bolt/deps/llvm-18.1.8/mlir/lib/Dialect/IRDL/IRDLLoading.cpp

704 lines
27 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===- IRDLLoading.cpp - IRDL dialect loading --------------------- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Manages the loading of MLIR objects from IRDL operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/IRDL/IRDLLoading.h"
#include "mlir/Dialect/IRDL/IR/IRDL.h"
#include "mlir/Dialect/IRDL/IR/IRDLInterfaces.h"
#include "mlir/Dialect/IRDL/IRDLVerifiers.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/ExtensibleDialect.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/SMLoc.h"
#include <numeric>
using namespace mlir;
using namespace mlir::irdl;
/// Verify that the given list of parameters satisfy the given constraints.
/// This encodes the logic of the verification method for attributes and types
/// defined with IRDL.
static LogicalResult
irdlAttrOrTypeVerifier(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> params,
ArrayRef<std::unique_ptr<Constraint>> constraints,
ArrayRef<size_t> paramConstraints) {
if (params.size() != paramConstraints.size()) {
emitError() << "expected " << paramConstraints.size()
<< " type arguments, but had " << params.size();
return failure();
}
ConstraintVerifier verifier(constraints);
// Check that each parameter satisfies its constraint.
for (auto [i, param] : enumerate(params))
if (failed(verifier.verify(emitError, param, paramConstraints[i])))
return failure();
return success();
}
/// Get the operand segment sizes from the attribute dictionary.
LogicalResult getSegmentSizesFromAttr(Operation *op, StringRef elemName,
StringRef attrName, unsigned numElements,
ArrayRef<Variadicity> variadicities,
SmallVectorImpl<int> &segmentSizes) {
// Get the segment sizes attribute, and check that it is of the right type.
Attribute segmentSizesAttr = op->getAttr(attrName);
if (!segmentSizesAttr) {
return op->emitError() << "'" << attrName
<< "' attribute is expected but not provided";
}
auto denseSegmentSizes = dyn_cast<DenseI32ArrayAttr>(segmentSizesAttr);
if (!denseSegmentSizes) {
return op->emitError() << "'" << attrName
<< "' attribute is expected to be a dense i32 array";
}
if (denseSegmentSizes.size() != (int64_t)variadicities.size()) {
return op->emitError() << "'" << attrName << "' attribute for specifying "
<< elemName << " segments must have "
<< variadicities.size() << " elements, but got "
<< denseSegmentSizes.size();
}
// Check that the segment sizes are corresponding to the given variadicities,
for (auto [i, segmentSize, variadicity] :
enumerate(denseSegmentSizes.asArrayRef(), variadicities)) {
if (segmentSize < 0)
return op->emitError()
<< "'" << attrName << "' attribute for specifying " << elemName
<< " segments must have non-negative values";
if (variadicity == Variadicity::single && segmentSize != 1)
return op->emitError() << "element " << i << " in '" << attrName
<< "' attribute must be equal to 1";
if (variadicity == Variadicity::optional && segmentSize > 1)
return op->emitError() << "element " << i << " in '" << attrName
<< "' attribute must be equal to 0 or 1";
segmentSizes.push_back(segmentSize);
}
// Check that the sum of the segment sizes is equal to the number of elements.
int32_t sum = 0;
for (int32_t segmentSize : denseSegmentSizes.asArrayRef())
sum += segmentSize;
if (sum != static_cast<int32_t>(numElements))
return op->emitError() << "sum of elements in '" << attrName
<< "' attribute must be equal to the number of "
<< elemName << "s";
return success();
}
/// Compute the segment sizes of the given element (operands, results).
/// If the operation has more than two non-single elements (optional or
/// variadic), then get the segment sizes from the attribute dictionary.
/// Otherwise, compute the segment sizes from the number of elements.
/// `elemName` should be either `"operand"` or `"result"`.
