666 lines
29 KiB
C++
666 lines
29 KiB
C++
|
//===- Inliner.cpp - Code common to all inliners --------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the mechanics required to implement inlining without
|
||
|
// missing any calls and updating the call graph. The decisions of which calls
|
||
|
// are profitable to inline are implemented elsewhere.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/IPO/Inliner.h"
|
||
|
#include "llvm/ADT/PriorityWorklist.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/ScopeExit.h"
|
||
|
#include "llvm/ADT/SetVector.h"
|
||
|
#include "llvm/ADT/SmallPtrSet.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/ADT/StringExtras.h"
|
||
|
#include "llvm/ADT/StringRef.h"
|
||
|
#include "llvm/Analysis/AssumptionCache.h"
|
||
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
||
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
||
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
||
|
#include "llvm/Analysis/InlineAdvisor.h"
|
||
|
#include "llvm/Analysis/InlineCost.h"
|
||
|
#include "llvm/Analysis/LazyCallGraph.h"
|
||
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
||
|
#include "llvm/Analysis/ReplayInlineAdvisor.h"
|
||
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||
|
#include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
|
||
|
#include "llvm/IR/Attributes.h"
|
||
|
#include "llvm/IR/BasicBlock.h"
|
||
|
#include "llvm/IR/DebugLoc.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
#include "llvm/IR/DiagnosticInfo.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/InstIterator.h"
|
||
|
#include "llvm/IR/Instruction.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/Metadata.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/IR/PassManager.h"
|
||
|
#include "llvm/IR/User.h"
|
||
|
#include "llvm/IR/Value.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/Support/Casting.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
|
||
|
#include "llvm/Transforms/Utils/Cloning.h"
|
||
|
#include "llvm/Transforms/Utils/Local.h"
|
||
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
||
|
#include <algorithm>
|
||
|
#include <cassert>
|
||
|
#include <functional>
|
||
|
#include <utility>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "inline"
|
||
|
|
||
|
STATISTIC(NumInlined, "Number of functions inlined");
|
||
|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
|
||
|
|
||
|
static cl::opt<int> IntraSCCCostMultiplier(
|
||
|
"intra-scc-cost-multiplier", cl::init(2), cl::Hidden,
|
||
|
cl::desc(
|
||
|
"Cost multiplier to multiply onto inlined call sites where the "
|
||
|
"new call was previously an intra-SCC call (not relevant when the "
|
||
|
"original call was already intra-SCC). This can accumulate over "
|
||
|
"multiple inlinings (e.g. if a call site already had a cost "
|
||
|
"multiplier and one of its inlined calls was also subject to "
|
||
|
"this, the inlined call would have the original multiplier "
|
||
|
"multiplied by intra-scc-cost-multiplier). This is to prevent tons of "
|
||
|
"inlining through a child SCC which can cause terrible compile times"));
|
||
|
|
||
|
/// A flag for test, so we can print the content of the advisor when running it
|
||
|
/// as part of the default (e.g. -O3) pipeline.
|
||
|
static cl::opt<bool> KeepAdvisorForPrinting("keep-inline-advisor-for-printing",
|
||
|
cl::init(false), cl::Hidden);
|
||
|
|
||
|
/// Allows printing the contents of the advisor after each SCC inliner pass.
