1720 lines
68 KiB
C++
1720 lines
68 KiB
C++
|
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the translation between an MLIR LLVM dialect module and
|
||
|
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
|
||
|
|
||
|
#include "AttrKindDetail.h"
|
||
|
#include "DebugTranslation.h"
|
||
|
#include "LoopAnnotationTranslation.h"
|
||
|
#include "mlir/Dialect/DLTI/DLTI.h"
|
||
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||
|
#include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
|
||
|
#include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
|
||
|
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
|
||
|
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
|
||
|
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
|
||
|
#include "mlir/IR/AttrTypeSubElements.h"
|
||
|
#include "mlir/IR/Attributes.h"
|
||
|
#include "mlir/IR/BuiltinOps.h"
|
||
|
#include "mlir/IR/BuiltinTypes.h"
|
||
|
#include "mlir/IR/DialectResourceBlobManager.h"
|
||
|
#include "mlir/IR/RegionGraphTraits.h"
|
||
|
#include "mlir/Support/LLVM.h"
|
||
|
#include "mlir/Support/LogicalResult.h"
|
||
|
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
|
||
|
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
|
||
|
#include "mlir/Transforms/RegionUtils.h"
|
||
|
|
||
|
#include "llvm/ADT/PostOrderIterator.h"
|
||
|
#include "llvm/ADT/SetVector.h"
|
||
|
#include "llvm/ADT/TypeSwitch.h"
|
||
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/CFG.h"
|
||
|
#include "llvm/IR/Constants.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InlineAsm.h"
|
||
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/MDBuilder.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/IR/Verifier.h"
|
||
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
||
|
#include "llvm/Transforms/Utils/Cloning.h"
|
||
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
||
|
#include <optional>
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::LLVM;
|
||
|
using namespace mlir::LLVM::detail;
|
||
|
|
||
|
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
|
||
|
|
||
|
namespace {
|
||
|
/// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
|
||
|
/// instructions that are created for future reference.
|
||
|
///
|
||
|
/// This is intended to be used with the `CollectionScope` RAII object:
|
||
|
///
|
||
|
/// llvm::IRBuilder<..., InstructionCapturingInserter> builder;
|
||
|
/// {
|
||
|
/// InstructionCapturingInserter::CollectionScope scope(builder);
|
||
|
/// // Call IRBuilder methods as usual.
|
||
|
///
|
||
|
/// // This will return a list of all instructions created by the builder,
|
||
|
/// // in order of creation.
|
||
|
/// builder.getInserter().getCapturedInstructions();
|
||
|
/// }
|
||
|
/// // This will return an empty list.
|
||
|
/// builder.getInserter().getCapturedInstructions();
|
||
|
///
|
||
|
/// The capturing functionality is _disabled_ by default for performance
|
||
|
/// consideration. It needs to be explicitly enabled, which is achieved by
|
||
|
/// creating a `CollectionScope`.
|
||
|
class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
|
||
|
public:
|
||
|
/// Constructs the inserter.
|
||
|
InstructionCapturingInserter()
|
||
|
: llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
|
||
|
if (LLVM_LIKELY(enabled))
|
||
|
capturedInstructions.push_back(instruction);
|
||
|
}) {}
|
||
|
|
||
|
/// Returns the list of LLVM IR instructions captured since the last cleanup.
|
||
|
ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
|
||
|
return capturedInstructions;
|
||
|
}
|
||
|
|
||
|
/// Clears the list of captured LLVM IR instructions.
|
||
|
void clearCapturedInstructions() { capturedInstructions.clear(); }
|
||
|
|
||
|
/// RAII object enabling the capture of created LLVM IR instructions.
|
||
|
class CollectionScope {
|
||
|
public:
|
||
|
/// Creates the scope for the given inserter.
|
||
|
CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
|
||
|
|
||
|
/// Ends the scope.
|
||
|
~CollectionScope();
|
||
|
|
||
|
ArrayRef<llvm::Instruction *> getCapturedInstructions() {
|
||
|
if (!inserter)
|
||
|
return {};
|
||
|
return inserter->getCapturedInstructions();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/// Back reference to the inserter.
|
||
|
InstructionCapturingInserter *inserter = nullptr;
|
||
|
|
||
|
/// List of instructions in the inserter prior to this scope.
|
||
|
SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
|
||
|
|
||
|
/// Whether the inserter was enabled prior to this scope.
|
||
|
bool wasEnabled;
|
||
|
};
|
||
|
|
||
|
/// Enable or disable the capturing mechanism.
|
||
|
void setEnabled(bool enabled = true) { this->enabled = enabled; }
|
||
|
|
||
|
private:
|
||
|
/// List of captured instructions.
|
||
|
SmallVector<llvm::Instruction *> capturedInstructions;
|
||
|
|
||
|
/// Whether the collection is enabled.
|
||
|
bool enabled = false;
|
||
|
};
|
||
|
|
||
|
using CapturingIRBuilder =
|
||
|
llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
|
||
|
} // namespace
|
||
|
|
||
|
InstructionCapturingInserter::CollectionScope::CollectionScope(
|
||
|
llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
|
||
|
|
||
|
if (!isBuilderCapturing)
|
||
|
return;
|
||
|
|
||
|
auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
|
||
|
inserter = &capturingIRBuilder.getInserter();
|
||
|
wasEnabled = inserter->enabled;
|
||
|
if (wasEnabled)
|
||
|
previouslyCollectedInstructions.swap(inserter->capturedInstructions);
|
||
|
inserter->setEnabled(true);
|
||
|
}
|
||
|
|
||
|
InstructionCapturingInserter::CollectionScope::~CollectionScope() {
|
||
|
if (!inserter)
|
||
|
return;
|
||
|
|
||
|
previouslyCollectedInstructions.swap(inserter->capturedInstructions);
|
||
|
// If collection was enabled (likely in another, surrounding scope), keep
|
||
|
// the instructions collected in this scope.
|
||
|
if (wasEnabled) {
|
||
|
llvm::append_range(inserter->capturedInstructions,
|
||
|
previouslyCollectedInstructions);
|
||
|
}
|
||
|
inserter->setEnabled(wasEnabled);
|
||
|
}
|
||
|
|
||
|
/// Translates the given data layout spec attribute to the LLVM IR data layout.
|
||
|
/// Only integer, float, pointer and endianness entries are currently supported.
|
||
|
static FailureOr<llvm::DataLayout>
|
||
|
translateDataLayout(DataLayoutSpecInterface attribute,
|
||
|
const DataLayout &dataLayout,
|
||
|
std::optional<Location> loc = std::nullopt) {
|
||
|
if (!loc)
|
||
|
loc = UnknownLoc::get(attribute.getContext());
|
||
|
|
||
|
// Translate the endianness attribute.
|
||
|
std::string llvmDataLayout;
|
||
|
llvm::raw_string_ostream layoutStream(llvmDataLayout);
|
||
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
||
|
auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
|
||
|
if (!key)
|
||
|
continue;
|
||
|
if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
|
||
|
auto value = cast<StringAttr>(entry.getValue());
|
||
|
bool isLittleEndian =
|
||
|
value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
|
||
|
layoutStream << "-" << (isLittleEndian ? "e" : "E");
|
||
|
layoutStream.flush();
|
||
|
continue;
|
||
|
}
|
||
|
if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
|
||
|
auto value = cast<IntegerAttr>(entry.getValue());
|
||
|
uint64_t space = value.getValue().getZExtValue();
|
||
|
// Skip the default address space.
|
||
|
if (space == 0)
|
||
|
continue;
|
||
|
layoutStream << "-P" << space;
|
||
|
layoutStream.flush();
|
||
|
continue;
|
||
|
}
|
||
|
if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
|
||
|
auto value = cast<IntegerAttr>(entry.getValue());
|
||
|
uint64_t space = value.getValue().getZExtValue();
|
||
|
// Skip the default address space.
|
||
|
if (space == 0)
|
||
|
continue;
|
||
|
layoutStream << "-G" << space;
|
||
|
layoutStream.flush();
|
||
|
continue;
|
||
|
}
|
||
|
if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
|
||
|
auto value = cast<IntegerAttr>(entry.getValue());
|
||
|
uint64_t space = value.getValue().getZExtValue();
|
||
|
// Skip the default address space.
|
||
|
if (space == 0)
|
||
|
continue;
|
||
|
layoutStream << "-A" << space;
|
||
|
layoutStream.flush();
|
||
|
continue;
|
||
|
}
|
||
|
if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
|
||
|
auto value = cast<IntegerAttr>(entry.getValue());
|
||
|
uint64_t alignment = value.getValue().getZExtValue();
|
||
|
// Skip the default stack alignment.