LogicalResult getSegmentSizes(Operation *op, StringRef elemName,
StringRef attrName, unsigned numElements,
ArrayRef<Variadicity> variadicities,
SmallVectorImpl<int> &segmentSizes) {
// If we have more than one non-single variadicity, we need to get the
// segment sizes from the attribute dictionary.
int numberNonSingle = count_if(
variadicities, [](Variadicity v) { return v != Variadicity::single; });
if (numberNonSingle > 1)
return getSegmentSizesFromAttr(op, elemName, attrName, numElements,
variadicities, segmentSizes);
// If we only have single variadicities, the segments sizes are all 1.
if (numberNonSingle == 0) {
if (numElements != variadicities.size()) {
return op->emitError() << "op expects exactly " << variadicities.size()
<< " " << elemName << "s, but got " << numElements;
}
for (size_t i = 0, e = variadicities.size(); i < e; ++i)
segmentSizes.push_back(1);
return success();
}
assert(numberNonSingle == 1);
// There is exactly one non-single element, so we can
// compute its size and check that it is valid.
int nonSingleSegmentSize = static_cast<int>(numElements) -
static_cast<int>(variadicities.size()) + 1;
if (nonSingleSegmentSize < 0) {
return op->emitError() << "op expects at least " << variadicities.size() - 1
<< " " << elemName << "s, but got " << numElements;
}
// Add the segment sizes.
for (Variadicity variadicity : variadicities) {
if (variadicity == Variadicity::single) {
segmentSizes.push_back(1);
continue;
}
// If we have an optional element, we should check that it represents
// zero or one elements.
if (nonSingleSegmentSize > 1 && variadicity == Variadicity::optional)
return op->emitError() << "op expects at most " << variadicities.size()
<< " " << elemName << "s, but got " << numElements;
segmentSizes.push_back(nonSingleSegmentSize);
}
return success();
}
/// Compute the segment sizes of the given operands.
/// If the operation has more than two non-single operands (optional or
/// variadic), then get the segment sizes from the attribute dictionary.
/// Otherwise, compute the segment sizes from the number of operands.
LogicalResult getOperandSegmentSizes(Operation *op,
ArrayRef<Variadicity> variadicities,
SmallVectorImpl<int> &segmentSizes) {
return getSegmentSizes(op, "operand", "operand_segment_sizes",
op->getNumOperands(), variadicities, segmentSizes);
}
/// Compute the segment sizes of the given results.
/// If the operation has more than two non-single results (optional or
/// variadic), then get the segment sizes from the attribute dictionary.
/// Otherwise, compute the segment sizes from the number of results.
LogicalResult getResultSegmentSizes(Operation *op,
ArrayRef<Variadicity> variadicities,
SmallVectorImpl<int> &segmentSizes) {
return getSegmentSizes(op, "result", "result_segment_sizes",
op->getNumResults(), variadicities, segmentSizes);
}
/// Verify that the given operation satisfies the given constraints.
/// This encodes the logic of the verification method for operations defined
/// with IRDL.
static LogicalResult irdlOpVerifier(
Operation *op, ConstraintVerifier &verifier,
ArrayRef<size_t> operandConstrs, ArrayRef<Variadicity> operandVariadicity,
ArrayRef<size_t> resultConstrs, ArrayRef<Variadicity> resultVariadicity,
const DenseMap<StringAttr, size_t> &attributeConstrs) {
// Get the segment sizes for the operands.
// This will check that the number of operands is correct.
SmallVector<int> operandSegmentSizes;
if (failed(
getOperandSegmentSizes(op, operandVariadicity, operandSegmentSizes)))
return failure();
// Get the segment sizes for the results.
// This will check that the number of results is correct.
SmallVector<int> resultSegmentSizes;
if (failed(getResultSegmentSizes(op, resultVariadicity, resultSegmentSizes)))
return failure();
auto emitError = [op] { return op->emitError(); };
/// Сheck that we have all needed attributes passed
/// and they satisfy the constraints.
DictionaryAttr actualAttrs = op->getAttrDictionary();
for (auto [name, constraint] : attributeConstrs) {
/// First, check if the attribute actually passed.
std::optional<NamedAttribute> actual = actualAttrs.getNamed(name);
if (!actual.has_value())
return op->emitOpError()
<< "attribute " << name << " is expected but not provided";
/// Then, check if the attribute value satisfies the constraint.