|
||
|
static cl::opt<bool>
|
||
|
EnablePostSCCAdvisorPrinting("enable-scc-inline-advisor-printing",
|
||
|
cl::init(false), cl::Hidden);
|
||
|
|
||
|
|
||
|
static cl::opt<std::string> CGSCCInlineReplayFile(
|
||
|
"cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
|
||
|
cl::desc(
|
||
|
"Optimization remarks file containing inline remarks to be replayed "
|
||
|
"by cgscc inlining."),
|
||
|
cl::Hidden);
|
||
|
|
||
|
static cl::opt<ReplayInlinerSettings::Scope> CGSCCInlineReplayScope(
|
||
|
"cgscc-inline-replay-scope",
|
||
|
cl::init(ReplayInlinerSettings::Scope::Function),
|
||
|
cl::values(clEnumValN(ReplayInlinerSettings::Scope::Function, "Function",
|
||
|
"Replay on functions that have remarks associated "
|
||
|
"with them (default)"),
|
||
|
clEnumValN(ReplayInlinerSettings::Scope::Module, "Module",
|
||
|
"Replay on the entire module")),
|
||
|
cl::desc("Whether inline replay should be applied to the entire "
|
||
|
"Module or just the Functions (default) that are present as "
|
||
|
"callers in remarks during cgscc inlining."),
|
||
|
cl::Hidden);
|
||
|
|
||
|
static cl::opt<ReplayInlinerSettings::Fallback> CGSCCInlineReplayFallback(
|
||
|
"cgscc-inline-replay-fallback",
|
||
|
cl::init(ReplayInlinerSettings::Fallback::Original),
|
||
|
cl::values(
|
||
|
clEnumValN(
|
||
|
ReplayInlinerSettings::Fallback::Original, "Original",
|
||
|
"All decisions not in replay send to original advisor (default)"),
|
||
|
clEnumValN(ReplayInlinerSettings::Fallback::AlwaysInline,
|
||
|
"AlwaysInline", "All decisions not in replay are inlined"),
|
||
|
clEnumValN(ReplayInlinerSettings::Fallback::NeverInline, "NeverInline",
|
||
|
"All decisions not in replay are not inlined")),
|
||
|
cl::desc(
|
||
|
"How cgscc inline replay treats sites that don't come from the replay. "
|
||
|
"Original: defers to original advisor, AlwaysInline: inline all sites "
|
||
|
"not in replay, NeverInline: inline no sites not in replay"),
|
||
|
cl::Hidden);
|
||
|
|
||
|
static cl::opt<CallSiteFormat::Format> CGSCCInlineReplayFormat(
|
||
|
"cgscc-inline-replay-format",
|
||
|
cl::init(CallSiteFormat::Format::LineColumnDiscriminator),
|
||
|
cl::values(
|
||
|
clEnumValN(CallSiteFormat::Format::Line, "Line", "<Line Number>"),
|
||
|
clEnumValN(CallSiteFormat::Format::LineColumn, "LineColumn",
|
||
|
"<Line Number>:<Column Number>"),
|
||
|
clEnumValN(CallSiteFormat::Format::LineDiscriminator,
|
||
|
"LineDiscriminator", "<Line Number>.<Discriminator>"),
|
||
|
clEnumValN(CallSiteFormat::Format::LineColumnDiscriminator,
|
||
|
"LineColumnDiscriminator",
|
||
|
"<Line Number>:<Column Number>.<Discriminator> (default)")),
|
||
|
cl::desc("How cgscc inline replay file is formatted"), cl::Hidden);
|
||
|
|
||
|
/// Return true if the specified inline history ID
|
||
|
/// indicates an inline history that includes the specified function.
|
||
|
static bool inlineHistoryIncludes(
|
||
|
Function *F, int InlineHistoryID,
|
||
|
const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
|
||
|
while (InlineHistoryID != -1) {
|
||
|
assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
|
||
|
"Invalid inline history ID");
|
||
|
if (InlineHistory[InlineHistoryID].first == F)
|
||
|
return true;
|
||
|
InlineHistoryID = InlineHistory[InlineHistoryID].second;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
InlineAdvisor &
|
||
|
InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
|
||
|
FunctionAnalysisManager &FAM, Module &M) {
|
||
|
if (OwnedAdvisor)
|
||
|
return *OwnedAdvisor;
|
||
|
|
||
|
auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
|
||
|
if (!IAA) {
|
||
|
// It should still be possible to run the inliner as a stand-alone SCC pass,
|
||
|
// for test scenarios. In that case, we default to the
|
||
|
// DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
|
||
|
// runs. It also uses just the default InlineParams.
|
||
|
// In this case, we need to use the provided FAM, which is valid for the
|
||
|
// duration of the inliner pass, and thus the lifetime of the owned advisor.
