CondOp)
|
||
|
addOperand(CondOp);
|
||
|
}
|
||
|
|
||
|
~VPReductionRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPReductionSC)
|
||
|
|
||
|
/// Generate the reduction in the loop
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// The VPValue of the scalar Chain being accumulated.
|
||
|
VPValue *getChainOp() const { return getOperand(0); }
|
||
|
/// The VPValue of the vector value to be reduced.
|
||
|
VPValue *getVecOp() const { return getOperand(1); }
|
||
|
/// The VPValue of the condition for the block.
|
||
|
VPValue *getCondOp() const {
|
||
|
return getNumOperands() > 2 ? getOperand(2) : nullptr;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
|
||
|
/// copies of the original scalar type, one per lane, instead of producing a
|
||
|
/// single copy of widened type for all lanes. If the instruction is known to be
|
||
|
/// uniform only one copy, per lane zero, will be generated.
|
||
|
class VPReplicateRecipe : public VPRecipeWithIRFlags {
|
||
|
/// Indicator if only a single replica per lane is needed.
|
||
|
bool IsUniform;
|
||
|
|
||
|
/// Indicator if the replicas are also predicated.
|
||
|
bool IsPredicated;
|
||
|
|
||
|
public:
|
||
|
template <typename IterT>
|
||
|
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
|
||
|
bool IsUniform, VPValue *Mask = nullptr)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I),
|
||
|
IsUniform(IsUniform), IsPredicated(Mask) {
|
||
|
if (Mask)
|
||
|
addOperand(Mask);
|
||
|
}
|
||
|
|
||
|
~VPReplicateRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPReplicateSC)
|
||
|
|
||
|
/// Generate replicas of the desired Ingredient. Replicas will be generated
|
||
|
/// for all parts and lanes unless a specific part and lane are specified in
|
||
|
/// the \p State.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
bool isUniform() const { return IsUniform; }
|
||
|
|
||
|
bool isPredicated() const { return IsPredicated; }
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return isUniform();
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
||
|
bool usesScalars(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe is used by a widened recipe via an intervening
|
||
|
/// VPPredInstPHIRecipe. In this case, the scalar values should also be packed
|
||
|
/// in a vector.
|
||
|
bool shouldPack() const;
|
||
|
|
||
|
/// Return the mask of a predicated VPReplicateRecipe.
|
||
|
VPValue *getMask() {
|
||
|
assert(isPredicated() && "Trying to get the mask of a unpredicated recipe");
|
||
|
return getOperand(getNumOperands() - 1);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe for generating conditional branches on the bits of a mask.
|
||
|
class VPBranchOnMaskRecipe : public VPRecipeBase {
|
||
|
public:
|
||
|
VPBranchOnMaskRecipe(VPValue *BlockInMask)
|
||
|
: VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) {
|
||
|
if (BlockInMask) // nullptr means all-one mask.
|
||
|
addOperand(BlockInMask);
|
||
|
}
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC)
|
||
|
|
||
|
/// Generate the extraction of the appropriate bit from the block mask and the
|
||
|
/// conditional branch.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override {
|
||
|
O << Indent << "BRANCH-ON-MASK ";
|
||
|
if (VPValue *Mask = getMask())
|
||
|
Mask->printAsOperand(O, SlotTracker);
|
||
|
else
|
||
|
O << " All-One";
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
||
|
/// by a nullptr.
|
||
|
VPValue *getMask() const {
|
||
|
assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
|
||
|
// Mask is optional.
|
||
|
return getNumOperands() == 1 ? getOperand(0) : nullptr;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
||
|
bool usesScalars(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
|
||
|
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
|
||
|
/// order to merge values that are set under such a branch and feed their uses.
|
||
|
/// The phi nodes can be scalar or vector depending on the users of the value.
|
||
|
/// This recipe works in concert with VPBranchOnMaskRecipe.
|
||
|
class VPPredInstPHIRecipe : public VPSingleDefRecipe {
|
||
|
public:
|
||
|
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
|
||
|
/// nodes after merging back from a Branch-on-Mask.
|
||
|
VPPredInstPHIRecipe(VPValue *PredV)
|
||
|
: VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV) {}
|
||
|
~VPPredInstPHIRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC)
|
||
|
|
||
|
/// Generates phi nodes for live-outs as needed to retain SSA form.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Returns true if the recipe uses scalars of operand \p Op.
|
||
|
bool usesScalars(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A Recipe for widening load/store operations.
|
||
|
/// The recipe uses the following VPValues:
|
||
|
/// - For load: Address, optional mask
|
||
|
/// - For store: Address, stored value, optional mask
|
||
|
/// TODO: We currently execute only per-part unless a specific instance is
|
||
|
/// provided.
|
||
|
class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
|
||
|
Instruction &Ingredient;
|
||
|
|
||
|
// Whether the loaded-from / stored-to addresses are consecutive.
|
||
|
bool Consecutive;
|
||
|
|
||
|
// Whether the consecutive loaded/stored addresses are in reverse order.
|
||
|
bool Reverse;
|
||
|
|
||
|
void setMask(VPValue *Mask) {
|
||
|
if (!Mask)
|
||
|
return;
|
||
|
addOperand(Mask);
|
||
|
}
|
||
|
|
||
|
bool isMasked() const {
|
||
|
return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
|
||
|
bool Consecutive, bool Reverse)
|
||
|
: VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}),
|
||
|
Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) {
|
||
|
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
|
||
|
new VPValue(this, &Load);
|
||
|
setMask(Mask);
|
||
|
}
|
||
|
|
||
|
VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
|
||
|
VPValue *StoredValue, VPValue *Mask,
|
||
|
bool Consecutive, bool Reverse)
|
||
|
: VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}),
|
||
|
Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) {
|
||
|
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
|
||
|
setMask(Mask);
|
||
|
}
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC)
|
||
|
|
||
|
/// Return the address accessed by this recipe.