if (failed(verifier.verify({emitError}, actual->getValue(), constraint)))
return failure();
}
// Check that all operands satisfy the constraints
int operandIdx = 0;
for (auto [defIndex, segmentSize] : enumerate(operandSegmentSizes)) {
for (int i = 0; i < segmentSize; i++) {
if (failed(verifier.verify(
{emitError}, TypeAttr::get(op->getOperandTypes()[operandIdx]),
operandConstrs[defIndex])))
return failure();
++operandIdx;
}
}
// Check that all results satisfy the constraints
int resultIdx = 0;
for (auto [defIndex, segmentSize] : enumerate(resultSegmentSizes)) {
for (int i = 0; i < segmentSize; i++) {
if (failed(verifier.verify({emitError},
TypeAttr::get(op->getResultTypes()[resultIdx]),
resultConstrs[defIndex])))
return failure();
++resultIdx;
}
}
return success();
}
static LogicalResult irdlRegionVerifier(
Operation *op, ConstraintVerifier &verifier,
ArrayRef<std::unique_ptr<RegionConstraint>> regionsConstraints) {
if (op->getNumRegions() != regionsConstraints.size()) {
return op->emitOpError()
<< "unexpected number of regions: expected "
<< regionsConstraints.size() << " but got " << op->getNumRegions();
}
for (auto [constraint, region] :
llvm::zip(regionsConstraints, op->getRegions()))
if (failed(constraint->verify(region, verifier)))
return failure();
return success();
}
/// Define and load an operation represented by a `irdl.operation`
/// operation.
static WalkResult loadOperation(
OperationOp op, ExtensibleDialect *dialect,
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> &attrs) {
// Resolve SSA values to verifier constraint slots
SmallVector<Value> constrToValue;
SmallVector<Value> regionToValue;
for (Operation &op : op->getRegion(0).getOps()) {
if (isa<VerifyConstraintInterface>(op)) {
if (op.getNumResults() != 1)
return op.emitError()
<< "IRDL constraint operations must have exactly one result";
constrToValue.push_back(op.getResult(0));
}
if (isa<VerifyRegionInterface>(op)) {
if (op.getNumResults() != 1)
return op.emitError()
<< "IRDL constraint operations must have exactly one result";
regionToValue.push_back(op.getResult(0));
}
}
// Build the verifiers for each constraint slot
SmallVector<std::unique_ptr<Constraint>> constraints;
for (Value v : constrToValue) {
VerifyConstraintInterface op =
cast<VerifyConstraintInterface>(v.getDefiningOp());
std::unique_ptr<Constraint> verifier =
op.getVerifier(constrToValue, types, attrs);
if (!verifier)
return WalkResult::interrupt();
constraints.push_back(std::move(verifier));
}
// Build region constraints
SmallVector<std::unique_ptr<RegionConstraint>> regionConstraints;
for (Value v : regionToValue) {
VerifyRegionInterface op = cast<VerifyRegionInterface>(v.getDefiningOp());
std::unique_ptr<RegionConstraint> verifier =
op.getVerifier(constrToValue, types, attrs);
regionConstraints.push_back(std::move(verifier));
}
SmallVector<size_t> operandConstraints;
SmallVector<Variadicity> operandVariadicity;
// Gather which constraint slots correspond to operand constraints
auto operandsOp = op.getOp<OperandsOp>();
if (operandsOp.has_value()) {
operandConstraints.reserve(operandsOp->getArgs().size());
for (Value operand : operandsOp->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == operand) {
operandConstraints.push_back(i);
break;
}
}
}
// Gather the variadicities of each operand
for (VariadicityAttr attr : operandsOp->getVariadicity())
operandVariadicity.push_back(attr.getValue());
}
SmallVector<size_t> resultConstraints;
SmallVector<Variadicity> resultVariadicity;
// Gather which constraint slots correspond to result constraints
auto resultsOp = op.getOp<ResultsOp>();
if (resultsOp.has_value()) {
resultConstraints.reserve(resultsOp->getArgs().size());
for (Value result : resultsOp->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == result) {
resultConstraints.push_back(i);
break;
}
}
}
// Gather the variadicities of each result
for (Attribute attr : resultsOp->getVariadicity())
resultVariadicity.push_back(attr.cast<VariadicityAttr>().getValue());
}
// Gather which constraint slots correspond to attributes constraints
DenseMap<StringAttr, size_t> attributesContraints;
auto attributesOp = op.getOp<AttributesOp>();
if (attributesOp.has_value()) {
const Operation::operand_range values = attributesOp->getAttributeValues();
const ArrayAttr names = attributesOp->getAttributeValueNames();
for (const auto &[name, value] : llvm::zip(names, values)) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == value) {
attributesContraints[name.cast<StringAttr>()] = i;
break;
}
}
}
}
// IRDL does not support defining custom parsers or printers.