|
||
|
// The one we would get from the MAM can be invalidated as a result of the
|
||
|
// inliner's activity.
|
||
|
OwnedAdvisor = std::make_unique<DefaultInlineAdvisor>(
|
||
|
M, FAM, getInlineParams(),
|
||
|
InlineContext{LTOPhase, InlinePass::CGSCCInliner});
|
||
|
|
||
|
if (!CGSCCInlineReplayFile.empty())
|
||
|
OwnedAdvisor = getReplayInlineAdvisor(
|
||
|
M, FAM, M.getContext(), std::move(OwnedAdvisor),
|
||
|
ReplayInlinerSettings{CGSCCInlineReplayFile,
|
||
|
CGSCCInlineReplayScope,
|
||
|
CGSCCInlineReplayFallback,
|
||
|
{CGSCCInlineReplayFormat}},
|
||
|
/*EmitRemarks=*/true,
|
||
|
InlineContext{LTOPhase, InlinePass::ReplayCGSCCInliner});
|
||
|
|
||
|
return *OwnedAdvisor;
|
||
|
}
|
||
|
assert(IAA->getAdvisor() &&
|
||
|
"Expected a present InlineAdvisorAnalysis also have an "
|
||
|
"InlineAdvisor initialized");
|
||
|
return *IAA->getAdvisor();
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
|
||
|
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
|
||
|
CGSCCUpdateResult &UR) {
|
||
|
const auto &MAMProxy =
|
||
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
|
||
|
bool Changed = false;
|
||
|
|
||
|
assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
|
||
|
Module &M = *InitialC.begin()->getFunction().getParent();
|
||
|
ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
|
||
|
|
||
|
FunctionAnalysisManager &FAM =
|
||
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
|
||
|
.getManager();
|
||
|
|
||
|
InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
|
||
|
Advisor.onPassEntry(&InitialC);
|
||
|
|
||
|
auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(&InitialC); });
|
||
|
|
||
|
// We use a single common worklist for calls across the entire SCC. We
|
||
|
// process these in-order and append new calls introduced during inlining to
|
||
|
// the end. The PriorityInlineOrder is optional here, in which the smaller
|
||
|
// callee would have a higher priority to inline.
|
||
|
//
|
||
|
// Note that this particular order of processing is actually critical to
|
||
|
// avoid very bad behaviors. Consider *highly connected* call graphs where
|
||
|
// each function contains a small amount of code and a couple of calls to
|
||
|
// other functions. Because the LLVM inliner is fundamentally a bottom-up
|
||
|
// inliner, it can handle gracefully the fact that these all appear to be
|
||
|
// reasonable inlining candidates as it will flatten things until they become
|
||
|
// too big to inline, and then move on and flatten another batch.
|
||
|
//
|
||
|
// However, when processing call edges *within* an SCC we cannot rely on this
|
||
|
// bottom-up behavior. As a consequence, with heavily connected *SCCs* of
|
||
|
// functions we can end up incrementally inlining N calls into each of
|
||
|
// N functions because each incremental inlining decision looks good and we
|
||
|
// don't have a topological ordering to prevent explosions.
|
||
|
//
|
||
|
// To compensate for this, we don't process transitive edges made immediate
|
||
|
// by inlining until we've done one pass of inlining across the entire SCC.
|
||
|
// Large, highly connected SCCs still lead to some amount of code bloat in
|
||
|
// this model, but it is uniformly spread across all the functions in the SCC
|
||
|
// and eventually they all become too large to inline, rather than
|
||
|
// incrementally maknig a single function grow in a super linear fashion.
|
||
|
SmallVector<std::pair<CallBase *, int>, 16> Calls;
|
||
|
|
||
|
// Populate the initial list of calls in this SCC.
|
||
|
for (auto &N : InitialC) {
|
||
|
auto &ORE =
|
||
|
FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
|
||
|
// We want to generally process call sites top-down in order for
|
||
|
// simplifications stemming from replacing the call with the returned value
|
||
|
// after inlining to be visible to subsequent inlining decisions.