|
||
|
if (alignment == 0)
|
||
|
continue;
|
||
|
layoutStream << "-S" << alignment;
|
||
|
layoutStream.flush();
|
||
|
continue;
|
||
|
}
|
||
|
emitError(*loc) << "unsupported data layout key " << key;
|
||
|
return failure();
|
||
|
}
|
||
|
|
||
|
// Go through the list of entries to check which types are explicitly
|
||
|
// specified in entries. Where possible, data layout queries are used instead
|
||
|
// of directly inspecting the entries.
|
||
|
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
|
||
|
auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
|
||
|
if (!type)
|
||
|
continue;
|
||
|
// Data layout for the index type is irrelevant at this point.
|
||
|
if (isa<IndexType>(type))
|
||
|
continue;
|
||
|
layoutStream << "-";
|
||
|
LogicalResult result =
|
||
|
llvm::TypeSwitch<Type, LogicalResult>(type)
|
||
|
.Case<IntegerType, Float16Type, Float32Type, Float64Type,
|
||
|
Float80Type, Float128Type>([&](Type type) -> LogicalResult {
|
||
|
if (auto intType = dyn_cast<IntegerType>(type)) {
|
||
|
if (intType.getSignedness() != IntegerType::Signless)
|
||
|
return emitError(*loc)
|
||
|
<< "unsupported data layout for non-signless integer "
|
||
|
<< intType;
|
||
|
layoutStream << "i";
|
||
|
} else {
|
||
|
layoutStream << "f";
|
||
|
}
|
||
|
uint64_t size = dataLayout.getTypeSizeInBits(type);
|
||
|
uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
|
||
|
uint64_t preferred =
|
||
|
dataLayout.getTypePreferredAlignment(type) * 8u;
|
||
|
layoutStream << size << ":" << abi;
|
||
|
if (abi != preferred)
|
||
|
layoutStream << ":" << preferred;
|
||
|
return success();
|
||
|
})
|
||
|
.Case([&](LLVMPointerType ptrType) {
|
||
|
layoutStream << "p" << ptrType.getAddressSpace() << ":";
|
||
|
uint64_t size = dataLayout.getTypeSizeInBits(type);
|
||
|
uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
|
||
|
uint64_t preferred =
|
||
|
dataLayout.getTypePreferredAlignment(type) * 8u;
|
||
|
layoutStream << size << ":" << abi << ":" << preferred;
|
||
|
if (std::optional<uint64_t> index = extractPointerSpecValue(
|
||
|
entry.getValue(), PtrDLEntryPos::Index))
|
||
|
layoutStream << ":" << *index;
|
||
|
return success();
|
||
|
})
|
||
|
.Default([loc](Type type) {
|
||
|
return emitError(*loc)
|
||
|
<< "unsupported type in data layout: " << type;
|
||
|
});
|
||
|
if (failed(result))
|
||
|
return failure();
|
||
|
}
|
||
|
layoutStream.flush();
|
||
|
StringRef layoutSpec(llvmDataLayout);
|
||
|
if (layoutSpec.starts_with("-"))
|
||
|
layoutSpec = layoutSpec.drop_front();
|
||
|
|
||
|
return llvm::DataLayout(layoutSpec);
|
||
|
}
|
||
|
|
||
|
/// Builds a constant of a sequential LLVM type `type`, potentially containing
|
||
|
/// other sequential types recursively, from the individual constant values
|
||
|
/// provided in `constants`. `shape` contains the number of elements in nested
|
||
|
/// sequential types. Reports errors at `loc` and returns nullptr on error.
|
||
|
static llvm::Constant *
|
||
|
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
|
||
|
ArrayRef<int64_t> shape, llvm::Type *type,
|
||
|
Location loc) {
|
||
|
if (shape.empty()) {
|
||
|
llvm::Constant *result = constants.front();
|
||
|
constants = constants.drop_front();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
llvm::Type *elementType;
|
||
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
||
|
elementType = arrayTy->getElementType();
|
||
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
||
|
elementType = vectorTy->getElementType();
|
||
|
} else {
|
||
|
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
SmallVector<llvm::Constant *, 8> nested;
|
||
|
nested.reserve(shape.front());
|
||
|
for (int64_t i = 0; i < shape.front(); ++i) {
|
||
|
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
|
||
|
elementType, loc));
|
||
|
if (!nested.back())
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
if (shape.size() == 1 && type->isVectorTy())
|
||
|
return llvm::ConstantVector::get(nested);
|
||
|
return llvm::ConstantArray::get(
|
||
|
llvm::ArrayType::get(elementType, shape.front()), nested);
|
||
|
}
|
||
|
|
||
|
/// Returns the first non-sequential type nested in sequential types.
|
||
|
static llvm::Type *getInnermostElementType(llvm::Type *type) {
|
||
|
do {
|
||
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
|
||
|
type = arrayTy->getElementType();
|
||
|
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
|
||
|
type = vectorTy->getElementType();
|
||
|
} else {
|
||
|
return type;
|
||
|
}
|
||
|
} while (true);
|
||
|
}
|
||
|
|
||
|
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
|
||
|
/// storage if possible. This supports elements attributes of tensor or vector
|
||
|
/// type and avoids constructing separate objects for individual values of the
|
||
|
/// innermost dimension. Constants for other dimensions are still constructed
|
||
|
/// recursively. Returns null if constructing from raw data is not supported for
|
||
|
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
|
||
|
/// other errors at `loc`.
|
||
|
static llvm::Constant *
|
||
|
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
|
||
|
llvm::Type *llvmType,
|
||
|
const ModuleTranslation &moduleTranslation) {
|
||
|
if (!denseElementsAttr)
|
||
|
return nullptr;
|
||
|
|
||
|
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
|
||
|
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
|
||
|
return nullptr;
|
||
|
|
||
|
ShapedType type = denseElementsAttr.getType();
|
||
|
if (type.getNumElements() == 0)
|
||
|
return nullptr;
|
||
|
|
||
|
// Check that the raw data size matches what is expected for the scalar size.
|
||
|
// TODO: in theory, we could repack the data here to keep constructing from
|
||
|
// raw data.
|
||
|
// TODO: we may also need to consider endianness when cross-compiling to an
|
||
|
// architecture where it is different.
|
||
|
int64_t elementByteSize = denseElementsAttr.getRawData().size() /
|
||
|
denseElementsAttr.getNumElements();
|
||
|
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
|
||
|
return nullptr;
|
||
|
|
||
|
// Compute the shape of all dimensions but the innermost. Note that the
|
||
|
// innermost dimension may be that of the vector element type.
|
||
|
bool hasVectorElementType = isa<VectorType>(type.getElementType());
|
||
|
int64_t numAggregates =
|
||
|
denseElementsAttr.getNumElements() /
|
||
|
(hasVectorElementType ? 1
|
||
|
: denseElementsAttr.getType().getShape().back());
|
||
|
ArrayRef<int64_t> outerShape = type.getShape();
|
||
|
if (!hasVectorElementType)
|
||
|
outerShape = outerShape.drop_back();
|
||
|
|
||
|
// Handle the case of vector splat, LLVM has special support for it.
|
||
|
if (denseElementsAttr.isSplat() &&
|
||
|
(isa<VectorType>(type) || hasVectorElementType)) {
|
||
|
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
|
||
|
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
|
||
|
moduleTranslation);
|
||
|
llvm::Constant *splatVector =
|
||
|
llvm::ConstantDataVector::getSplat(0, splatValue);
|
||
|
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
|
||
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
||
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
||
|
}
|
||
|
if (denseElementsAttr.isSplat())
|
||
|
return nullptr;
|
||
|
|
||
|
// In case of non-splat, create a constructor for the innermost constant from
|
||
|
// a piece of raw data.
|
||
|
std::function<llvm::Constant *(StringRef)> buildCstData;
|
||
|
if (isa<TensorType>(type)) {
|
||
|
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
|
||
|
if (vectorElementType && vectorElementType.getRank() == 1) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataVector::getRaw(
|
||
|
data, vectorElementType.getShape().back(), innermostLLVMType);
|
||
|
};
|
||
|
} else if (!vectorElementType) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
|
||
|
innermostLLVMType);
|
||
|
};
|
||
|
}
|
||
|
} else if (isa<VectorType>(type)) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
|
||
|
innermostLLVMType);
|
||
|
};
|
||
|
}
|
||
|
if (!buildCstData)
|
||
|
return nullptr;
|
||
|
|
||
|
// Create innermost constants and defer to the default constant creation
|
||
|
// mechanism for other dimensions.