auto parser = [](OpAsmParser &parser, OperationState &result) {
return failure();
};
auto printer = [](Operation *op, OpAsmPrinter &printer, StringRef) {
printer.printGenericOp(op);
};
auto verifier =
[constraints{std::move(constraints)},
regionConstraints{std::move(regionConstraints)},
operandConstraints{std::move(operandConstraints)},
operandVariadicity{std::move(operandVariadicity)},
resultConstraints{std::move(resultConstraints)},
resultVariadicity{std::move(resultVariadicity)},
attributesContraints{std::move(attributesContraints)}](Operation *op) {
ConstraintVerifier verifier(constraints);
const LogicalResult opVerifierResult = irdlOpVerifier(
op, verifier, operandConstraints, operandVariadicity,
resultConstraints, resultVariadicity, attributesContraints);
const LogicalResult opRegionVerifierResult =
irdlRegionVerifier(op, verifier, regionConstraints);
return LogicalResult::success(opVerifierResult.succeeded() &&
opRegionVerifierResult.succeeded());
};
// IRDL supports only checking number of blocks and argument contraints
// It is done in the main verifier to reuse `ConstraintVerifier` context
auto regionVerifier = [](Operation *op) { return LogicalResult::success(); };
auto opDef = DynamicOpDefinition::get(
op.getName(), dialect, std::move(verifier), std::move(regionVerifier),
std::move(parser), std::move(printer));
dialect->registerDynamicOp(std::move(opDef));
return WalkResult::advance();
}
/// Get the verifier of a type or attribute definition.
/// Return nullptr if the definition is invalid.
static DynamicAttrDefinition::VerifierFn getAttrOrTypeVerifier(
Operation *attrOrTypeDef, ExtensibleDialect *dialect,
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> &types,
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> &attrs) {
assert((isa<AttributeOp>(attrOrTypeDef) || isa<TypeOp>(attrOrTypeDef)) &&
"Expected an attribute or type definition");
// Resolve SSA values to verifier constraint slots
SmallVector<Value> constrToValue;
for (Operation &op : attrOrTypeDef->getRegion(0).getOps()) {
if (isa<VerifyConstraintInterface>(op)) {
assert(op.getNumResults() == 1 &&
"IRDL constraint operations must have exactly one result");
constrToValue.push_back(op.getResult(0));
}
}
// Build the verifiers for each constraint slot
SmallVector<std::unique_ptr<Constraint>> constraints;
for (Value v : constrToValue) {
VerifyConstraintInterface op =
cast<VerifyConstraintInterface>(v.getDefiningOp());
std::unique_ptr<Constraint> verifier =
op.getVerifier(constrToValue, types, attrs);
if (!verifier)
return {};
constraints.push_back(std::move(verifier));
}
// Get the parameter definitions.
std::optional<ParametersOp> params;
if (auto attr = dyn_cast<AttributeOp>(attrOrTypeDef))
params = attr.getOp<ParametersOp>();
else if (auto type = dyn_cast<TypeOp>(attrOrTypeDef))
params = type.getOp<ParametersOp>();
// Gather which constraint slots correspond to parameter constraints
SmallVector<size_t> paramConstraints;
if (params.has_value()) {
paramConstraints.reserve(params->getArgs().size());
for (Value param : params->getArgs()) {
for (auto [i, constr] : enumerate(constrToValue)) {
if (constr == param) {
paramConstraints.push_back(i);
break;
}
}
}
}
auto verifier = [paramConstraints{std::move(paramConstraints)},
constraints{std::move(constraints)}](
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<Attribute> params) {
return irdlAttrOrTypeVerifier(emitError, params, constraints,
paramConstraints);
};
// While the `std::move` is not required, not adding it triggers a bug in
// clang-10.
return std::move(verifier);
}
/// Get the possible bases of a constraint. Return `true` if all bases can
/// potentially be matched.