|
||
|
// FIXME: Using instructions sequence is a really bad way to do this.
|
||
|
// Instead we should do an actual RPO walk of the function body.
|
||
|
for (Instruction &I : instructions(N.getFunction()))
|
||
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
||
|
if (Function *Callee = CB->getCalledFunction()) {
|
||
|
if (!Callee->isDeclaration())
|
||
|
Calls.push_back({CB, -1});
|
||
|
else if (!isa<IntrinsicInst>(I)) {
|
||
|
using namespace ore;
|
||
|
setInlineRemark(*CB, "unavailable definition");
|
||
|
ORE.emit([&]() {
|
||
|
return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
|
||
|
<< NV("Callee", Callee) << " will not be inlined into "
|
||
|
<< NV("Caller", CB->getCaller())
|
||
|
<< " because its definition is unavailable"
|
||
|
<< setIsVerbose();
|
||
|
});
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (Calls.empty())
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
// Capture updatable variable for the current SCC.
|
||
|
auto *C = &InitialC;
|
||
|
|
||
|
// When inlining a callee produces new call sites, we want to keep track of
|
||
|
// the fact that they were inlined from the callee. This allows us to avoid
|
||
|
// infinite inlining in some obscure cases. To represent this, we use an
|
||
|
// index into the InlineHistory vector.
|
||
|
SmallVector<std::pair<Function *, int>, 16> InlineHistory;
|
||
|
|
||
|
// Track a set vector of inlined callees so that we can augment the caller
|
||
|
// with all of their edges in the call graph before pruning out the ones that
|
||
|
// got simplified away.
|
||
|
SmallSetVector<Function *, 4> InlinedCallees;
|
||
|
|
||
|
// Track the dead functions to delete once finished with inlining calls. We
|
||
|
// defer deleting these to make it easier to handle the call graph updates.
|
||
|
SmallVector<Function *, 4> DeadFunctions;
|
||
|
|
||
|
// Track potentially dead non-local functions with comdats to see if they can
|
||
|
// be deleted as a batch after inlining.
|
||
|
SmallVector<Function *, 4> DeadFunctionsInComdats;
|
||
|
|
||
|
// Loop forward over all of the calls. Note that we cannot cache the size as
|
||
|
// inlining can introduce new calls that need to be processed.
|
||
|
for (int I = 0; I < (int)Calls.size(); ++I) {
|
||
|
// We expect the calls to typically be batched with sequences of calls that
|
||
|
// have the same caller, so we first set up some shared infrastructure for
|
||
|
// this caller. We also do any pruning we can at this layer on the caller
|
||
|
// alone.
|
||
|
Function &F = *Calls[I].first->getCaller();
|
||
|
LazyCallGraph::Node &N = *CG.lookup(F);
|
||
|
if (CG.lookupSCC(N) != C)
|
||
|
continue;
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
|
||
|
<< " Function size: " << F.getInstructionCount()
|
||
|
<< "\n");
|
||
|
|
||
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
||
|
return FAM.getResult<AssumptionAnalysis>(F);
|
||
|
};
|
||
|
|
||
|
// Now process as many calls as we have within this caller in the sequence.
|
||
|
// We bail out as soon as the caller has to change so we can update the
|
||
|
// call graph and prepare the context of that new caller.
|
||
|
bool DidInline = false;
|
||
|
for (; I < (int)Calls.size() && Calls[I].first->getCaller() == &F; ++I) {
|
||
|
auto &P = Calls[I];
|
||
|
CallBase *CB = P.first;
|
||
|
const int InlineHistoryID = P.second;
|
||
|
Function &Callee = *CB->getCalledFunction();
|
||
|
|
||
|
if (InlineHistoryID != -1 &&
|
||
|
inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
|
||
|
LLVM_DEBUG(dbgs() << "Skipping inlining due to history: " << F.getName()
|
||
|
<< " -> " << Callee.getName() << "\n");
|
||
|
setInlineRemark(*CB, "recursive");
|
||
|
// Set noinline so that we don't forget this decision across CGSCC
|
||
|
// iterations.