|
||
|
VPValue *getAddr() const {
|
||
|
return getOperand(0); // Address is the 1st, mandatory operand.
|
||
|
}
|
||
|
|
||
|
/// Return the mask used by this recipe. Note that a full mask is represented
|
||
|
/// by a nullptr.
|
||
|
VPValue *getMask() const {
|
||
|
// Mask is optional and therefore the last operand.
|
||
|
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
|
||
|
}
|
||
|
|
||
|
/// Returns true if this recipe is a store.
|
||
|
bool isStore() const { return isa<StoreInst>(Ingredient); }
|
||
|
|
||
|
/// Return the address accessed by this recipe.
|
||
|
VPValue *getStoredValue() const {
|
||
|
assert(isStore() && "Stored value only available for store instructions");
|
||
|
return getOperand(1); // Stored value is the 2nd, mandatory operand.
|
||
|
}
|
||
|
|
||
|
// Return whether the loaded-from / stored-to addresses are consecutive.
|
||
|
bool isConsecutive() const { return Consecutive; }
|
||
|
|
||
|
// Return whether the consecutive loaded/stored addresses are in reverse
|
||
|
// order.
|
||
|
bool isReverse() const { return Reverse; }
|
||
|
|
||
|
/// Generate the wide load/store.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
|
||
|
// Widened, consecutive memory operations only demand the first lane of
|
||
|
// their address, unless the same operand is also stored. That latter can
|
||
|
// happen with opaque pointers.
|
||
|
return Op == getAddr() && isConsecutive() &&
|
||
|
(!isStore() || Op != getStoredValue());
|
||
|
}
|
||
|
|
||
|
Instruction &getIngredient() const { return Ingredient; }
|
||
|
};
|
||
|
|
||
|
/// Recipe to expand a SCEV expression.
|
||
|
class VPExpandSCEVRecipe : public VPSingleDefRecipe {
|
||
|
const SCEV *Expr;
|
||
|
ScalarEvolution &SE;
|
||
|
|
||
|
public:
|
||
|
VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
|
||
|
: VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {}
|
||
|
|
||
|
~VPExpandSCEVRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC)
|
||
|
|
||
|
/// Generate a canonical vector induction variable of the vector loop, with
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
const SCEV *getSCEV() const { return Expr; }
|
||
|
};
|
||
|
|
||
|
/// Canonical scalar induction phi of the vector loop. Starting at the specified
|
||
|
/// start value (either 0 or the resume value when vectorizing the epilogue
|
||
|
/// loop). VPWidenCanonicalIVRecipe represents the vector version of the
|
||
|
/// canonical induction variable.
|
||
|
class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
|
||
|
public:
|
||
|
VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {}
|
||
|
|
||
|
~VPCanonicalIVPHIRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC)
|
||
|
|
||
|
static inline bool classof(const VPHeaderPHIRecipe *D) {
|
||
|
return D->getVPDefID() == VPDef::VPCanonicalIVPHISC;
|
||
|
}
|
||
|
|
||
|
/// Generate the canonical scalar induction phi of the vector loop.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Returns the scalar type of the induction.
|
||
|
Type *getScalarType() const {
|
||
|
return getStartValue()->getLiveInIRValue()->getType();
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Returns true if the recipe only uses the first part of operand \p Op.
|
||
|
bool onlyFirstPartUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Check if the induction described by \p Kind, /p Start and \p Step is
|
||
|
/// canonical, i.e. has the same start, step (of 1), and type as the
|
||
|
/// canonical IV.
|
||
|
bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start,
|
||
|
VPValue *Step, Type *Ty) const;
|
||
|
};
|
||
|
|
||
|
/// A recipe for generating the active lane mask for the vector loop that is
|
||
|
/// used to predicate the vector operations.
|
||
|
/// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
|
||
|
/// remove VPActiveLaneMaskPHIRecipe.
|
||
|
class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
|
||
|
public:
|
||
|
VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
|
||
|
: VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask,
|
||
|
DL) {}
|
||
|
|
||
|
~VPActiveLaneMaskPHIRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC)
|
||
|
|
||
|
static inline bool classof(const VPHeaderPHIRecipe *D) {
|
||
|
return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC;
|
||
|
}
|
||
|
|
||
|
/// Generate the active lane mask phi of the vector loop.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// A Recipe for widening the canonical induction variable of the vector loop.
|
||
|
class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe {
|
||
|
public:
|
||
|
VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
|
||
|
: VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {}
|
||
|
|
||
|
~VPWidenCanonicalIVRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC)
|
||
|
|
||
|
/// Generate a canonical vector induction variable of the vector loop, with
|
||
|
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
|
||
|
/// step = <VF*UF, VF*UF, ..., VF*UF>.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
/// Returns the scalar type of the induction.
|
||
|
const Type *getScalarType() const {
|
||
|
return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe())
|
||
|
->getScalarType();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe for converting the canonical IV value to the corresponding value of
|
||
|
/// an IV with different start and step values, using Start + CanonicalIV *
|
||
|
/// Step.
|
||
|
class VPDerivedIVRecipe : public VPSingleDefRecipe {
|
||
|
/// If not nullptr, the result of the induction will get truncated to
|
||
|
/// TruncResultTy.
|
||
|
Type *TruncResultTy;
|
||
|
|
||
|
/// Kind of the induction.
|
||
|
const InductionDescriptor::InductionKind Kind;
|
||
|
/// If not nullptr, the floating point induction binary operator. Must be set
|
||
|
/// for floating point inductions.
|
||
|
const FPMathOperator *FPBinOp;
|
||
|
|
||
|
public:
|
||
|
VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start,
|
||
|
VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step,
|
||
|
Type *TruncResultTy)
|
||
|
: VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}),
|
||
|
TruncResultTy(TruncResultTy), Kind(IndDesc.getKind()),
|
||
|
FPBinOp(dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())) {
|
||
|
}
|
||
|
|
||
|
~VPDerivedIVRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC)
|
||
|
|
||
|
/// Generate the transformed value of the induction at offset StartValue (1.
|
||
|
/// operand) + IV (2. operand) * StepValue (3, operand).