/// A base is a type or an attribute definition. For instance, the base of
/// `irdl.parametric "!builtin.complex"(...)` is `builtin.complex`.
/// This function returns the following information through arguments:
/// - `paramIds`: the set of type or attribute IDs that are used as bases.
/// - `paramIrdlOps`: the set of IRDL operations that are used as bases.
/// - `isIds`: the set of type or attribute IDs that are used in `irdl.is`
/// constraints.
static bool getBases(Operation *op, SmallPtrSet<TypeID, 4> &paramIds,
SmallPtrSet<Operation *, 4> &paramIrdlOps,
SmallPtrSet<TypeID, 4> &isIds) {
// For `irdl.any_of`, we get the bases from all its arguments.
if (auto anyOf = dyn_cast<AnyOfOp>(op)) {
bool hasAny = false;
for (Value arg : anyOf.getArgs())
hasAny &= getBases(arg.getDefiningOp(), paramIds, paramIrdlOps, isIds);
return hasAny;
}
// For `irdl.all_of`, we get the bases from the first argument.
// This is restrictive, but we can relax it later if needed.
if (auto allOf = dyn_cast<AllOfOp>(op))
return getBases(allOf.getArgs()[0].getDefiningOp(), paramIds, paramIrdlOps,
isIds);
// For `irdl.parametric`, we get directly the base from the operation.
if (auto params = dyn_cast<ParametricOp>(op)) {
SymbolRefAttr symRef = params.getBaseType();
Operation *defOp = SymbolTable::lookupNearestSymbolFrom(op, symRef);
assert(defOp && "symbol reference should refer to an existing operation");
paramIrdlOps.insert(defOp);
return false;
}
// For `irdl.is`, we get the base TypeID directly.
if (auto is = dyn_cast<IsOp>(op)) {
Attribute expected = is.getExpected();
isIds.insert(expected.getTypeID());
return false;
}
// For `irdl.any`, we return `false` since we can match any type or attribute
// base.
if (auto isA = dyn_cast<AnyOp>(op))
return true;
llvm_unreachable("unknown IRDL constraint");
}
/// Check that an any_of is in the subset IRDL can handle.
/// IRDL uses a greedy algorithm to match constraints. This means that if we
/// encounter an `any_of` with multiple constraints, we will match the first
/// constraint that is satisfied. Thus, the order of constraints matter in
/// `any_of` with our current algorithm.
/// In order to make the order of constraints irrelevant, we require that
/// all `any_of` constraint parameters are disjoint. For this, we check that
/// the base parameters are all disjoints between `parametric` operations, and
/// that they are disjoint between `parametric` and `is` operations.
/// This restriction will be relaxed in the future, when we will change our
/// algorithm to be non-greedy.
static LogicalResult checkCorrectAnyOf(AnyOfOp anyOf) {
SmallPtrSet<TypeID, 4> paramIds;
SmallPtrSet<Operation *, 4> paramIrdlOps;
SmallPtrSet<TypeID, 4> isIds;
for (Value arg : anyOf.getArgs()) {
Operation *argOp = arg.getDefiningOp();
SmallPtrSet<TypeID, 4> argParamIds;
SmallPtrSet<Operation *, 4> argParamIrdlOps;
SmallPtrSet<TypeID, 4> argIsIds;
// Get the bases of this argument. If it can match any type or attribute,
// then our `any_of` should not be allowed.
if (getBases(argOp, argParamIds, argParamIrdlOps, argIsIds))
return failure();
// We check that the base parameters are all disjoints between `parametric`
// operations, and that they are disjoint between `parametric` and `is`
// operations.
for (TypeID id : argParamIds) {
if (isIds.count(id))
return failure();
bool inserted = paramIds.insert(id).second;
if (!inserted)
return failure();
}
// We check that the base parameters are all disjoints with `irdl.is`
// operations.
for (TypeID id : isIds) {
if (paramIds.count(id))
return failure();
isIds.insert(id);
}
// We check that all `parametric` operations are disjoint. We do not
// need to check that they are disjoint with `is` operations, since
// `is` operations cannot refer to attributes defined with `irdl.parametric`
// operations.
for (Operation *op : argParamIrdlOps) {
bool inserted = paramIrdlOps.insert(op).second;
if (!inserted)
return failure();
}
}
return success();
}
/// Load all dialects in the given module, without loading any operation, type
/// or attribute definitions.