|
||
|
CB->setIsNoInline();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Check if this inlining may repeat breaking an SCC apart that has
|
||
|
// already been split once before. In that case, inlining here may
|
||
|
// trigger infinite inlining, much like is prevented within the inliner
|
||
|
// itself by the InlineHistory above, but spread across CGSCC iterations
|
||
|
// and thus hidden from the full inline history.
|
||
|
LazyCallGraph::SCC *CalleeSCC = CG.lookupSCC(*CG.lookup(Callee));
|
||
|
if (CalleeSCC == C && UR.InlinedInternalEdges.count({&N, C})) {
|
||
|
LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
|
||
|
"previously split out of this SCC by inlining: "
|
||
|
<< F.getName() << " -> " << Callee.getName() << "\n");
|
||
|
setInlineRemark(*CB, "recursive SCC split");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
std::unique_ptr<InlineAdvice> Advice =
|
||
|
Advisor.getAdvice(*CB, OnlyMandatory);
|
||
|
|
||
|
// Check whether we want to inline this callsite.
|
||
|
if (!Advice)
|
||
|
continue;
|
||
|
|
||
|
if (!Advice->isInliningRecommended()) {
|
||
|
Advice->recordUnattemptedInlining();
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
int CBCostMult =
|
||
|
getStringFnAttrAsInt(
|
||
|
*CB, InlineConstants::FunctionInlineCostMultiplierAttributeName)
|
||
|
.value_or(1);
|
||
|
|
||
|
// Setup the data structure used to plumb customization into the
|
||
|
// `InlineFunction` routine.
|
||
|
InlineFunctionInfo IFI(
|
||
|
GetAssumptionCache, PSI,
|
||
|
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
|
||
|
&FAM.getResult<BlockFrequencyAnalysis>(Callee));
|
||
|
|
||
|
InlineResult IR =
|
||
|
InlineFunction(*CB, IFI, /*MergeAttributes=*/true,
|
||
|
&FAM.getResult<AAManager>(*CB->getCaller()));
|
||
|
if (!IR.isSuccess()) {
|
||
|
Advice->recordUnsuccessfulInlining(IR);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
DidInline = true;
|
||
|
InlinedCallees.insert(&Callee);
|
||
|
++NumInlined;
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << " Size after inlining: "
|
||
|
<< F.getInstructionCount() << "\n");
|
||
|
|
||
|
// Add any new callsites to defined functions to the worklist.
|
||
|
if (!IFI.InlinedCallSites.empty()) {
|
||
|
int NewHistoryID = InlineHistory.size();
|
||
|
InlineHistory.push_back({&Callee, InlineHistoryID});
|
||
|
|
||
|
for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
|
||
|
Function *NewCallee = ICB->getCalledFunction();
|
||
|
assert(!(NewCallee && NewCallee->isIntrinsic()) &&
|
||
|
"Intrinsic calls should not be tracked.");
|
||
|
if (!NewCallee) {
|
||
|
// Try to promote an indirect (virtual) call without waiting for
|
||
|
// the post-inline cleanup and the next DevirtSCCRepeatedPass
|
||
|
// iteration because the next iteration may not happen and we may
|
||
|
// miss inlining it.
|
||
|
if (tryPromoteCall(*ICB))
|
||
|
NewCallee = ICB->getCalledFunction();
|
||
|
}
|
||
|
if (NewCallee) {
|
||
|
if (!NewCallee->isDeclaration()) {
|
||
|
Calls.push_back({ICB, NewHistoryID});
|
||
|
// Continually inlining through an SCC can result in huge compile
|
||
|
// times and bloated code since we arbitrarily stop at some point
|
||
|
// when the inliner decides it's not profitable to inline anymore.
|
||
|
// We attempt to mitigate this by making these calls exponentially
|
||
|
// more expensive.
|
||
|
// This doesn't apply to calls in the same SCC since if we do
|
||
|
// inline through the SCC the function will end up being
|
||
|
// self-recursive which the inliner bails out on, and inlining
|
||
|
// within an SCC is necessary for performance.