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
Type *getScalarType() const {
|
||
|
return TruncResultTy ? TruncResultTy
|
||
|
: getStartValue()->getLiveInIRValue()->getType();
|
||
|
}
|
||
|
|
||
|
VPValue *getStartValue() const { return getOperand(0); }
|
||
|
VPValue *getCanonicalIV() const { return getOperand(1); }
|
||
|
VPValue *getStepValue() const { return getOperand(2); }
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// A recipe for handling phi nodes of integer and floating-point inductions,
|
||
|
/// producing their scalar values.
|
||
|
class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags {
|
||
|
Instruction::BinaryOps InductionOpcode;
|
||
|
|
||
|
public:
|
||
|
VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step,
|
||
|
Instruction::BinaryOps Opcode, FastMathFlags FMFs)
|
||
|
: VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC,
|
||
|
ArrayRef<VPValue *>({IV, Step}), FMFs),
|
||
|
InductionOpcode(Opcode) {}
|
||
|
|
||
|
VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV,
|
||
|
VPValue *Step)
|
||
|
: VPScalarIVStepsRecipe(
|
||
|
IV, Step, IndDesc.getInductionOpcode(),
|
||
|
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())
|
||
|
? IndDesc.getInductionBinOp()->getFastMathFlags()
|
||
|
: FastMathFlags()) {}
|
||
|
|
||
|
~VPScalarIVStepsRecipe() override = default;
|
||
|
|
||
|
VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC)
|
||
|
|
||
|
/// Generate the scalarized versions of the phi node as needed by their users.
|
||
|
void execute(VPTransformState &State) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the recipe.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
#endif
|
||
|
|
||
|
VPValue *getStepValue() const { return getOperand(1); }
|
||
|
|
||
|
/// Returns true if the recipe only uses the first lane of operand \p Op.
|
||
|
bool onlyFirstLaneUsed(const VPValue *Op) const override {
|
||
|
assert(is_contained(operands(), Op) &&
|
||
|
"Op must be an operand of the recipe");
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
||
|
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
||
|
/// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
|
||
|
class VPBasicBlock : public VPBlockBase {
|
||
|
public:
|
||
|
using RecipeListTy = iplist<VPRecipeBase>;
|
||
|
|
||
|
private:
|
||
|
/// The VPRecipes held in the order of output instructions to generate.
|
||
|
RecipeListTy Recipes;
|
||
|
|
||
|
public:
|
||
|
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
||
|
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
||
|
if (Recipe)
|
||
|
appendRecipe(Recipe);
|
||
|
}
|
||
|
|
||
|
~VPBasicBlock() override {
|
||
|
while (!Recipes.empty())
|
||
|
Recipes.pop_back();
|
||
|
}
|
||
|
|
||
|
/// Instruction iterators...
|
||
|
using iterator = RecipeListTy::iterator;
|
||
|
using const_iterator = RecipeListTy::const_iterator;
|
||
|
using reverse_iterator = RecipeListTy::reverse_iterator;
|
||
|
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
/// Recipe iterator methods
|
||
|
///
|
||
|
inline iterator begin() { return Recipes.begin(); }
|
||
|
inline const_iterator begin() const { return Recipes.begin(); }
|
||
|
inline iterator end() { return Recipes.end(); }
|
||
|
inline const_iterator end() const { return Recipes.end(); }
|
||
|
|
||
|
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
||
|
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
||
|
inline reverse_iterator rend() { return Recipes.rend(); }
|
||
|
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
||
|
|
||
|
inline size_t size() const { return Recipes.size(); }
|
||
|
inline bool empty() const { return Recipes.empty(); }
|
||
|
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
||
|
inline VPRecipeBase &front() { return Recipes.front(); }
|
||
|
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
||
|
inline VPRecipeBase &back() { return Recipes.back(); }
|
||
|
|
||
|
/// Returns a reference to the list of recipes.
|
||
|
RecipeListTy &getRecipeList() { return Recipes; }
|
||
|
|
||
|
/// Returns a pointer to a member of the recipe list.
|
||
|
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
||
|
return &VPBasicBlock::Recipes;
|
||
|
}
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPBlockBase *V) {
|
||
|
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
|
||
|
}
|
||
|
|
||
|
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
|
||
|
assert(Recipe && "No recipe to append.");
|
||
|
assert(!Recipe->Parent && "Recipe already in VPlan");
|
||
|
Recipe->Parent = this;
|
||
|
Recipes.insert(InsertPt, Recipe);
|
||
|
}
|
||
|
|
||
|
/// Augment the existing recipes of a VPBasicBlock with an additional
|
||
|
/// \p Recipe as the last recipe.
|
||
|
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
||
|
void execute(VPTransformState *State) override;
|
||
|
|
||
|
/// Return the position of the first non-phi node recipe in the block.
|
||
|
iterator getFirstNonPhi();
|
||
|
|
||
|
/// Returns an iterator range over the PHI-like recipes in the block.
|
||
|
iterator_range<iterator> phis() {
|
||
|
return make_range(begin(), getFirstNonPhi());
|
||
|
}
|
||
|
|
||
|
void dropAllReferences(VPValue *NewValue) override;
|
||
|
|
||
|
/// Split current block at \p SplitAt by inserting a new block between the
|
||
|
/// current block and its successors and moving all recipes starting at
|
||
|
/// SplitAt to the new block. Returns the new block.