|
||
|
SmallVector<llvm::Constant *> constants;
|
||
|
int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
|
||
|
(innermostLLVMType->getScalarSizeInBits() / 8);
|
||
|
constants.reserve(numAggregates);
|
||
|
for (unsigned i = 0; i < numAggregates; ++i) {
|
||
|
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
|
||
|
aggregateSize);
|
||
|
constants.push_back(buildCstData(data));
|
||
|
}
|
||
|
|
||
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
||
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
||
|
}
|
||
|
|
||
|
/// Convert a dense resource elements attribute to an LLVM IR constant using its
|
||
|
/// raw data storage if possible. This supports elements attributes of tensor or
|
||
|
/// vector type and avoids constructing separate objects for individual values
|
||
|
/// of the innermost dimension. Constants for other dimensions are still
|
||
|
/// constructed recursively. Returns nullptr on failure and emits errors at
|
||
|
/// `loc`.
|
||
|
static llvm::Constant *convertDenseResourceElementsAttr(
|
||
|
Location loc, DenseResourceElementsAttr denseResourceAttr,
|
||
|
llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
|
||
|
assert(denseResourceAttr && "expected non-null attribute");
|
||
|
|
||
|
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
|
||
|
if (!llvm::ConstantDataSequential::isElementTypeCompatible(
|
||
|
innermostLLVMType)) {
|
||
|
emitError(loc, "no known conversion for innermost element type");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
ShapedType type = denseResourceAttr.getType();
|
||
|
assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
|
||
|
|
||
|
AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
|
||
|
if (!blob) {
|
||
|
emitError(loc, "resource does not exist");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
ArrayRef<char> rawData = blob->getData();
|
||
|
|
||
|
// Check that the raw data size matches what is expected for the scalar size.
|
||
|
// TODO: in theory, we could repack the data here to keep constructing from
|
||
|
// raw data.
|
||
|
// TODO: we may also need to consider endianness when cross-compiling to an
|
||
|
// architecture where it is different.
|
||
|
int64_t numElements = denseResourceAttr.getType().getNumElements();
|
||
|
int64_t elementByteSize = rawData.size() / numElements;
|
||
|
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
|
||
|
emitError(loc, "raw data size does not match element type size");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// Compute the shape of all dimensions but the innermost. Note that the
|
||
|
// innermost dimension may be that of the vector element type.
|
||
|
bool hasVectorElementType = isa<VectorType>(type.getElementType());
|
||
|
int64_t numAggregates =
|
||
|
numElements / (hasVectorElementType
|
||
|
? 1
|
||
|
: denseResourceAttr.getType().getShape().back());
|
||
|
ArrayRef<int64_t> outerShape = type.getShape();
|
||
|
if (!hasVectorElementType)
|
||
|
outerShape = outerShape.drop_back();
|
||
|
|
||
|
// Create a constructor for the innermost constant from a piece of raw data.
|
||
|
std::function<llvm::Constant *(StringRef)> buildCstData;
|
||
|
if (isa<TensorType>(type)) {
|
||
|
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
|
||
|
if (vectorElementType && vectorElementType.getRank() == 1) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataVector::getRaw(
|
||
|
data, vectorElementType.getShape().back(), innermostLLVMType);
|
||
|
};
|
||
|
} else if (!vectorElementType) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
|
||
|
innermostLLVMType);
|
||
|
};
|
||
|
}
|
||
|
} else if (isa<VectorType>(type)) {
|
||
|
buildCstData = [&](StringRef data) {
|
||
|
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
|
||
|
innermostLLVMType);
|
||
|
};
|
||
|
}
|
||
|
if (!buildCstData) {
|
||
|
emitError(loc, "unsupported dense_resource type");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
// Create innermost constants and defer to the default constant creation
|
||
|
// mechanism for other dimensions.
|
||
|
SmallVector<llvm::Constant *> constants;
|
||
|
int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
|
||
|
(innermostLLVMType->getScalarSizeInBits() / 8);
|
||
|
constants.reserve(numAggregates);
|
||
|
for (unsigned i = 0; i < numAggregates; ++i) {
|
||
|
StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
|
||
|
constants.push_back(buildCstData(data));
|
||
|
}
|
||
|
|
||
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
||
|
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
|
||
|
}
|
||
|
|
||
|
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
|
||
|
/// This currently supports integer, floating point, splat and dense element
|
||
|
/// attributes and combinations thereof. Also, an array attribute with two
|
||
|
/// elements is supported to represent a complex constant. In case of error,
|
||
|
/// report it to `loc` and return nullptr.
|
||
|
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
|
||
|
llvm::Type *llvmType, Attribute attr, Location loc,
|
||
|
const ModuleTranslation &moduleTranslation) {
|
||
|
if (!attr)
|
||
|
return llvm::UndefValue::get(llvmType);
|
||
|
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
|
||
|
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
|
||
|
if (!arrayAttr || arrayAttr.size() != 2) {
|
||
|
emitError(loc, "expected struct type to be a complex number");
|
||
|
return nullptr;
|
||
|
}
|
||
|
llvm::Type *elementType = structType->getElementType(0);
|
||
|
llvm::Constant *real =
|
||
|
getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
|
||
|
if (!real)
|
||
|
return nullptr;
|
||
|
llvm::Constant *imag =
|
||
|
getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
|
||
|
if (!imag)
|
||
|
return nullptr;
|
||
|
return llvm::ConstantStruct::get(structType, {real, imag});
|
||
|
}
|
||
|
// For integer types, we allow a mismatch in sizes as the index type in
|
||
|
// MLIR might have a different size than the index type in the LLVM module.
|
||
|
if (auto intAttr = dyn_cast<IntegerAttr>(attr))
|
||
|
return llvm::ConstantInt::get(
|
||
|
llvmType,
|
||
|
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
|
||
|
if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
|
||
|
const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
|
||
|
// Special case for 8-bit floats, which are represented by integers due to
|
||
|
// the lack of native fp8 types in LLVM at the moment. Additionally, handle
|
||
|
// targets (like AMDGPU) that don't implement bfloat and convert all bfloats
|
||
|
// to i16.
|
||
|
unsigned floatWidth = APFloat::getSizeInBits(sem);
|
||
|
if (llvmType->isIntegerTy(floatWidth))
|
||
|
return llvm::ConstantInt::get(llvmType,
|
||
|
floatAttr.getValue().bitcastToAPInt());
|
||
|
if (llvmType !=
|
||
|
llvm::Type::getFloatingPointTy(llvmType->getContext(),
|
||
|
floatAttr.getValue().getSemantics())) {
|
||
|
emitError(loc, "FloatAttr does not match expected type of the constant");
|
||
|
return nullptr;
|
||
|
}
|
||
|
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
|
||
|
}
|
||
|
if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
|
||
|
return llvm::ConstantExpr::getBitCast(
|
||
|
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
|
||
|
if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
|
||
|
llvm::Type *elementType;
|
||
|
uint64_t numElements;
|
||
|
bool isScalable = false;
|
||
|
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
|
||
|
elementType = arrayTy->getElementType();
|
||
|
numElements = arrayTy->getNumElements();
|
||
|
} else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
|
||
|
elementType = fVectorTy->getElementType();
|
||
|
numElements = fVectorTy->getNumElements();
|
||
|
} else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
|
||
|
elementType = sVectorTy->getElementType();
|
||
|
numElements = sVectorTy->getMinNumElements();
|
||
|
isScalable = true;
|
||
|
} else {
|
||
|
llvm_unreachable("unrecognized constant vector type");
|
||
|
}
|
||
|
// Splat value is a scalar. Extract it only if the element type is not
|
||
|
// another sequence type. The recursion terminates because each step removes
|
||
|
// one outer sequential type.
|
||
|
bool elementTypeSequential =
|
||
|
isa<llvm::ArrayType, llvm::VectorType>(elementType);
|
||
|
llvm::Constant *child = getLLVMConstant(
|
||
|
elementType,
|
||
|
elementTypeSequential ? splatAttr
|
||
|
: splatAttr.getSplatValue<Attribute>(),
|
||
|
loc, moduleTranslation);
|
||
|
if (!child)
|
||
|
return nullptr;
|
||
|
if (llvmType->isVectorTy())
|
||
|
return llvm::ConstantVector::getSplat(
|
||
|
llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
|
||
|
if (llvmType->isArrayTy()) {
|
||
|
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
|
||
|
SmallVector<llvm::Constant *, 8> constants(numElements, child);
|
||
|
return llvm::ConstantArray::get(arrayType, constants);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Try using raw elements data if possible.
