35 lines
1.3 KiB
MLIR
35 lines
1.3 KiB
MLIR
|
// RUN: mlir-opt --transform-interpreter %s | FileCheck %s
|
||
|
|
||
|
// CHECK-LABEL: func.func @generalize_unary
|
||
|
func.func @generalize_unary(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
||
|
|
||
|
// CHECK-NOT: linalg.elemwise_unary
|
||
|
// CHECK: linalg.generic
|
||
|
%0 = linalg.elemwise_unary ins(%arg0 : tensor<?x?xf32>)
|
||
|
outs(%arg1: tensor<?x?xf32>) -> tensor<?x?xf32>
|
||
|
return %0 : tensor<?x?xf32>
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func @map_no_inputs(
|
||
|
func.func @map_no_inputs(%input: tensor<16x32x64xf32>,
|
||
|
%init: tensor<16x64xf32>) -> tensor<16x64xf32> {
|
||
|
// CHECK-NOT: linalg.map
|
||
|
// CHECK: linalg.generic
|
||
|
%reduce = linalg.reduce
|
||
|
ins(%input:tensor<16x32x64xf32>)
|
||
|
outs(%init:tensor<16x64xf32>)
|
||
|
dimensions = [1]
|
||
|
(%in: f32, %out: f32) {
|
||
|
%0 = arith.addf %out, %in: f32
|
||
|
linalg.yield %0: f32
|
||
|
}
|
||
|
func.return %reduce : tensor<16x64xf32>
|
||
|
}
|
||
|
module attributes {transform.with_named_sequence} {
|
||
|
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
|
||
|
%0 = transform.structured.match interface{LinalgOp} in %arg1 : (!transform.any_op) -> !transform.any_op
|
||
|
%1 = transform.structured.generalize %0 : (!transform.any_op) -> !transform.any_op
|
||
|
transform.yield
|
||
|
}
|
||
|
}
|