|
||
|
VPBasicBlock *splitAt(iterator SplitAt);
|
||
|
|
||
|
VPRegionBlock *getEnclosingLoopRegion();
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
|
||
|
/// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
|
||
|
///
|
||
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
||
|
/// individual blocks is consistent with the whole VPlan printing.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
||
|
#endif
|
||
|
|
||
|
/// If the block has multiple successors, return the branch recipe terminating
|
||
|
/// the block. If there are no or only a single successor, return nullptr;
|
||
|
VPRecipeBase *getTerminator();
|
||
|
const VPRecipeBase *getTerminator() const;
|
||
|
|
||
|
/// Returns true if the block is exiting it's parent region.
|
||
|
bool isExiting() const;
|
||
|
|
||
|
private:
|
||
|
/// Create an IR BasicBlock to hold the output instructions generated by this
|
||
|
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
||
|
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
|
||
|
};
|
||
|
|
||
|
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
||
|
/// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
|
||
|
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
||
|
/// times. This is designed to support predicated scalarization, in which a
|
||
|
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
||
|
/// this replication indicator helps to keep a single model for multiple
|
||
|
/// candidate VF's. The actual replication takes place only once the desired VF
|
||
|
/// and UF have been determined.
|
||
|
class VPRegionBlock : public VPBlockBase {
|
||
|
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
||
|
VPBlockBase *Entry;
|
||
|
|
||
|
/// Hold the Single Exiting block of the SESE region modelled by the
|
||
|
/// VPRegionBlock.
|
||
|
VPBlockBase *Exiting;
|
||
|
|
||
|
/// An indicator whether this region is to generate multiple replicated
|
||
|
/// instances of output IR corresponding to its VPBlockBases.
|
||
|
bool IsReplicator;
|
||
|
|
||
|
public:
|
||
|
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
|
||
|
const std::string &Name = "", bool IsReplicator = false)
|
||
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
|
||
|
IsReplicator(IsReplicator) {
|
||
|
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
||
|
assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
|
||
|
Entry->setParent(this);
|
||
|
Exiting->setParent(this);
|
||
|
}
|
||
|
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
|
||
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
|
||
|
IsReplicator(IsReplicator) {}
|
||
|
|
||
|
~VPRegionBlock() override {
|
||
|
if (Entry) {
|
||
|
VPValue DummyValue;
|
||
|
Entry->dropAllReferences(&DummyValue);
|
||
|
deleteCFG(Entry);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPBlockBase *V) {
|
||
|
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
||
|
}
|
||
|
|
||
|
const VPBlockBase *getEntry() const { return Entry; }
|
||
|
VPBlockBase *getEntry() { return Entry; }
|
||
|
|
||
|
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
|
||
|
/// EntryBlock must have no predecessors.
|
||
|
void setEntry(VPBlockBase *EntryBlock) {
|
||
|
assert(EntryBlock->getPredecessors().empty() &&
|
||
|
"Entry block cannot have predecessors.");
|
||
|
Entry = EntryBlock;
|
||
|
EntryBlock->setParent(this);
|
||
|
}
|
||
|
|
||
|
const VPBlockBase *getExiting() const { return Exiting; }
|
||
|
VPBlockBase *getExiting() { return Exiting; }
|
||
|
|
||
|
/// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
|
||
|
/// ExitingBlock must have no successors.
|
||
|
void setExiting(VPBlockBase *ExitingBlock) {
|
||
|
assert(ExitingBlock->getSuccessors().empty() &&
|
||
|
"Exit block cannot have successors.");
|
||
|
Exiting = ExitingBlock;
|
||
|
ExitingBlock->setParent(this);
|
||
|
}
|
||
|
|
||
|
/// Returns the pre-header VPBasicBlock of the loop region.
|
||
|
VPBasicBlock *getPreheaderVPBB() {
|
||
|
assert(!isReplicator() && "should only get pre-header of loop regions");
|
||
|
return getSinglePredecessor()->getExitingBasicBlock();
|
||
|
}
|
||
|
|
||
|
/// An indicator whether this region is to generate multiple replicated
|
||
|
/// instances of output IR corresponding to its VPBlockBases.
|
||
|
bool isReplicator() const { return IsReplicator; }
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPRegionBlock, thereby "executing" the VPlan.
|
||
|
void execute(VPTransformState *State) override;
|
||
|
|
||
|
void dropAllReferences(VPValue *NewValue) override;
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
|
||
|
/// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
|
||
|
/// consequtive numbers.
|
||
|
///
|
||
|
/// Note that the numbering is applied to the whole VPlan, so printing
|
||
|
/// individual regions is consistent with the whole VPlan printing.
|
||
|
void print(raw_ostream &O, const Twine &Indent,
|
||
|
VPSlotTracker &SlotTracker) const override;
|
||
|
using VPBlockBase::print; // Get the print(raw_stream &O) version.
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/// VPlan models a candidate for vectorization, encoding various decisions take
|
||
|
/// to produce efficient output IR, including which branches, basic-blocks and
|
||
|
/// output IR instructions to generate, and their cost. VPlan holds a
|
||
|
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
||
|
/// VPBasicBlock.
|
||
|
class VPlan {
|
||
|
friend class VPlanPrinter;
|
||
|
friend class VPSlotTracker;
|
||
|
|
||
|
/// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the
|
||
|
/// preheader of the vector loop.
|
||
|
VPBasicBlock *Entry;
|
||
|
|
||
|
/// VPBasicBlock corresponding to the original preheader. Used to place
|
||
|
/// VPExpandSCEV recipes for expressions used during skeleton creation and the
|
||
|
/// rest of VPlan execution.
|
||
|
VPBasicBlock *Preheader;
|
||
|
|
||
|
/// Holds the VFs applicable to this VPlan.
|
||
|
SmallSetVector<ElementCount, 2> VFs;
|
||
|
|
||
|
/// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for
|
||
|
/// any UF.
|
||
|
SmallSetVector<unsigned, 2> UFs;
|
||
|
|
||
|
/// Holds the name of the VPlan, for printing.
|
||
|
std::string Name;
|
||
|
|
||
|
/// Represents the trip count of the original loop, for folding
|
||
|
/// the tail.