|
||
|
if (CalleeSCC != C &&
|
||
|
CalleeSCC == CG.lookupSCC(CG.get(*NewCallee))) {
|
||
|
Attribute NewCBCostMult = Attribute::get(
|
||
|
M.getContext(),
|
||
|
InlineConstants::FunctionInlineCostMultiplierAttributeName,
|
||
|
itostr(CBCostMult * IntraSCCCostMultiplier));
|
||
|
ICB->addFnAttr(NewCBCostMult);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For local functions or discardable functions without comdats, check
|
||
|
// whether this makes the callee trivially dead. In that case, we can drop
|
||
|
// the body of the function eagerly which may reduce the number of callers
|
||
|
// of other functions to one, changing inline cost thresholds. Non-local
|
||
|
// discardable functions with comdats are checked later on.
|
||
|
bool CalleeWasDeleted = false;
|
||
|
if (Callee.isDiscardableIfUnused() && Callee.hasZeroLiveUses() &&
|
||
|
!CG.isLibFunction(Callee)) {
|
||
|
if (Callee.hasLocalLinkage() || !Callee.hasComdat()) {
|
||
|
Calls.erase(
|
||
|
std::remove_if(Calls.begin() + I + 1, Calls.end(),
|
||
|
[&](const std::pair<CallBase *, int> &Call) {
|
||
|
return Call.first->getCaller() == &Callee;
|
||
|
}),
|
||
|
Calls.end());
|
||
|
|
||
|
// Clear the body and queue the function itself for deletion when we
|
||
|
// finish inlining and call graph updates.
|
||
|
// Note that after this point, it is an error to do anything other
|
||
|
// than use the callee's address or delete it.
|
||
|
Callee.dropAllReferences();
|
||
|
assert(!is_contained(DeadFunctions, &Callee) &&
|
||
|
"Cannot put cause a function to become dead twice!");
|
||
|
DeadFunctions.push_back(&Callee);
|
||
|
CalleeWasDeleted = true;
|
||
|
} else {
|
||
|
DeadFunctionsInComdats.push_back(&Callee);
|
||
|
}
|
||
|
}
|
||
|
if (CalleeWasDeleted)
|
||
|
Advice->recordInliningWithCalleeDeleted();
|
||
|
else
|
||
|
Advice->recordInlining();
|
||
|
}
|
||
|
|
||
|
// Back the call index up by one to put us in a good position to go around
|
||
|
// the outer loop.
|
||
|
--I;
|
||
|
|
||
|
if (!DidInline)
|
||
|
continue;
|
||
|
Changed = true;
|
||
|
|
||
|
// At this point, since we have made changes we have at least removed
|
||
|
// a call instruction. However, in the process we do some incremental
|
||
|
// simplification of the surrounding code. This simplification can
|
||
|
// essentially do all of the same things as a function pass and we can
|
||
|
// re-use the exact same logic for updating the call graph to reflect the
|
||
|
// change.
|
||
|
|
||
|
// Inside the update, we also update the FunctionAnalysisManager in the
|
||
|
// proxy for this particular SCC. We do this as the SCC may have changed and
|
||
|
// as we're going to mutate this particular function we want to make sure
|
||
|
// the proxy is in place to forward any invalidation events.
|
||
|
LazyCallGraph::SCC *OldC = C;
|
||
|
C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
|
||
|
LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
|
||
|
|
||
|
// If this causes an SCC to split apart into multiple smaller SCCs, there
|
||
|
// is a subtle risk we need to prepare for. Other transformations may
|
||
|
// expose an "infinite inlining" opportunity later, and because of the SCC
|
||
|
// mutation, we will revisit this function and potentially re-inline. If we
|
||
|
// do, and that re-inlining also has the potentially to mutate the SCC
|
||
|
// structure, the infinite inlining problem can manifest through infinite
|
||
|
// SCC splits and merges. To avoid this, we capture the originating caller
|
||
|
// node and the SCC containing the call edge. This is a slight over
|
||
|
// approximation of the possible inlining decisions that must be avoided,
|
||
|
// but is relatively efficient to store. We use C != OldC to know when
|
||
|
// a new SCC is generated and the original SCC may be generated via merge
|
||
|
// in later iterations.