static DenseMap<DialectOp, ExtensibleDialect *> loadEmptyDialects(ModuleOp op) {
DenseMap<DialectOp, ExtensibleDialect *> dialects;
op.walk([&](DialectOp dialectOp) {
MLIRContext *ctx = dialectOp.getContext();
StringRef dialectName = dialectOp.getName();
DynamicDialect *dialect = ctx->getOrLoadDynamicDialect(
dialectName, [](DynamicDialect *dialect) {});
dialects.insert({dialectOp, dialect});
});
return dialects;
}
/// Preallocate type definitions objects with empty verifiers.
/// This in particular allocates a TypeID for each type definition.
static DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>>
preallocateTypeDefs(ModuleOp op,
DenseMap<DialectOp, ExtensibleDialect *> dialects) {
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> typeDefs;
op.walk([&](TypeOp typeOp) {
ExtensibleDialect *dialect = dialects[typeOp.getParentOp()];
auto typeDef = DynamicTypeDefinition::get(
typeOp.getName(), dialect,
[](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
return success();
});
typeDefs.try_emplace(typeOp, std::move(typeDef));
});
return typeDefs;
}
/// Preallocate attribute definitions objects with empty verifiers.
/// This in particular allocates a TypeID for each attribute definition.
static DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>>
preallocateAttrDefs(ModuleOp op,
DenseMap<DialectOp, ExtensibleDialect *> dialects) {
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrDefs;
op.walk([&](AttributeOp attrOp) {
ExtensibleDialect *dialect = dialects[attrOp.getParentOp()];
auto attrDef = DynamicAttrDefinition::get(
attrOp.getName(), dialect,
[](function_ref<InFlightDiagnostic()>, ArrayRef<Attribute>) {
return success();
});
attrDefs.try_emplace(attrOp, std::move(attrDef));
});
return attrDefs;
}
LogicalResult mlir::irdl::loadDialects(ModuleOp op) {
// First, check that all any_of constraints are in a correct form.
// This is to ensure we can do the verification correctly.
WalkResult anyOfCorrects = op.walk(
[](AnyOfOp anyOf) { return (WalkResult)checkCorrectAnyOf(anyOf); });
if (anyOfCorrects.wasInterrupted())
return op.emitError("any_of constraints are not in the correct form");
// Preallocate all dialects, and type and attribute definitions.
// In particular, this allocates TypeIDs so type and attributes can have
// verifiers that refer to each other.
DenseMap<DialectOp, ExtensibleDialect *> dialects = loadEmptyDialects(op);
DenseMap<TypeOp, std::unique_ptr<DynamicTypeDefinition>> types =
preallocateTypeDefs(op, dialects);
DenseMap<AttributeOp, std::unique_ptr<DynamicAttrDefinition>> attrs =
preallocateAttrDefs(op, dialects);
// Set the verifier for types.
WalkResult res = op.walk([&](TypeOp typeOp) {
DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
typeOp, dialects[typeOp.getParentOp()], types, attrs);
if (!verifier)
return WalkResult::interrupt();
types[typeOp]->setVerifyFn(std::move(verifier));
return WalkResult::advance();
});
if (res.wasInterrupted())
return failure();
// Set the verifier for attributes.
res = op.walk([&](AttributeOp attrOp) {
DynamicAttrDefinition::VerifierFn verifier = getAttrOrTypeVerifier(
attrOp, dialects[attrOp.getParentOp()], types, attrs);
if (!verifier)
return WalkResult::interrupt();
attrs[attrOp]->setVerifyFn(std::move(verifier));
return WalkResult::advance();
});
if (res.wasInterrupted())
return failure();
// Define and load all operations.
res = op.walk([&](OperationOp opOp) {
return loadOperation(opOp, dialects[opOp.getParentOp()], types, attrs);
});
if (res.wasInterrupted())
return failure();
// Load all types in their dialects.
for (auto &pair : types) {
ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
dialect->registerDynamicType(std::move(pair.second));
}
// Load all attributes in their dialects.
for (auto &pair : attrs) {
ExtensibleDialect *dialect = dialects[pair.first.getParentOp()];
dialect->registerDynamicAttr(std::move(pair.second));
}
return success();
}