|
||
|
VPValue *TripCount = nullptr;
|
||
|
|
||
|
/// Represents the backedge taken count of the original loop, for folding
|
||
|
/// the tail. It equals TripCount - 1.
|
||
|
VPValue *BackedgeTakenCount = nullptr;
|
||
|
|
||
|
/// Represents the vector trip count.
|
||
|
VPValue VectorTripCount;
|
||
|
|
||
|
/// Represents the loop-invariant VF * UF of the vector loop region.
|
||
|
VPValue VFxUF;
|
||
|
|
||
|
/// Holds a mapping between Values and their corresponding VPValue inside
|
||
|
/// VPlan.
|
||
|
Value2VPValueTy Value2VPValue;
|
||
|
|
||
|
/// Contains all the external definitions created for this VPlan. External
|
||
|
/// definitions are VPValues that hold a pointer to their underlying IR.
|
||
|
SmallVector<VPValue *, 16> VPLiveInsToFree;
|
||
|
|
||
|
/// Indicates whether it is safe use the Value2VPValue mapping or if the
|
||
|
/// mapping cannot be used any longer, because it is stale.
|
||
|
bool Value2VPValueEnabled = true;
|
||
|
|
||
|
/// Values used outside the plan.
|
||
|
MapVector<PHINode *, VPLiveOut *> LiveOuts;
|
||
|
|
||
|
/// Mapping from SCEVs to the VPValues representing their expansions.
|
||
|
/// NOTE: This mapping is temporary and will be removed once all users have
|
||
|
/// been modeled in VPlan directly.
|
||
|
DenseMap<const SCEV *, VPValue *> SCEVToExpansion;
|
||
|
|
||
|
public:
|
||
|
/// Construct a VPlan with original preheader \p Preheader, trip count \p TC
|
||
|
/// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to
|
||
|
/// be disconnected, as the bypass blocks between them are not yet modeled in
|
||
|
/// VPlan.
|
||
|
VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry)
|
||
|
: VPlan(Preheader, Entry) {
|
||
|
TripCount = TC;
|
||
|
}
|
||
|
|
||
|
/// Construct a VPlan with original preheader \p Preheader and \p Entry to
|
||
|
/// the plan. At the moment, \p Preheader and \p Entry need to be
|
||
|
/// disconnected, as the bypass blocks between them are not yet modeled in
|
||
|
/// VPlan.
|
||
|
VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry)
|
||
|
: Entry(Entry), Preheader(Preheader) {
|
||
|
Entry->setPlan(this);
|
||
|
Preheader->setPlan(this);
|
||
|
assert(Preheader->getNumSuccessors() == 0 &&
|
||
|
Preheader->getNumPredecessors() == 0 &&
|
||
|
"preheader must be disconnected");
|
||
|
}
|
||
|
|
||
|
~VPlan();
|
||
|
|
||
|
/// Create initial VPlan skeleton, having an "entry" VPBasicBlock (wrapping
|
||
|
/// original scalar pre-header) which contains SCEV expansions that need to
|
||
|
/// happen before the CFG is modified; a VPBasicBlock for the vector
|
||
|
/// pre-header, followed by a region for the vector loop, followed by the
|
||
|
/// middle VPBasicBlock.
|
||
|
static VPlanPtr createInitialVPlan(const SCEV *TripCount,
|
||
|
ScalarEvolution &PSE);
|
||
|
|
||
|
/// Prepare the plan for execution, setting up the required live-in values.
|
||
|
void prepareToExecute(Value *TripCount, Value *VectorTripCount,
|
||
|
Value *CanonicalIVStartValue, VPTransformState &State);
|
||
|
|
||
|
/// Generate the IR code for this VPlan.
|
||
|
void execute(VPTransformState *State);
|
||
|
|
||
|
VPBasicBlock *getEntry() { return Entry; }
|
||
|
const VPBasicBlock *getEntry() const { return Entry; }
|
||
|
|
||
|
/// The trip count of the original loop.
|
||
|
VPValue *getTripCount() const {
|
||
|
assert(TripCount && "trip count needs to be set before accessing it");
|
||
|
return TripCount;
|
||
|
}
|
||
|
|
||
|
/// The backedge taken count of the original loop.
|
||
|
VPValue *getOrCreateBackedgeTakenCount() {
|
||
|
if (!BackedgeTakenCount)
|
||
|
BackedgeTakenCount = new VPValue();
|
||
|
return BackedgeTakenCount;
|
||
|
}
|
||
|
|
||
|
/// The vector trip count.
|
||
|
VPValue &getVectorTripCount() { return VectorTripCount; }
|
||
|
|
||
|
/// Returns VF * UF of the vector loop region.
|
||
|
VPValue &getVFxUF() { return VFxUF; }
|
||
|
|
||
|
/// Mark the plan to indicate that using Value2VPValue is not safe any
|
||
|
/// longer, because it may be stale.
|
||
|
void disableValue2VPValue() { Value2VPValueEnabled = false; }
|
||
|
|
||
|
void addVF(ElementCount VF) { VFs.insert(VF); }
|
||
|
|
||
|
void setVF(ElementCount VF) {
|
||
|
assert(hasVF(VF) && "Cannot set VF not already in plan");
|
||
|
VFs.clear();
|
||
|
VFs.insert(VF);
|
||
|
}
|
||
|
|
||
|
bool hasVF(ElementCount VF) { return VFs.count(VF); }
|
||
|
|
||
|
bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); }
|
||
|
|
||
|
bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); }
|
||
|
|
||
|
void setUF(unsigned UF) {
|
||
|
assert(hasUF(UF) && "Cannot set the UF not already in plan");
|
||
|
UFs.clear();
|
||
|
UFs.insert(UF);
|
||
|
}
|
||
|
|
||
|
/// Return a string with the name of the plan and the applicable VFs and UFs.