|
||
|
//
|
||
|
// It is also possible that even if no new SCC is generated
|
||
|
// (i.e., C == OldC), the original SCC could be split and then merged
|
||
|
// into the same one as itself. and the original SCC will be added into
|
||
|
// UR.CWorklist again, we want to catch such cases too.
|
||
|
//
|
||
|
// FIXME: This seems like a very heavyweight way of retaining the inline
|
||
|
// history, we should look for a more efficient way of tracking it.
|
||
|
if ((C != OldC || UR.CWorklist.count(OldC)) &&
|
||
|
llvm::any_of(InlinedCallees, [&](Function *Callee) {
|
||
|
return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
|
||
|
})) {
|
||
|
LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
|
||
|
"retaining this to avoid infinite inlining.\n");
|
||
|
UR.InlinedInternalEdges.insert({&N, OldC});
|
||
|
}
|
||
|
InlinedCallees.clear();
|
||
|
|
||
|
// Invalidate analyses for this function now so that we don't have to
|
||
|
// invalidate analyses for all functions in this SCC later.
|
||
|
FAM.invalidate(F, PreservedAnalyses::none());
|
||
|
}
|
||
|
|
||
|
// We must ensure that we only delete functions with comdats if every function
|
||
|
// in the comdat is going to be deleted.
|
||
|
if (!DeadFunctionsInComdats.empty()) {
|
||
|
filterDeadComdatFunctions(DeadFunctionsInComdats);
|
||
|
for (auto *Callee : DeadFunctionsInComdats)
|
||
|
Callee->dropAllReferences();
|
||
|
DeadFunctions.append(DeadFunctionsInComdats);
|
||
|
}
|
||
|
|
||
|
// Now that we've finished inlining all of the calls across this SCC, delete
|
||
|
// all of the trivially dead functions, updating the call graph and the CGSCC
|
||
|
// pass manager in the process.
|
||
|
//
|
||
|
// Note that this walks a pointer set which has non-deterministic order but
|
||
|
// that is OK as all we do is delete things and add pointers to unordered
|
||
|
// sets.
|
||
|
for (Function *DeadF : DeadFunctions) {
|
||
|
// Get the necessary information out of the call graph and nuke the
|
||
|
// function there. Also, clear out any cached analyses.
|
||
|
auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
|
||
|
FAM.clear(*DeadF, DeadF->getName());
|
||
|
AM.clear(DeadC, DeadC.getName());
|
||
|
auto &DeadRC = DeadC.getOuterRefSCC();
|
||
|
CG.removeDeadFunction(*DeadF);
|
||
|
|
||
|
// Mark the relevant parts of the call graph as invalid so we don't visit
|
||
|
// them.
|
||
|
UR.InvalidatedSCCs.insert(&DeadC);
|
||
|
UR.InvalidatedRefSCCs.insert(&DeadRC);
|
||
|
|
||
|
// If the updated SCC was the one containing the deleted function, clear it.
|
||
|
if (&DeadC == UR.UpdatedC)
|
||
|
UR.UpdatedC = nullptr;
|
||
|
|
||
|
// And delete the actual function from the module.
|
||
|
M.getFunctionList().erase(DeadF);
|
||
|
|
||
|
++NumDeleted;
|
||
|
}
|
||
|
|
||
|
if (!Changed)
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
PreservedAnalyses PA;
|
||
|
// Even if we change the IR, we update the core CGSCC data structures and so
|
||
|
// can preserve the proxy to the function analysis manager.
|
||
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
||
|
// We have already invalidated all analyses on modified functions.