|
||
|
if (llvm::Constant *result =
|
||
|
convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
|
||
|
llvmType, moduleTranslation)) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
|
||
|
return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
|
||
|
moduleTranslation);
|
||
|
}
|
||
|
|
||
|
// Fall back to element-by-element construction otherwise.
|
||
|
if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
|
||
|
assert(elementsAttr.getShapedType().hasStaticShape());
|
||
|
assert(!elementsAttr.getShapedType().getShape().empty() &&
|
||
|
"unexpected empty elements attribute shape");
|
||
|
|
||
|
SmallVector<llvm::Constant *, 8> constants;
|
||
|
constants.reserve(elementsAttr.getNumElements());
|
||
|
llvm::Type *innermostType = getInnermostElementType(llvmType);
|
||
|
for (auto n : elementsAttr.getValues<Attribute>()) {
|
||
|
constants.push_back(
|
||
|
getLLVMConstant(innermostType, n, loc, moduleTranslation));
|
||
|
if (!constants.back())
|
||
|
return nullptr;
|
||
|
}
|
||
|
ArrayRef<llvm::Constant *> constantsRef = constants;
|
||
|
llvm::Constant *result = buildSequentialConstant(
|
||
|
constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
|
||
|
assert(constantsRef.empty() && "did not consume all elemental constants");
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
|
||
|
return llvm::ConstantDataArray::get(
|
||
|
moduleTranslation.getLLVMContext(),
|
||
|
ArrayRef<char>{stringAttr.getValue().data(),
|
||
|
stringAttr.getValue().size()});
|
||
|
}
|
||
|
emitError(loc, "unsupported constant value");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
ModuleTranslation::ModuleTranslation(Operation *module,
|
||
|
std::unique_ptr<llvm::Module> llvmModule)
|
||
|
: mlirModule(module), llvmModule(std::move(llvmModule)),
|
||
|
debugTranslation(
|
||
|
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
|
||
|
loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
|
||
|
*this, *this->llvmModule)),
|
||
|
typeTranslator(this->llvmModule->getContext()),
|
||
|
iface(module->getContext()) {
|
||
|
assert(satisfiesLLVMModule(mlirModule) &&
|
||
|
"mlirModule should honor LLVM's module semantics.");
|
||
|
}
|
||
|
|
||
|
ModuleTranslation::~ModuleTranslation() {
|
||
|
if (ompBuilder)
|
||
|
ompBuilder->finalize();
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::forgetMapping(Region ®ion) {
|
||
|
SmallVector<Region *> toProcess;
|
||
|
toProcess.push_back(®ion);
|
||
|
while (!toProcess.empty()) {
|
||
|
Region *current = toProcess.pop_back_val();
|
||
|
for (Block &block : *current) {
|
||
|
blockMapping.erase(&block);
|
||
|
for (Value arg : block.getArguments())
|
||
|
valueMapping.erase(arg);
|
||
|
for (Operation &op : block) {
|
||
|
for (Value value : op.getResults())
|
||
|
valueMapping.erase(value);
|
||
|
if (op.hasSuccessors())
|
||
|
branchMapping.erase(&op);
|
||
|
if (isa<LLVM::GlobalOp>(op))
|
||
|
globalsMapping.erase(&op);
|
||
|
llvm::append_range(
|
||
|
toProcess,
|
||
|
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Get the SSA value passed to the current block from the terminator operation
|
||
|
/// of its predecessor.
|
||
|
static Value getPHISourceValue(Block *current, Block *pred,
|
||
|
unsigned numArguments, unsigned index) {
|
||
|
Operation &terminator = *pred->getTerminator();
|
||
|
if (isa<LLVM::BrOp>(terminator))
|
||
|
return terminator.getOperand(index);
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
llvm::SmallPtrSet<Block *, 4> seenSuccessors;
|
||
|
for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
|
||
|
Block *successor = terminator.getSuccessor(i);
|
||
|
auto branch = cast<BranchOpInterface>(terminator);
|
||
|
SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
|
||
|
assert(
|
||
|
(!seenSuccessors.contains(successor) || successorOperands.empty()) &&
|
||
|
"successors with arguments in LLVM branches must be different blocks");
|
||
|
seenSuccessors.insert(successor);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// For instructions that branch based on a condition value, we need to take
|
||
|
// the operands for the branch that was taken.
|
||
|
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
|
||
|
// For conditional branches, we take the operands from either the "true" or
|
||
|
// the "false" branch.
|
||
|
return condBranchOp.getSuccessor(0) == current
|
||
|
? condBranchOp.getTrueDestOperands()[index]
|
||
|
: condBranchOp.getFalseDestOperands()[index];
|
||
|
}
|
||
|
|
||
|
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
|
||
|
// For switches, we take the operands from either the default case, or from
|
||
|
// the case branch that was taken.
|
||
|
if (switchOp.getDefaultDestination() == current)
|
||
|
return switchOp.getDefaultOperands()[index];
|
||
|
for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
|
||
|
if (i.value() == current)
|
||
|
return switchOp.getCaseOperands(i.index())[index];
|
||
|
}
|
||
|
|
||
|
if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
|
||
|
return invokeOp.getNormalDest() == current
|
||
|
? invokeOp.getNormalDestOperands()[index]
|
||
|
: invokeOp.getUnwindDestOperands()[index];
|
||
|
}
|
||
|
|
||
|
llvm_unreachable(
|
||
|
"only branch, switch or invoke operations can be terminators "
|
||
|
"of a block that has successors");
|
||
|
}
|
||
|
|
||
|
/// Connect the PHI nodes to the results of preceding blocks.
|
||
|
void mlir::LLVM::detail::connectPHINodes(Region ®ion,
|
||
|
const ModuleTranslation &state) {
|
||
|
// Skip the first block, it cannot be branched to and its arguments correspond
|
||
|
// to the arguments of the LLVM function.
|
||
|
for (Block &bb : llvm::drop_begin(region)) {
|
||
|
llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
|
||
|
auto phis = llvmBB->phis();
|
||
|
auto numArguments = bb.getNumArguments();
|
||
|
assert(numArguments == std::distance(phis.begin(), phis.end()));
|
||
|
for (auto [index, phiNode] : llvm::enumerate(phis)) {
|
||
|
for (auto *pred : bb.getPredecessors()) {
|
||
|
// Find the LLVM IR block that contains the converted terminator
|
||
|
// instruction and use it in the PHI node. Note that this block is not
|
||
|
// necessarily the same as state.lookupBlock(pred), some operations
|
||
|
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
|
||
|
// split the blocks.
|
||
|
llvm::Instruction *terminator =
|
||
|
state.lookupBranch(pred->getTerminator());
|
||
|
assert(terminator && "missing the mapping for a terminator");
|
||
|
phiNode.addIncoming(state.lookupValue(getPHISourceValue(
|
||
|
&bb, pred, numArguments, index)),
|
||
|
terminator->getParent());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
|
||
|
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
|
||
|
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
|
||
|
llvm::Module *module = builder.GetInsertBlock()->getModule();
|
||
|
llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
|
||
|
return builder.CreateCall(fn, args);
|
||
|
}
|
||
|
|
||
|
llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
|
||
|
llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
|
||
|
Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
|
||
|
ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
|
||
|
ArrayRef<unsigned> immArgPositions,
|
||
|
ArrayRef<StringLiteral> immArgAttrNames) {
|
||
|
assert(immArgPositions.size() == immArgAttrNames.size() &&
|
||
|
"LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
|
||
|
"length");
|
||
|
|
||
|
// Map operands and attributes to LLVM values.
|
||
|
auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
|
||
|
SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
|
||
|
for (auto [immArgPos, immArgName] :
|
||
|
llvm::zip(immArgPositions, immArgAttrNames)) {
|
||
|
auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
|
||
|
assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
|
||
|
auto *type = moduleTranslation.convertType(attr.getType());
|
||
|
args[immArgPos] = LLVM::detail::getLLVMConstant(
|
||
|
type, attr, intrOp->getLoc(), moduleTranslation);
|
||
|
}
|
||
|
unsigned opArg = 0;
|
||
|
for (auto &arg : args) {
|
||
|
if (!arg)
|
||
|
arg = operands[opArg++];
|
||
|
}
|
||
|
|
||
|
// Resolve overloaded intrinsic declaration.
|
||
|
SmallVector<llvm::Type *> overloadedTypes;
|
||
|
for (unsigned overloadedResultIdx : overloadedResults) {
|
||
|
if (numResults > 1) {
|
||
|
// More than one result is mapped to an LLVM struct.