|
||
|
std::string getName() const;
|
||
|
|
||
|
void setName(const Twine &newName) { Name = newName.str(); }
|
||
|
|
||
|
void addVPValue(Value *V, VPValue *VPV) {
|
||
|
assert((Value2VPValueEnabled || VPV->isLiveIn()) &&
|
||
|
"Value2VPValue mapping may be out of date!");
|
||
|
assert(V && "Trying to add a null Value to VPlan");
|
||
|
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
|
||
|
Value2VPValue[V] = VPV;
|
||
|
}
|
||
|
|
||
|
/// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable
|
||
|
/// /// checking whether it is safe to query VPValues using IR Values.
|
||
|
VPValue *getVPValue(Value *V, bool OverrideAllowed = false) {
|
||
|
assert(V && "Trying to get the VPValue of a null Value");
|
||
|
assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
|
||
|
assert((Value2VPValueEnabled || OverrideAllowed ||
|
||
|
Value2VPValue[V]->isLiveIn()) &&
|
||
|
"Value2VPValue mapping may be out of date!");
|
||
|
return Value2VPValue[V];
|
||
|
}
|
||
|
|
||
|
/// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for
|
||
|
/// \p V.
|
||
|
VPValue *getVPValueOrAddLiveIn(Value *V) {
|
||
|
assert(V && "Trying to get or add the VPValue of a null Value");
|
||
|
if (!Value2VPValue.count(V)) {
|
||
|
VPValue *VPV = new VPValue(V);
|
||
|
VPLiveInsToFree.push_back(VPV);
|
||
|
addVPValue(V, VPV);
|
||
|
}
|
||
|
|
||
|
return getVPValue(V);
|
||
|
}
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print the live-ins of this VPlan to \p O.
|
||
|
void printLiveIns(raw_ostream &O) const;
|
||
|
|
||
|
/// Print this VPlan to \p O.
|
||
|
void print(raw_ostream &O) const;
|
||
|
|
||
|
/// Print this VPlan in DOT format to \p O.
|
||
|
void printDOT(raw_ostream &O) const;
|
||
|
|
||
|
/// Dump the plan to stderr (for debugging).
|
||
|
LLVM_DUMP_METHOD void dump() const;
|
||
|
#endif
|
||
|
|
||
|
/// Returns a range mapping the values the range \p Operands to their
|
||
|
/// corresponding VPValues.
|
||
|
iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
|
||
|
mapToVPValues(User::op_range Operands) {
|
||
|
std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
|
||
|
return getVPValueOrAddLiveIn(Op);
|
||
|
};
|
||
|
return map_range(Operands, Fn);
|
||
|
}
|
||
|
|
||
|
/// Returns the VPRegionBlock of the vector loop.
|
||
|
VPRegionBlock *getVectorLoopRegion() {
|
||
|
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
|
||
|
}
|
||
|
const VPRegionBlock *getVectorLoopRegion() const {
|
||
|
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
|
||
|
}
|
||
|
|
||
|
/// Returns the canonical induction recipe of the vector loop.
|
||
|
VPCanonicalIVPHIRecipe *getCanonicalIV() {
|
||
|
VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
|
||
|
if (EntryVPBB->empty()) {
|
||
|
// VPlan native path.
|
||
|
EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
|
||
|
}
|
||
|
return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
|
||
|
}
|
||
|
|
||
|
void addLiveOut(PHINode *PN, VPValue *V);
|
||
|
|
||
|
void removeLiveOut(PHINode *PN) {
|
||
|
delete LiveOuts[PN];
|
||
|
LiveOuts.erase(PN);
|
||
|
}
|
||
|
|
||
|
const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const {
|
||
|
return LiveOuts;
|
||
|
}
|
||
|
|
||
|
VPValue *getSCEVExpansion(const SCEV *S) const {
|
||
|
return SCEVToExpansion.lookup(S);
|
||
|
}
|
||
|
|
||
|
void addSCEVExpansion(const SCEV *S, VPValue *V) {
|
||
|
assert(!SCEVToExpansion.contains(S) && "SCEV already expanded");
|
||
|
SCEVToExpansion[S] = V;
|
||
|
}
|
||
|
|
||
|
/// \return The block corresponding to the original preheader.
|
||
|
VPBasicBlock *getPreheader() { return Preheader; }
|
||
|
const VPBasicBlock *getPreheader() const { return Preheader; }
|
||
|
|
||
|
private:
|
||
|
/// Add to the given dominator tree the header block and every new basic block
|
||
|
/// that was created between it and the latch block, inclusive.
|
||
|
static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
|
||
|
BasicBlock *LoopPreHeaderBB,
|
||
|
BasicBlock *LoopExitBB);
|
||
|
};
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
|
||
|
/// indented and follows the dot format.
|
||
|
class VPlanPrinter {
|
||
|
raw_ostream &OS;
|
||
|
const VPlan &Plan;
|
||
|
unsigned Depth = 0;
|
||
|
unsigned TabWidth = 2;
|
||
|
std::string Indent;
|
||
|
unsigned BID = 0;
|
||
|
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
|
||
|
|
||
|
VPSlotTracker SlotTracker;
|
||
|
|
||
|
/// Handle indentation.
|
||
|
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
|
||
|
|
||
|
/// Print a given \p Block of the Plan.
|
||
|
void dumpBlock(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print the information related to the CFG edges going out of a given
|
||
|
/// \p Block, followed by printing the successor blocks themselves.
|
||
|
void dumpEdges(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
|
||
|
/// its successor blocks.
|
||
|
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
|
||
|
|
||
|
/// Print a given \p Region of the Plan.
|
||
|
void dumpRegion(const VPRegionBlock *Region);
|
||
|
|
||
|
unsigned getOrCreateBID(const VPBlockBase *Block) {
|
||
|
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
|
||
|
}
|
||
|
|
||
|
Twine getOrCreateName(const VPBlockBase *Block);
|
||
|
|
||
|
Twine getUID(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print the information related to a CFG edge between two VPBlockBases.
