1813 lines
64 KiB
C++
1813 lines
64 KiB
C++
|
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Eliminate conditions based on constraints collected from dominating
|
||
|
// conditions.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
#include "llvm/ADT/ScopeExit.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/Analysis/ConstraintSystem.h"
|
||
|
#include "llvm/Analysis/GlobalsModRef.h"
|
||
|
#include "llvm/Analysis/LoopInfo.h"
|
||
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||
|
#include "llvm/Analysis/ScalarEvolution.h"
|
||
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/IR/DataLayout.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/InstrTypes.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/PatternMatch.h"
|
||
|
#include "llvm/IR/Verifier.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/DebugCounter.h"
|
||
|
#include "llvm/Support/MathExtras.h"
|
||
|
#include "llvm/Transforms/Utils/Cloning.h"
|
||
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
||
|
|
||
|
#include <cmath>
|
||
|
#include <optional>
|
||
|
#include <string>
|
||
|
|
||
|
using namespace llvm;
|
||
|
using namespace PatternMatch;
|
||
|
|
||
|
#define DEBUG_TYPE "constraint-elimination"
|
||
|
|
||
|
STATISTIC(NumCondsRemoved, "Number of instructions removed");
|
||
|
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
|
||
|
"Controls which conditions are eliminated");
|
||
|
|
||
|
static cl::opt<unsigned>
|
||
|
MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
|
||
|
cl::desc("Maximum number of rows to keep in constraint system"));
|
||
|
|
||
|
static cl::opt<bool> DumpReproducers(
|
||
|
"constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
|
||
|
cl::desc("Dump IR to reproduce successful transformations."));
|
||
|
|
||
|
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
|
||
|
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
|
||
|
|
||
|
// A helper to multiply 2 signed integers where overflowing is allowed.
|
||
|
static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
|
||
|
int64_t Result;
|
||
|
MulOverflow(A, B, Result);
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
// A helper to add 2 signed integers where overflowing is allowed.
|
||
|
static int64_t addWithOverflow(int64_t A, int64_t B) {
|
||
|
int64_t Result;
|
||
|
AddOverflow(A, B, Result);
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
static Instruction *getContextInstForUse(Use &U) {
|
||
|
Instruction *UserI = cast<Instruction>(U.getUser());
|
||
|
if (auto *Phi = dyn_cast<PHINode>(UserI))
|
||
|
UserI = Phi->getIncomingBlock(U)->getTerminator();
|
||
|
return UserI;
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Struct to express a condition of the form %Op0 Pred %Op1.
|
||
|
struct ConditionTy {
|
||
|
CmpInst::Predicate Pred;
|
||
|
Value *Op0;
|
||
|
Value *Op1;
|
||
|
|
||
|
ConditionTy()
|
||
|
: Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {}
|
||
|
ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
|
||
|
: Pred(Pred), Op0(Op0), Op1(Op1) {}
|
||
|
};
|
||
|
|
||
|
/// Represents either
|
||
|
/// * a condition that holds on entry to a block (=condition fact)
|
||
|
/// * an assume (=assume fact)
|
||
|
/// * a use of a compare instruction to simplify.
|
||
|
/// It also tracks the Dominator DFS in and out numbers for each entry.
|
||
|
struct FactOrCheck {
|
||
|
enum class EntryTy {
|
||
|
ConditionFact, /// A condition that holds on entry to a block.
|
||
|
InstFact, /// A fact that holds after Inst executed (e.g. an assume or
|
||
|
/// min/mix intrinsic.
|
||
|
InstCheck, /// An instruction to simplify (e.g. an overflow math
|
||
|
/// intrinsics).
|
||
|
UseCheck /// An use of a compare instruction to simplify.
|
||
|
};
|
||
|
|
||
|
union {
|
||
|
Instruction *Inst;
|
||
|
Use *U;
|
||
|
ConditionTy Cond;
|
||
|
};
|
||
|
|
||
|
/// A pre-condition that must hold for the current fact to be added to the
|
||
|
/// system.