|
||
|
overloadedTypes.push_back(moduleTranslation.convertType(
|
||
|
llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
|
||
|
.getBody()[overloadedResultIdx]));
|
||
|
} else {
|
||
|
overloadedTypes.push_back(
|
||
|
moduleTranslation.convertType(intrOp->getResult(0).getType()));
|
||
|
}
|
||
|
}
|
||
|
for (unsigned overloadedOperandIdx : overloadedOperands)
|
||
|
overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
|
||
|
llvm::Module *module = builder.GetInsertBlock()->getModule();
|
||
|
llvm::Function *llvmIntr =
|
||
|
llvm::Intrinsic::getDeclaration(module, intrinsic, overloadedTypes);
|
||
|
|
||
|
return builder.CreateCall(llvmIntr, args);
|
||
|
}
|
||
|
|
||
|
/// Given a single MLIR operation, create the corresponding LLVM IR operation
|
||
|
/// using the `builder`.
|
||
|
LogicalResult ModuleTranslation::convertOperation(Operation &op,
|
||
|
llvm::IRBuilderBase &builder,
|
||
|
bool recordInsertions) {
|
||
|
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
|
||
|
if (!opIface)
|
||
|
return op.emitError("cannot be converted to LLVM IR: missing "
|
||
|
"`LLVMTranslationDialectInterface` registration for "
|
||
|
"dialect for op: ")
|
||
|
<< op.getName();
|
||
|
|
||
|
InstructionCapturingInserter::CollectionScope scope(builder,
|
||
|
recordInsertions);
|
||
|
if (failed(opIface->convertOperation(&op, builder, *this)))
|
||
|
return op.emitError("LLVM Translation failed for operation: ")
|
||
|
<< op.getName();
|
||
|
|
||
|
return convertDialectAttributes(&op, scope.getCapturedInstructions());
|
||
|
}
|
||
|
|
||
|
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
|
||
|
/// to define values corresponding to the MLIR block arguments. These nodes
|
||
|
/// are not connected to the source basic blocks, which may not exist yet. Uses
|
||
|
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
|
||
|
/// been created for `bb` and included in the block mapping. Inserts new
|
||
|
/// instructions at the end of the block and leaves `builder` in a state
|
||
|
/// suitable for further insertion into the end of the block.
|
||
|
LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
|
||
|
bool ignoreArguments,
|
||
|
llvm::IRBuilderBase &builder,
|
||
|
bool recordInsertions) {
|
||
|
builder.SetInsertPoint(lookupBlock(&bb));
|
||
|
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
|
||
|
|
||
|
// Before traversing operations, make block arguments available through
|
||
|
// value remapping and PHI nodes, but do not add incoming edges for the PHI
|
||
|
// nodes just yet: those values may be defined by this or following blocks.
|
||
|
// This step is omitted if "ignoreArguments" is set. The arguments of the
|
||
|
// first block have been already made available through the remapping of
|
||
|
// LLVM function arguments.
|
||
|
if (!ignoreArguments) {
|
||
|
auto predecessors = bb.getPredecessors();
|
||
|
unsigned numPredecessors =
|
||
|
std::distance(predecessors.begin(), predecessors.end());
|
||
|
for (auto arg : bb.getArguments()) {
|
||
|
auto wrappedType = arg.getType();
|
||
|
if (!isCompatibleType(wrappedType))
|
||
|
return emitError(bb.front().getLoc(),
|
||
|
"block argument does not have an LLVM type");
|
||
|
llvm::Type *type = convertType(wrappedType);
|
||
|
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
|
||
|
mapValue(arg, phi);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Traverse operations.
|
||
|
for (auto &op : bb) {
|
||
|
// Set the current debug location within the builder.
|
||
|
builder.SetCurrentDebugLocation(
|
||
|
debugTranslation->translateLoc(op.getLoc(), subprogram));
|
||
|
|
||
|
if (failed(convertOperation(op, builder, recordInsertions)))
|
||
|
return failure();
|
||
|
|
||
|
// Set the branch weight metadata on the translated instruction.
|
||
|
if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
|
||
|
setBranchWeightsMetadata(iface);
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// A helper method to get the single Block in an operation honoring LLVM's
|
||
|
/// module requirements.
|
||
|
static Block &getModuleBody(Operation *module) {
|
||
|
return module->getRegion(0).front();
|
||
|
}
|
||
|
|
||
|
/// A helper method to decide if a constant must not be set as a global variable
|
||
|
/// initializer. For an external linkage variable, the variable with an
|
||
|
/// initializer is considered externally visible and defined in this module, the
|
||
|
/// variable without an initializer is externally available and is defined
|
||
|
/// elsewhere.
|
||
|
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
|
||
|
llvm::Constant *cst) {
|
||
|
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
|
||
|
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
|
||
|
}
|
||
|
|
||
|
/// Sets the runtime preemption specifier of `gv` to dso_local if
|
||
|
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
|
||
|
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
|
||
|
llvm::GlobalValue *gv) {
|
||
|
if (dsoLocalRequested)
|
||
|
gv->setDSOLocal(true);
|
||
|
}
|
||
|
|
||
|
/// Create named global variables that correspond to llvm.mlir.global
|
||
|
/// definitions. Convert llvm.global_ctors and global_dtors ops.
|
||
|
LogicalResult ModuleTranslation::convertGlobals() {
|
||
|
// Mapping from compile unit to its respective set of global variables.
|
||
|
DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
|
||
|
|
||
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
||
|
llvm::Type *type = convertType(op.getType());
|
||
|
llvm::Constant *cst = nullptr;
|
||
|
if (op.getValueOrNull()) {
|
||
|
// String attributes are treated separately because they cannot appear as
|
||
|
// in-function constants and are thus not supported by getLLVMConstant.
|
||
|
if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
|
||
|
cst = llvm::ConstantDataArray::getString(
|
||
|
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
|
||
|
type = cst->getType();
|
||
|
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
|
||
|
*this))) {
|
||
|
return failure();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto linkage = convertLinkageToLLVM(op.getLinkage());
|
||
|
auto addrSpace = op.getAddrSpace();
|
||
|
|
||
|
// LLVM IR requires constant with linkage other than external or weak
|
||
|
// external to have initializers. If MLIR does not provide an initializer,
|
||
|
// default to undef.
|
||
|
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
|
||
|
if (!dropInitializer && !cst)
|
||
|
cst = llvm::UndefValue::get(type);
|
||
|
else if (dropInitializer && cst)
|
||
|
cst = nullptr;
|
||
|
|
||
|
auto *var = new llvm::GlobalVariable(
|
||
|
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
|
||
|
/*InsertBefore=*/nullptr,
|
||
|
op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
|
||
|
: llvm::GlobalValue::NotThreadLocal,
|
||
|
addrSpace);
|
||
|
|
||
|
if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
|
||
|
auto selectorOp = cast<ComdatSelectorOp>(
|
||
|
SymbolTable::lookupNearestSymbolFrom(op, *comdat));
|
||
|
var->setComdat(comdatMapping.lookup(selectorOp));
|
||
|
}
|
||
|
|
||
|
if (op.getUnnamedAddr().has_value())
|
||
|
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
|
||
|
|
||
|
if (op.getSection().has_value())
|
||
|
var->setSection(*op.getSection());
|
||
|
|
||
|
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
|
||
|
|
||
|
std::optional<uint64_t> alignment = op.getAlignment();
|
||
|
if (alignment.has_value())
|
||
|
var->setAlignment(llvm::MaybeAlign(alignment.value()));
|
||
|
|
||
|
var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
|
||
|
|
||
|
globalsMapping.try_emplace(op, var);
|
||
|
|
||
|
// Add debug information if present.
|
||
|
if (op.getDbgExpr()) {
|
||
|
llvm::DIGlobalVariableExpression *diGlobalExpr =
|
||
|
debugTranslation->translateGlobalVariableExpression(op.getDbgExpr());
|
||
|
llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
|
||
|
var->addDebugInfo(diGlobalExpr);
|
||
|
|
||
|
// Get the compile unit (scope) of the the global variable.
|
||
|
if (llvm::DICompileUnit *compileUnit =
|
||
|
dyn_cast_if_present<llvm::DICompileUnit>(
|
||
|
diGlobalVar->getScope())) {
|
||
|
// Update the compile unit with this incoming global variable expression
|
||
|
// during the finalizing step later.
|
||
|
allGVars[compileUnit].push_back(diGlobalExpr);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Convert global variable bodies. This is done after all global variables
|
||
|
// have been created in LLVM IR because a global body may refer to another
|
||
|
// global or itself. So all global variables need to be mapped first.