|
||
|
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
|
||
|
const Twine &Label);
|
||
|
|
||
|
public:
|
||
|
VPlanPrinter(raw_ostream &O, const VPlan &P)
|
||
|
: OS(O), Plan(P), SlotTracker(&P) {}
|
||
|
|
||
|
LLVM_DUMP_METHOD void dump();
|
||
|
};
|
||
|
|
||
|
struct VPlanIngredient {
|
||
|
const Value *V;
|
||
|
|
||
|
VPlanIngredient(const Value *V) : V(V) {}
|
||
|
|
||
|
void print(raw_ostream &O) const;
|
||
|
};
|
||
|
|
||
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
|
||
|
I.print(OS);
|
||
|
return OS;
|
||
|
}
|
||
|
|
||
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
|
||
|
Plan.print(OS);
|
||
|
return OS;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// VPlan Utilities
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// Class that provides utilities for VPBlockBases in VPlan.
|
||
|
class VPBlockUtils {
|
||
|
public:
|
||
|
VPBlockUtils() = delete;
|
||
|
|
||
|
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
|
||
|
/// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
|
||
|
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's
|
||
|
/// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must
|
||
|
/// have neither successors nor predecessors.
|
||
|
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
|
||
|
assert(NewBlock->getSuccessors().empty() &&
|
||
|
NewBlock->getPredecessors().empty() &&
|
||
|
"Can't insert new block with predecessors or successors.");
|
||
|
NewBlock->setParent(BlockPtr->getParent());
|
||
|
SmallVector<VPBlockBase *> Succs(BlockPtr->successors());
|
||
|
for (VPBlockBase *Succ : Succs) {
|
||
|
disconnectBlocks(BlockPtr, Succ);
|
||
|
connectBlocks(NewBlock, Succ);
|
||
|
}
|
||
|
connectBlocks(BlockPtr, NewBlock);
|
||
|
}
|
||
|
|
||
|
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
|
||
|
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
|
||
|
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
|
||
|
/// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
|
||
|
/// and \p IfTrue and \p IfFalse must have neither successors nor
|
||
|
/// predecessors.
|
||
|
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
|
||
|
VPBlockBase *BlockPtr) {
|
||
|
assert(IfTrue->getSuccessors().empty() &&
|
||
|
"Can't insert IfTrue with successors.");
|
||
|
assert(IfFalse->getSuccessors().empty() &&
|
||
|
"Can't insert IfFalse with successors.");
|
||
|
BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
|
||
|
IfTrue->setPredecessors({BlockPtr});
|
||
|
IfFalse->setPredecessors({BlockPtr});
|
||
|
IfTrue->setParent(BlockPtr->getParent());
|
||
|
IfFalse->setParent(BlockPtr->getParent());
|
||
|
}
|
||
|
|
||
|
/// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
|
||
|
/// the successors of \p From and \p From to the predecessors of \p To. Both
|
||
|
/// VPBlockBases must have the same parent, which can be null. Both
|
||
|
/// VPBlockBases can be already connected to other VPBlockBases.
|
||
|
static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
||
|
assert((From->getParent() == To->getParent()) &&
|
||
|
"Can't connect two block with different parents");
|
||
|
assert(From->getNumSuccessors() < 2 &&
|
||
|
"Blocks can't have more than two successors.");
|
||
|
From->appendSuccessor(To);
|
||
|
To->appendPredecessor(From);
|
||
|
}
|
||
|
|
||
|
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
|
||
|
/// from the successors of \p From and \p From from the predecessors of \p To.
|
||
|
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
|
||
|
assert(To && "Successor to disconnect is null.");
|
||
|
From->removeSuccessor(To);
|
||
|
To->removePredecessor(From);
|
||
|
}
|
||
|
|
||
|
/// Return an iterator range over \p Range which only includes \p BlockTy
|
||
|
/// blocks. The accesses are casted to \p BlockTy.
|
||
|
template <typename BlockTy, typename T>
|
||
|
static auto blocksOnly(const T &Range) {
|
||
|
// Create BaseTy with correct const-ness based on BlockTy.
|
||
|
using BaseTy = std::conditional_t<std::is_const<BlockTy>::value,
|
||
|
const VPBlockBase, VPBlockBase>;
|
||
|
|
||
|
// We need to first create an iterator range over (const) BlocktTy & instead
|
||
|
// of (const) BlockTy * for filter_range to work properly.
|
||
|
auto Mapped =
|
||
|
map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
|
||
|
auto Filter = make_filter_range(
|
||
|
Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
|
||
|
return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
|
||
|
return cast<BlockTy>(&Block);
|
||
|
});
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class VPInterleavedAccessInfo {
|
||
|
DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
|
||
|
InterleaveGroupMap;
|
||
|
|
||
|
/// Type for mapping of instruction based interleave groups to VPInstruction
|
||
|
/// interleave groups
|
||
|
using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
|
||
|
InterleaveGroup<VPInstruction> *>;
|
||
|
|
||
|
/// Recursively \p Region and populate VPlan based interleave groups based on
|
||
|
/// \p IAI.
|
||
|
void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
|
||
|
InterleavedAccessInfo &IAI);
|
||
|
/// Recursively traverse \p Block and populate VPlan based interleave groups
|
||
|
/// based on \p IAI.
|
||
|
void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
|
||
|
InterleavedAccessInfo &IAI);
|
||
|
|
||
|
public:
|
||
|
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
|
||
|
|
||
|
~VPInterleavedAccessInfo() {
|
||
|
SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
|
||
|
// Avoid releasing a pointer twice.
|
||
|
for (auto &I : InterleaveGroupMap)
|
||
|
DelSet.insert(I.second);
|
||
|
for (auto *Ptr : DelSet)
|
||
|
delete Ptr;
|
||
|
}
|
||
|
|
||
|
/// Get the interleave group that \p Instr belongs to.