|
||
|
ConditionTy DoesHold;
|
||
|
|
||
|
unsigned NumIn;
|
||
|
unsigned NumOut;
|
||
|
EntryTy Ty;
|
||
|
|
||
|
FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
|
||
|
: Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
|
||
|
Ty(Ty) {}
|
||
|
|
||
|
FactOrCheck(DomTreeNode *DTN, Use *U)
|
||
|
: U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr),
|
||
|
NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
|
||
|
Ty(EntryTy::UseCheck) {}
|
||
|
|
||
|
FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
||
|
ConditionTy Precond = ConditionTy())
|
||
|
: Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()),
|
||
|
NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
|
||
|
|
||
|
static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
|
||
|
Value *Op0, Value *Op1,
|
||
|
ConditionTy Precond = ConditionTy()) {
|
||
|
return FactOrCheck(DTN, Pred, Op0, Op1, Precond);
|
||
|
}
|
||
|
|
||
|
static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
|
||
|
return FactOrCheck(EntryTy::InstFact, DTN, Inst);
|
||
|
}
|
||
|
|
||
|
static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
|
||
|
return FactOrCheck(DTN, U);
|
||
|
}
|
||
|
|
||
|
static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
|
||
|
return FactOrCheck(EntryTy::InstCheck, DTN, CI);
|
||
|
}
|
||
|
|
||
|
bool isCheck() const {
|
||
|
return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
|
||
|
}
|
||
|
|
||
|
Instruction *getContextInst() const {
|
||
|
if (Ty == EntryTy::UseCheck)
|
||
|
return getContextInstForUse(*U);
|
||
|
return Inst;
|
||
|
}
|
||
|
|
||
|
Instruction *getInstructionToSimplify() const {
|
||
|
assert(isCheck());
|
||
|
if (Ty == EntryTy::InstCheck)
|
||
|
return Inst;
|
||
|
// The use may have been simplified to a constant already.
|
||
|
return dyn_cast<Instruction>(*U);
|
||
|
}
|
||
|
|
||
|
bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
|
||
|
};
|
||
|
|
||
|
/// Keep state required to build worklist.
|
||
|
struct State {
|
||
|
DominatorTree &DT;
|
||
|
LoopInfo &LI;
|
||
|
ScalarEvolution &SE;
|
||
|
SmallVector<FactOrCheck, 64> WorkList;
|
||
|
|
||
|
State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE)
|
||
|
: DT(DT), LI(LI), SE(SE) {}
|
||
|
|
||
|
/// Process block \p BB and add known facts to work-list.
|
||
|
void addInfoFor(BasicBlock &BB);
|
||
|
|
||
|
/// Try to add facts for loop inductions (AddRecs) in EQ/NE compares
|
||
|
/// controlling the loop header.
|
||
|
void addInfoForInductions(BasicBlock &BB);
|
||
|
|
||
|
/// Returns true if we can add a known condition from BB to its successor
|
||
|
/// block Succ.
|
||
|
bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
|
||
|
return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class ConstraintInfo;
|
||
|
|
||
|
struct StackEntry {
|
||
|
unsigned NumIn;
|
||
|
unsigned NumOut;
|
||
|
bool IsSigned = false;
|
||
|
/// Variables that can be removed from the system once the stack entry gets
|
||
|
/// removed.
|
||
|
SmallVector<Value *, 2> ValuesToRelease;
|
||
|
|
||
|
StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
|
||
|
SmallVector<Value *, 2> ValuesToRelease)
|
||
|
: NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
|
||
|
ValuesToRelease(ValuesToRelease) {}
|
||
|
};
|
||
|
|
||
|
struct ConstraintTy {
|
||
|
SmallVector<int64_t, 8> Coefficients;
|
||
|
SmallVector<ConditionTy, 2> Preconditions;
|
||
|
|
||
|
SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
|
||
|
|
||
|
bool IsSigned = false;
|
||
|
|
||
|
ConstraintTy() = default;
|
||
|
|
||
|
ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
|
||
|
bool IsNe)
|
||
|
: Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) {
|
||
|
}
|
||
|
|
||
|
unsigned size() const { return Coefficients.size(); }
|
||
|
|
||
|
unsigned empty() const { return Coefficients.empty(); }
|
||
|
|
||
|
/// Returns true if all preconditions for this list of constraints are
|
||
|
/// satisfied given \p CS and the corresponding \p Value2Index mapping.