|
||
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
|
||
|
if (Block *initializer = op.getInitializerBlock()) {
|
||
|
llvm::IRBuilder<> builder(llvmModule->getContext());
|
||
|
for (auto &op : initializer->without_terminator()) {
|
||
|
if (failed(convertOperation(op, builder)) ||
|
||
|
!isa<llvm::Constant>(lookupValue(op.getResult(0))))
|
||
|
return emitError(op.getLoc(), "unemittable constant value");
|
||
|
}
|
||
|
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
|
||
|
llvm::Constant *cst =
|
||
|
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
|
||
|
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
|
||
|
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
|
||
|
global->setInitializer(cst);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Convert llvm.mlir.global_ctors and dtors.
|
||
|
for (Operation &op : getModuleBody(mlirModule)) {
|
||
|
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
|
||
|
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
|
||
|
if (!ctorOp && !dtorOp)
|
||
|
continue;
|
||
|
auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
|
||
|
: llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
|
||
|
auto appendGlobalFn =
|
||
|
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
|
||
|
for (auto symbolAndPriority : range) {
|
||
|
llvm::Function *f = lookupFunction(
|
||
|
cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
|
||
|
appendGlobalFn(*llvmModule, f,
|
||
|
cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
|
||
|
/*Data=*/nullptr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
|
||
|
if (failed(convertDialectAttributes(op, {})))
|
||
|
return failure();
|
||
|
|
||
|
// Finally, update the compile units their respective sets of global variables
|
||
|
// created earlier.
|
||
|
for (const auto &[compileUnit, globals] : allGVars) {
|
||
|
compileUnit->replaceGlobalVariables(
|
||
|
llvm::MDTuple::get(getLLVMContext(), globals));
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// Attempts to add an attribute identified by `key`, optionally with the given
|
||
|
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
|
||
|
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
|
||
|
/// otherwise keep it as a string attribute. Performs additional checks for
|
||
|
/// attributes known to have or not have a value in order to avoid assertions
|
||
|
/// inside LLVM upon construction.
|
||
|
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
|
||
|
llvm::Function *llvmFunc,
|
||
|
StringRef key,
|
||
|
StringRef value = StringRef()) {
|
||
|
auto kind = llvm::Attribute::getAttrKindFromName(key);
|
||
|
if (kind == llvm::Attribute::None) {
|
||
|
llvmFunc->addFnAttr(key, value);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
if (llvm::Attribute::isIntAttrKind(kind)) {
|
||
|
if (value.empty())
|
||
|
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
|
||
|
|
||
|
int64_t result;
|
||
|
if (!value.getAsInteger(/*Radix=*/0, result))
|
||
|
llvmFunc->addFnAttr(
|
||
|
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
|
||
|
else
|
||
|
llvmFunc->addFnAttr(key, value);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
if (!value.empty())
|
||
|
return emitError(loc) << "LLVM attribute '" << key
|
||
|
<< "' does not expect a value, found '" << value
|
||
|
<< "'";
|
||
|
|
||
|
llvmFunc->addFnAttr(kind);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
|
||
|
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
|
||
|
/// to be an array attribute containing either string attributes, treated as
|
||
|
/// value-less LLVM attributes, or array attributes containing two string
|
||
|
/// attributes, with the first string being the name of the corresponding LLVM
|
||
|
/// attribute and the second string beings its value. Note that even integer
|
||
|
/// attributes are expected to have their values expressed as strings.
|
||
|
static LogicalResult
|
||
|
forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
|
||
|
llvm::Function *llvmFunc) {
|
||
|
if (!attributes)
|
||
|
return success();
|
||
|
|
||
|
for (Attribute attr : *attributes) {
|
||
|
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
|
||
|
if (failed(
|
||
|
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
|
||
|
return failure();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
|
||
|
if (!arrayAttr || arrayAttr.size() != 2)
|
||
|
return emitError(loc)
|
||
|
<< "expected 'passthrough' to contain string or array attributes";
|
||
|
|
||
|
auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
|
||
|
auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
|
||
|
if (!keyAttr || !valueAttr)
|
||
|
return emitError(loc)
|
||
|
<< "expected arrays within 'passthrough' to contain two strings";
|
||
|
|
||
|
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
|
||
|
valueAttr.getValue())))
|
||
|
return failure();
|
||
|
}
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
|
||
|
// Clear the block, branch value mappings, they are only relevant within one
|
||
|
// function.
|
||
|
blockMapping.clear();
|
||
|
valueMapping.clear();
|
||
|
branchMapping.clear();
|
||
|
llvm::Function *llvmFunc = lookupFunction(func.getName());
|
||
|
|
||
|
// Add function arguments to the value remapping table.
|
||
|
for (auto [mlirArg, llvmArg] :
|
||
|
llvm::zip(func.getArguments(), llvmFunc->args()))
|
||
|
mapValue(mlirArg, &llvmArg);
|
||
|
|
||
|
// Check the personality and set it.
|
||
|
if (func.getPersonality()) {
|
||
|
llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
|
||
|
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
|
||
|
func.getLoc(), *this))
|
||
|
llvmFunc->setPersonalityFn(pfunc);
|
||
|
}
|
||
|
|
||
|
if (std::optional<StringRef> section = func.getSection())
|
||
|
llvmFunc->setSection(*section);
|
||
|
|
||
|
if (func.getArmStreaming())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
|
||
|
else if (func.getArmLocallyStreaming())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_sm_body");
|
||
|
else if (func.getArmStreamingCompatible())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
|
||
|
|
||
|
if (func.getArmNewZa())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_za_new");
|
||
|
else if (func.getArmSharedZa())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_za_shared");
|
||
|
if (func.getArmPreservesZa())
|
||
|
llvmFunc->addFnAttr("aarch64_pstate_za_preserved");
|
||
|
|
||
|
if (auto targetCpu = func.getTargetCpu())
|
||
|
llvmFunc->addFnAttr("target-cpu", *targetCpu);
|
||
|
|
||
|
if (auto targetFeatures = func.getTargetFeatures())
|
||
|
llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
|
||
|
|
||
|
if (auto attr = func.getVscaleRange())
|
||
|
llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
|
||
|
getLLVMContext(), attr->getMinRange().getInt(),
|
||
|
attr->getMaxRange().getInt()));
|
||
|
|
||
|
// Add function attribute frame-pointer, if found.
|
||
|
if (FramePointerKindAttr attr = func.getFramePointerAttr())
|
||
|
llvmFunc->addFnAttr("frame-pointer",
|
||
|
LLVM::framePointerKind::stringifyFramePointerKind(
|
||
|
(attr.getFramePointerKind())));
|
||
|
|
||
|
// First, create all blocks so we can jump to them.
|
||
|
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
|
||
|
for (auto &bb : func) {
|
||
|
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
|
||
|
llvmBB->insertInto(llvmFunc);
|
||
|
mapBlock(&bb, llvmBB);
|
||
|
}
|
||
|
|
||
|
// Then, convert blocks one by one in topological order to ensure defs are
|
||
|
// converted before uses.
|
||
|
auto blocks = getTopologicallySortedBlocks(func.getBody());
|
||
|
for (Block *bb : blocks) {
|
||
|
CapturingIRBuilder builder(llvmContext);
|
||
|
if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
|
||
|
/*recordInsertions=*/true)))
|
||
|
return failure();
|
||
|
}
|
||
|
|
||
|
// After all blocks have been traversed and values mapped, connect the PHI
|
||
|
// nodes to the results of preceding blocks.
|
||
|
detail::connectPHINodes(func.getBody(), *this);
|
||
|
|
||
|
// Finally, convert dialect attributes attached to the function.
|
||
|
return convertDialectAttributes(func, {});
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::convertDialectAttributes(
|
||
|
Operation *op, ArrayRef<llvm::Instruction *> instructions) {
|
||
|
for (NamedAttribute attribute : op->getDialectAttrs())
|
||
|
if (failed(iface.amendOperation(op, instructions, attribute, *this)))
|
||
|
return failure();
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// Converts the function attributes from LLVMFuncOp and attaches them to the
|
||
|
/// llvm::Function.
|
||
|
static void convertFunctionAttributes(LLVMFuncOp func,
|
||
|
llvm::Function *llvmFunc) {
|
||
|
if (!func.getMemory())
|
||
|
return;
|
||
|
|
||
|
MemoryEffectsAttr memEffects = func.getMemoryAttr();
|
||
|
|
||
|
// Add memory effects incrementally.