|
||
|
///
|
||
|
/// \returns nullptr if doesn't have such group.
|
||
|
InterleaveGroup<VPInstruction> *
|
||
|
getInterleaveGroup(VPInstruction *Instr) const {
|
||
|
return InterleaveGroupMap.lookup(Instr);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Class that maps (parts of) an existing VPlan to trees of combined
|
||
|
/// VPInstructions.
|
||
|
class VPlanSlp {
|
||
|
enum class OpMode { Failed, Load, Opcode };
|
||
|
|
||
|
/// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
|
||
|
/// DenseMap keys.
|
||
|
struct BundleDenseMapInfo {
|
||
|
static SmallVector<VPValue *, 4> getEmptyKey() {
|
||
|
return {reinterpret_cast<VPValue *>(-1)};
|
||
|
}
|
||
|
|
||
|
static SmallVector<VPValue *, 4> getTombstoneKey() {
|
||
|
return {reinterpret_cast<VPValue *>(-2)};
|
||
|
}
|
||
|
|
||
|
static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
|
||
|
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
|
||
|
}
|
||
|
|
||
|
static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
|
||
|
const SmallVector<VPValue *, 4> &RHS) {
|
||
|
return LHS == RHS;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Mapping of values in the original VPlan to a combined VPInstruction.
|
||
|
DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
|
||
|
BundleToCombined;
|
||
|
|
||
|
VPInterleavedAccessInfo &IAI;
|
||
|
|
||
|
/// Basic block to operate on. For now, only instructions in a single BB are
|
||
|
/// considered.
|
||
|
const VPBasicBlock &BB;
|
||
|
|
||
|
/// Indicates whether we managed to combine all visited instructions or not.
|
||
|
bool CompletelySLP = true;
|
||
|
|
||
|
/// Width of the widest combined bundle in bits.
|
||
|
unsigned WidestBundleBits = 0;
|
||
|
|
||
|
using MultiNodeOpTy =
|
||
|
typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
|
||
|
|
||
|
// Input operand bundles for the current multi node. Each multi node operand
|
||
|
// bundle contains values not matching the multi node's opcode. They will
|
||
|
// be reordered in reorderMultiNodeOps, once we completed building a
|
||
|
// multi node.
|
||
|
SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
|
||
|
|
||
|
/// Indicates whether we are building a multi node currently.
|
||
|
bool MultiNodeActive = false;
|
||
|
|
||
|
/// Check if we can vectorize Operands together.
|
||
|
bool areVectorizable(ArrayRef<VPValue *> Operands) const;
|
||
|
|
||
|
/// Add combined instruction \p New for the bundle \p Operands.
|
||
|
void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
|
||
|
|
||
|
/// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
|
||
|
VPInstruction *markFailed();
|
||
|
|
||
|
/// Reorder operands in the multi node to maximize sequential memory access
|
||
|
/// and commutative operations.
|
||
|
SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
|
||
|
|
||
|
/// Choose the best candidate to use for the lane after \p Last. The set of
|
||
|
/// candidates to choose from are values with an opcode matching \p Last's
|
||
|
/// or loads consecutive to \p Last.
|
||
|
std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
|
||
|
SmallPtrSetImpl<VPValue *> &Candidates,
|
||
|
VPInterleavedAccessInfo &IAI);
|
||
|
|
||
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
||
|
/// Print bundle \p Values to dbgs().
|
||
|
void dumpBundle(ArrayRef<VPValue *> Values);
|
||
|
#endif
|
||
|
|
||
|
public:
|
||
|
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
|
||
|
|
||
|
~VPlanSlp() = default;
|
||
|
|
||
|
/// Tries to build an SLP tree rooted at \p Operands and returns a
|
||
|
/// VPInstruction combining \p Operands, if they can be combined.
|
||
|
VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
|
||
|
|
||
|
/// Return the width of the widest combined bundle in bits.
|
||
|
unsigned getWidestBundleBits() const { return WidestBundleBits; }
|
||
|
|
||
|
/// Return true if all visited instruction can be combined.
|
||
|
bool isCompletelySLP() const { return CompletelySLP; }
|
||
|
};
|
||
|
|
||
|
namespace vputils {
|
||
|
|
||
|
/// Returns true if only the first lane of \p Def is used.
|
||
|
bool onlyFirstLaneUsed(VPValue *Def);
|
||
|
|
||
|
/// Returns true if only the first part of \p Def is used.
|
||
|
bool onlyFirstPartUsed(VPValue *Def);
|
||
|
|
||
|
/// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p
|
||
|
/// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in
|
||
|
/// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's
|
||
|
/// pre-header already contains a recipe expanding \p Expr, return it. If not,
|
||
|
/// create a new one.
|
||
|
VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
|
||
|
ScalarEvolution &SE);
|
||
|
|
||
|
/// Returns true if \p VPV is uniform after vectorization.
|
||
|
inline bool isUniformAfterVectorization(VPValue *VPV) {
|
||
|
// A value defined outside the vector region must be uniform after
|
||
|
// vectorization inside a vector region.
|
||
|
if (VPV->isDefinedOutsideVectorRegions())
|
||
|
return true;
|
||
|
VPRecipeBase *Def = VPV->getDefiningRecipe();
|
||
|
assert(Def && "Must have definition for value defined inside vector region");
|
||
|
if (auto Rep = dyn_cast<VPReplicateRecipe>(Def))
|
||
|
return Rep->isUniform();
|
||
|
if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def))
|
||
|
return all_of(GEP->operands(), isUniformAfterVectorization);
|
||
|
if (auto *VPI = dyn_cast<VPInstruction>(Def))
|
||
|
return VPI->getOpcode() == VPInstruction::ComputeReductionResult;
|
||
|
return false;
|
||
|
}
|
||
|
} // end namespace vputils
|
||
|
|
||
|
} // end namespace llvm
|
||
|
|
||
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|