|
||
|
PA.preserveSet<AllAnalysesOn<Function>>();
|
||
|
return PA;
|
||
|
}
|
||
|
|
||
|
ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
|
||
|
bool MandatoryFirst,
|
||
|
InlineContext IC,
|
||
|
InliningAdvisorMode Mode,
|
||
|
unsigned MaxDevirtIterations)
|
||
|
: Params(Params), IC(IC), Mode(Mode),
|
||
|
MaxDevirtIterations(MaxDevirtIterations) {
|
||
|
// Run the inliner first. The theory is that we are walking bottom-up and so
|
||
|
// the callees have already been fully optimized, and we want to inline them
|
||
|
// into the callers so that our optimizations can reflect that.
|
||
|
// For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
|
||
|
// because it makes profile annotation in the backend inaccurate.
|
||
|
if (MandatoryFirst) {
|
||
|
PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
|
||
|
if (EnablePostSCCAdvisorPrinting)
|
||
|
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
|
||
|
}
|
||
|
PM.addPass(InlinerPass());
|
||
|
if (EnablePostSCCAdvisorPrinting)
|
||
|
PM.addPass(InlineAdvisorAnalysisPrinterPass(dbgs()));
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
|
||
|
ModuleAnalysisManager &MAM) {
|
||
|
auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
|
||
|
if (!IAA.tryCreate(Params, Mode,
|
||
|
{CGSCCInlineReplayFile,
|
||
|
CGSCCInlineReplayScope,
|
||
|
CGSCCInlineReplayFallback,
|
||
|
{CGSCCInlineReplayFormat}},
|
||
|
IC)) {
|
||
|
M.getContext().emitError(
|
||
|
"Could not setup Inlining Advisor for the requested "
|
||
|
"mode and/or options");
|
||
|
return PreservedAnalyses::all();
|
||
|
}
|
||
|
|
||
|
// We wrap the CGSCC pipeline in a devirtualization repeater. This will try
|
||
|
// to detect when we devirtualize indirect calls and iterate the SCC passes
|
||
|
// in that case to try and catch knock-on inlining or function attrs
|
||
|
// opportunities. Then we add it to the module pipeline by walking the SCCs
|
||
|
// in postorder (or bottom-up).
|
||
|
// If MaxDevirtIterations is 0, we just don't use the devirtualization
|
||
|
// wrapper.
|
||
|
if (MaxDevirtIterations == 0)
|
||
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
|
||
|
else
|
||
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
|
||
|
createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
|
||
|
|
||
|
MPM.addPass(std::move(AfterCGMPM));
|
||
|
MPM.run(M, MAM);
|
||
|
|
||
|
// Discard the InlineAdvisor, a subsequent inlining session should construct
|
||
|
// its own.
|
||
|
auto PA = PreservedAnalyses::all();
|
||
|
if (!KeepAdvisorForPrinting)
|
||
|
PA.abandon<InlineAdvisorAnalysis>();
|
||
|
return PA;
|
||
|
}
|
||
|
|
||
|
void InlinerPass::printPipeline(
|
||
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
||
|
static_cast<PassInfoMixin<InlinerPass> *>(this)->printPipeline(
|
||
|
OS, MapClassName2PassName);
|
||
|
if (OnlyMandatory)
|
||
|
OS << "<only-mandatory>";
|
||
|
}
|
||
|
|
||
|
void ModuleInlinerWrapperPass::printPipeline(
|
||
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
||
|
// Print some info about passes added to the wrapper. This is however
|
||
|
// incomplete as InlineAdvisorAnalysis part isn't included (which also depends
|
||
|
// on Params and Mode).
|
||
|
if (!MPM.isEmpty()) {
|
||
|
MPM.printPipeline(OS, MapClassName2PassName);
|
||
|
OS << ',';
|
||
|
}
|
||
|
OS << "cgscc(";
|
||
|
if (MaxDevirtIterations != 0)
|
||
|
OS << "devirt<" << MaxDevirtIterations << ">(";
|
||
|
PM.printPipeline(OS, MapClassName2PassName);
|
||
|
if (MaxDevirtIterations != 0)
|
||
|
OS << ')';
|
||
|
OS << ')';
|
||
|
}
|