|
||
|
llvm::MemoryEffects newMemEffects =
|
||
|
llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
|
||
|
convertModRefInfoToLLVM(memEffects.getArgMem()));
|
||
|
newMemEffects |= llvm::MemoryEffects(
|
||
|
llvm::MemoryEffects::Location::InaccessibleMem,
|
||
|
convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
|
||
|
newMemEffects |=
|
||
|
llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
|
||
|
convertModRefInfoToLLVM(memEffects.getOther()));
|
||
|
llvmFunc->setMemoryEffects(newMemEffects);
|
||
|
}
|
||
|
|
||
|
llvm::AttrBuilder
|
||
|
ModuleTranslation::convertParameterAttrs(DictionaryAttr paramAttrs) {
|
||
|
llvm::AttrBuilder attrBuilder(llvmModule->getContext());
|
||
|
|
||
|
for (auto [llvmKind, mlirName] : getAttrKindToNameMapping()) {
|
||
|
Attribute attr = paramAttrs.get(mlirName);
|
||
|
// Skip attributes that are not present.
|
||
|
if (!attr)
|
||
|
continue;
|
||
|
|
||
|
// NOTE: C++17 does not support capturing structured bindings.
|
||
|
llvm::Attribute::AttrKind llvmKindCap = llvmKind;
|
||
|
|
||
|
llvm::TypeSwitch<Attribute>(attr)
|
||
|
.Case<TypeAttr>([&](auto typeAttr) {
|
||
|
attrBuilder.addTypeAttr(llvmKindCap,
|
||
|
convertType(typeAttr.getValue()));
|
||
|
})
|
||
|
.Case<IntegerAttr>([&](auto intAttr) {
|
||
|
attrBuilder.addRawIntAttr(llvmKindCap, intAttr.getInt());
|
||
|
})
|
||
|
.Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKindCap); });
|
||
|
}
|
||
|
|
||
|
return attrBuilder;
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::convertFunctionSignatures() {
|
||
|
// Declare all functions first because there may be function calls that form a
|
||
|
// call graph with cycles, or global initializers that reference functions.
|
||
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
||
|
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
|
||
|
function.getName(),
|
||
|
cast<llvm::FunctionType>(convertType(function.getFunctionType())));
|
||
|
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
|
||
|
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
|
||
|
llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
|
||
|
mapFunction(function.getName(), llvmFunc);
|
||
|
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
|
||
|
|
||
|
// Convert function attributes.
|
||
|
convertFunctionAttributes(function, llvmFunc);
|
||
|
|
||
|
// Convert function_entry_count attribute to metadata.
|
||
|
if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
|
||
|
llvmFunc->setEntryCount(entryCount.value());
|
||
|
|
||
|
// Convert result attributes.
|
||
|
if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
|
||
|
DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
|
||
|
llvmFunc->addRetAttrs(convertParameterAttrs(resultAttrs));
|
||
|
}
|
||
|
|
||
|
// Convert argument attributes.
|
||
|
for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
|
||
|
if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
|
||
|
llvm::AttrBuilder attrBuilder = convertParameterAttrs(argAttrs);
|
||
|
llvmArg.addAttrs(attrBuilder);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Forward the pass-through attributes to LLVM.
|
||
|
if (failed(forwardPassthroughAttributes(
|
||
|
function.getLoc(), function.getPassthrough(), llvmFunc)))
|
||
|
return failure();
|
||
|
|
||
|
// Convert visibility attribute.
|
||
|
llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
|
||
|
|
||
|
// Convert the comdat attribute.
|
||
|
if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
|
||
|
auto selectorOp = cast<ComdatSelectorOp>(
|
||
|
SymbolTable::lookupNearestSymbolFrom(function, *comdat));
|
||
|
llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
|
||
|
}
|
||
|
|
||
|
if (auto gc = function.getGarbageCollector())
|
||
|
llvmFunc->setGC(gc->str());
|
||
|
|
||
|
if (auto unnamedAddr = function.getUnnamedAddr())
|
||
|
llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
|
||
|
|
||
|
if (auto alignment = function.getAlignment())
|
||
|
llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
|
||
|
|
||
|
// Translate the debug information for this function.
|
||
|
debugTranslation->translate(function, *llvmFunc);
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::convertFunctions() {
|
||
|
// Convert functions.
|
||
|
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
|
||
|
// Do not convert external functions, but do process dialect attributes
|
||
|
// attached to them.
|
||
|
if (function.isExternal()) {
|
||
|
if (failed(convertDialectAttributes(function, {})))
|
||
|
return failure();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (failed(convertOneFunction(function)))
|
||
|
return failure();
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::convertComdats() {
|
||
|
for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
|
||
|
for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
|
||
|
llvm::Module *module = getLLVMModule();
|
||
|
if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
|
||
|
return emitError(selectorOp.getLoc())
|
||
|
<< "comdat selection symbols must be unique even in different "
|
||
|
"comdat regions";
|
||
|
llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
|
||
|
comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
|
||
|
comdatMapping.try_emplace(selectorOp, comdat);
|
||
|
}
|
||
|
}
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
|
||
|
llvm::Instruction *inst) {
|
||
|
if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
|
||
|
inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
|
||
|
}
|
||
|
|
||
|
llvm::MDNode *
|
||
|
ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
|
||
|
auto [scopeIt, scopeInserted] =
|
||
|
aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
|
||
|
if (!scopeInserted)
|
||
|
return scopeIt->second;
|
||
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
||
|
// Convert the domain metadata node if necessary.
|
||
|
auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
|
||
|
aliasScopeAttr.getDomain(), nullptr);
|
||
|
if (insertedDomain) {
|
||
|
llvm::SmallVector<llvm::Metadata *, 2> operands;
|
||
|
// Placeholder for self-reference.
|
||
|
operands.push_back({});
|
||
|
if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
|
||
|
operands.push_back(llvm::MDString::get(ctx, description));
|
||
|
domainIt->second = llvm::MDNode::get(ctx, operands);
|
||
|
// Self-reference for uniqueness.
|
||
|
domainIt->second->replaceOperandWith(0, domainIt->second);
|
||
|
}
|
||
|
// Convert the scope metadata node.
|
||
|
assert(domainIt->second && "Scope's domain should already be valid");
|
||
|
llvm::SmallVector<llvm::Metadata *, 3> operands;
|
||
|
// Placeholder for self-reference.
|
||
|
operands.push_back({});
|
||
|
operands.push_back(domainIt->second);
|
||
|
if (StringAttr description = aliasScopeAttr.getDescription())
|
||
|
operands.push_back(llvm::MDString::get(ctx, description));
|
||
|
scopeIt->second = llvm::MDNode::get(ctx, operands);
|
||
|
// Self-reference for uniqueness.
|
||
|
scopeIt->second->replaceOperandWith(0, scopeIt->second);
|
||
|
return scopeIt->second;
|
||
|
}
|
||
|
|
||
|
llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
|
||
|
ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
|
||
|
SmallVector<llvm::Metadata *> nodes;
|
||
|
nodes.reserve(aliasScopeAttrs.size());
|
||
|
for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
|
||
|
nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
|
||
|
return llvm::MDNode::get(getLLVMContext(), nodes);
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
|
||
|
llvm::Instruction *inst) {
|
||
|
auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
|
||
|
if (!aliasScopeAttrs || aliasScopeAttrs.empty())
|
||
|
return;
|
||
|
llvm::MDNode *node = getOrCreateAliasScopes(
|
||
|
llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
|
||
|
inst->setMetadata(kind, node);
|
||
|
};
|
||
|
|
||
|
populateScopeMetadata(op.getAliasScopesOrNull(),
|
||
|
llvm::LLVMContext::MD_alias_scope);
|
||
|
populateScopeMetadata(op.getNoAliasScopesOrNull(),
|
||
|
llvm::LLVMContext::MD_noalias);
|
||
|
}
|
||
|
|
||
|
llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
|
||
|
return tbaaMetadataMapping.lookup(tbaaAttr);
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
|
||
|
llvm::Instruction *inst) {
|
||
|
ArrayAttr tagRefs = op.getTBAATagsOrNull();
|
||
|
if (!tagRefs || tagRefs.empty())
|
||
|
return;
|
||
|
|
||
|
// LLVM IR currently does not support attaching more than one TBAA access tag
|
||
|
// to a memory accessing instruction. It may be useful to support this in
|
||
|
// future, but for the time being just ignore the metadata if MLIR operation
|
||
|
// has multiple access tags.
|
||
|
if (tagRefs.size() > 1) {
|
||
|
op.emitWarning() << "TBAA access tags were not translated, because LLVM "
|
||
|
"IR only supports a single tag per instruction";
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
|
||
|
inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
|
||
|
DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
|
||
|
if (!weightsAttr)
|
||
|
return;
|
||
|
|
||
|
llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
|
||
|
assert(inst && "expected the operation to have a mapping to an instruction");
|
||
|
SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
|
||
|
inst->setMetadata(
|
||
|
llvm::LLVMContext::MD_prof,
|
||
|
llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
|
||
|
}
|
||
|
|
||
|
LogicalResult ModuleTranslation::createTBAAMetadata() {
|
||
|
llvm::LLVMContext &ctx = llvmModule->getContext();
|
||
|
llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
|
||
|
|
||
|
// Walk the entire module and create all metadata nodes for the TBAA
|
||
|
// attributes. The code below relies on two invariants of the
|
||
|
// `AttrTypeWalker`:
|
||
|
// 1. Attributes are visited in post-order: Since the attributes create a DAG,
|
||
|
// this ensures that any lookups into `tbaaMetadataMapping` for child
|
||
|
// attributes succeed.
|
||
|
// 2. Attributes are only ever visited once: This way we don't leak any
|
||
|
// LLVM metadata instances.
|
||
|
AttrTypeWalker walker;
|
||
|
walker.addWalk([&](TBAARootAttr root) {
|
||
|
tbaaMetadataMapping.insert(
|
||
|
{root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
|
||
|
});
|
||
|
|
||
|
walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
|
||
|
SmallVector<llvm::Metadata *> operands;
|
||
|
operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
|
||
|
for (TBAAMemberAttr member : descriptor.getMembers()) {
|
||
|
operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
|
||
|
operands.push_back(llvm::ConstantAsMetadata::get(
|
||
|
llvm::ConstantInt::get(offsetTy, member.getOffset())));
|
||
|
}
|
||
|
|
||
|
tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
|
||
|
});
|
||
|
|
||
|
walker.addWalk([&](TBAATagAttr tag) {
|
||
|
SmallVector<llvm::Metadata *> operands;
|
||
|
|
||
|
operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
|
||
|
operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
|
||
|
|
||
|
operands.push_back(llvm::ConstantAsMetadata::get(
|
||
|
llvm::ConstantInt::get(offsetTy, tag.getOffset())));
|
||
|
if (tag.getConstant())
|
||
|
operands.push_back(
|
||
|
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
|
||
|
|
||
|
tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
|
||
|
});
|
||
|
|
||
|
mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
|
||
|
if (auto attr = analysisOpInterface.getTBAATagsOrNull())
|
||
|
walker.walk(attr);
|
||
|
});
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::setLoopMetadata(Operation *op,
|
||
|
llvm::Instruction *inst) {
|
||
|
LoopAnnotationAttr attr =
|
||
|
TypeSwitch<Operation *, LoopAnnotationAttr>(op)
|
||
|
.Case<LLVM::BrOp, LLVM::CondBrOp>(
|
||
|
[](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
|
||
|
if (!attr)
|
||
|
return;
|
||
|
llvm::MDNode *loopMD =
|
||
|
loopAnnotationTranslation->translateLoopAnnotation(attr, op);
|
||
|
inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
|
||
|
}
|
||
|
|
||
|
llvm::Type *ModuleTranslation::convertType(Type type) {
|
||
|
return typeTranslator.translateType(type);
|
||
|
}
|
||
|
|
||
|
/// A helper to look up remapped operands in the value remapping table.
|
||
|
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
|
||
|
SmallVector<llvm::Value *> remapped;
|
||
|
remapped.reserve(values.size());
|
||
|
for (Value v : values)
|
||
|
remapped.push_back(lookupValue(v));
|
||
|
return remapped;
|
||
|
}
|
||
|
|
||
|
llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
|
||
|
if (!ompBuilder) {
|
||
|
ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
|
||
|
ompBuilder->initialize();
|
||
|
|
||
|
// Flags represented as top-level OpenMP dialect attributes are set in
|
||
|
// `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
|
||
|
// the default configuration.
|
||
|
ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
|
||
|
/* IsTargetDevice = */ false, /* IsGPU = */ false,
|
||
|
/* OpenMPOffloadMandatory = */ false,
|
||
|
/* HasRequiresReverseOffload = */ false,
|
||
|
/* HasRequiresUnifiedAddress = */ false,
|
||
|
/* HasRequiresUnifiedSharedMemory = */ false,
|
||
|
/* HasRequiresDynamicAllocators = */ false));
|
||
|
}
|
||
|
return ompBuilder.get();
|
||
|
}
|
||
|
|
||
|
llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
|
||
|
llvm::DILocalScope *scope) {
|
||
|
return debugTranslation->translateLoc(loc, scope);
|
||
|
}
|
||
|
|
||
|
llvm::DIExpression *
|
||
|
ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
|
||
|
return debugTranslation->translateExpression(attr);
|
||
|
}
|
||
|
|
||
|
llvm::DIGlobalVariableExpression *
|
||
|
ModuleTranslation::translateGlobalVariableExpression(
|
||
|
LLVM::DIGlobalVariableExpressionAttr attr) {
|
||
|
return debugTranslation->translateGlobalVariableExpression(attr);
|
||
|
}
|
||
|
|
||
|
llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
|
||
|
return debugTranslation->translate(attr);
|
||
|
}
|
||
|
|
||
|
llvm::NamedMDNode *
|
||
|
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
|
||
|
return llvmModule->getOrInsertNamedMetadata(name);
|
||
|
}
|
||
|
|
||
|
void ModuleTranslation::StackFrame::anchor() {}
|
||
|
|
||
|
static std::unique_ptr<llvm::Module>
|
||
|
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
|
||
|
StringRef name) {
|
||
|
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
|
||
|
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
|
||
|
if (auto dataLayoutAttr =
|
||
|
m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
|
||
|
llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
|
||
|
} else {
|
||
|
FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
|
||
|
if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
|
||
|
if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
|
||
|
llvmDataLayout =
|
||
|
translateDataLayout(spec, DataLayout(iface), m->getLoc());
|
||
|
}
|
||
|
} else if (auto mod = dyn_cast<ModuleOp>(m)) {
|
||
|
if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
|
||
|
llvmDataLayout =
|
||
|
translateDataLayout(spec, DataLayout(mod), m->getLoc());
|
||
|
}
|
||
|
}
|
||
|
if (failed(llvmDataLayout))
|
||
|
return nullptr;
|
||
|
llvmModule->setDataLayout(*llvmDataLayout);
|
||
|
}
|
||
|
if (auto targetTripleAttr =
|
||
|
m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
|
||
|
llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
|
||
|
|
||
|
return llvmModule;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<llvm::Module>
|
||
|
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
|
||
|
StringRef name) {
|
||
|
if (!satisfiesLLVMModule(module)) {
|
||
|
module->emitOpError("can not be translated to an LLVMIR module");
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<llvm::Module> llvmModule =
|
||
|
prepareLLVMModule(module, llvmContext, name);
|
||
|
if (!llvmModule)
|
||
|
return nullptr;
|
||
|
|
||
|
LLVM::ensureDistinctSuccessors(module);
|
||
|
LLVM::legalizeDIExpressionsRecursively(module);
|
||
|
|
||
|
ModuleTranslation translator(module, std::move(llvmModule));
|
||
|
llvm::IRBuilder<> llvmBuilder(llvmContext);
|
||
|
|
||
|
// Convert module before functions and operations inside, so dialect
|
||
|
// attributes can be used to change dialect-specific global configurations via
|
||
|
// `amendOperation()`. These configurations can then influence the translation
|
||
|
// of operations afterwards.
|
||
|
if (failed(translator.convertOperation(*module, llvmBuilder)))
|
||
|
return nullptr;
|
||
|
|
||
|
if (failed(translator.convertComdats()))
|
||
|
return nullptr;
|
||
|
if (failed(translator.convertFunctionSignatures()))
|
||
|
return nullptr;
|
||
|
if (failed(translator.convertGlobals()))
|
||
|
return nullptr;
|
||
|
if (failed(translator.createTBAAMetadata()))
|
||
|
return nullptr;
|
||
|
|
||
|
// Convert other top-level operations if possible.
|
||
|
for (Operation &o : getModuleBody(module).getOperations()) {
|
||
|
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
|
||
|
LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
|
||
|
!o.hasTrait<OpTrait::IsTerminator>() &&
|
||
|
failed(translator.convertOperation(o, llvmBuilder))) {
|
||
|
return nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Operations in function bodies with symbolic references must be converted
|
||
|
// after the top-level operations they refer to are declared, so we do it
|
||
|
// last.
|
||
|
if (failed(translator.convertFunctions()))
|
||
|
return nullptr;
|
||
|
|
||
|
if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
|
||
|
return nullptr;
|
||
|
|
||
|
return std::move(translator.llvmModule);
|
||
|
}
|