|
||
|
bool isValid(const ConstraintInfo &Info) const;
|
||
|
|
||
|
bool isEq() const { return IsEq; }
|
||
|
|
||
|
bool isNe() const { return IsNe; }
|
||
|
|
||
|
/// Check if the current constraint is implied by the given ConstraintSystem.
|
||
|
///
|
||
|
/// \return true or false if the constraint is proven to be respectively true,
|
||
|
/// or false. When the constraint cannot be proven to be either true or false,
|
||
|
/// std::nullopt is returned.
|
||
|
std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
|
||
|
|
||
|
private:
|
||
|
bool IsEq = false;
|
||
|
bool IsNe = false;
|
||
|
};
|
||
|
|
||
|
/// Wrapper encapsulating separate constraint systems and corresponding value
|
||
|
/// mappings for both unsigned and signed information. Facts are added to and
|
||
|
/// conditions are checked against the corresponding system depending on the
|
||
|
/// signed-ness of their predicates. While the information is kept separate
|
||
|
/// based on signed-ness, certain conditions can be transferred between the two
|
||
|
/// systems.
|
||
|
class ConstraintInfo {
|
||
|
|
||
|
ConstraintSystem UnsignedCS;
|
||
|
ConstraintSystem SignedCS;
|
||
|
|
||
|
const DataLayout &DL;
|
||
|
|
||
|
public:
|
||
|
ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
|
||
|
: UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {
|
||
|
auto &Value2Index = getValue2Index(false);
|
||
|
// Add Arg > -1 constraints to unsigned system for all function arguments.
|
||
|
for (Value *Arg : FunctionArgs) {
|
||
|
ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
|
||
|
false, false, false);
|
||
|
VarPos.Coefficients[Value2Index[Arg]] = -1;
|
||
|
UnsignedCS.addVariableRow(VarPos.Coefficients);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
|
||
|
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
|
||
|
}
|
||
|
const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
|
||
|
return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
|
||
|
}
|
||
|
|
||
|
ConstraintSystem &getCS(bool Signed) {
|
||
|
return Signed ? SignedCS : UnsignedCS;
|
||
|
}
|
||
|
const ConstraintSystem &getCS(bool Signed) const {
|
||
|
return Signed ? SignedCS : UnsignedCS;
|
||
|
}
|
||
|
|
||
|
void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
|
||
|
void popLastNVariables(bool Signed, unsigned N) {
|
||
|
getCS(Signed).popLastNVariables(N);
|
||
|
}
|
||
|
|
||
|
bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
|
||
|
|
||
|
void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
|
||
|
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
|
||
|
|
||
|
/// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
|
||
|
/// constraints, using indices from the corresponding constraint system.
|
||
|
/// New variables that need to be added to the system are collected in
|
||
|
/// \p NewVariables.
|
||
|
ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
||
|
SmallVectorImpl<Value *> &NewVariables) const;
|
||
|
|
||
|
/// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
|
||
|
/// constraints using getConstraint. Returns an empty constraint if the result
|
||
|
/// cannot be used to query the existing constraint system, e.g. because it
|
||
|
/// would require adding new variables. Also tries to convert signed
|
||
|
/// predicates to unsigned ones if possible to allow using the unsigned system
|
||
|
/// which increases the effectiveness of the signed <-> unsigned transfer
|
||
|
/// logic.
|
||
|
ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
|
||
|
Value *Op1) const;
|
||
|
|
||
|
/// Try to add information from \p A \p Pred \p B to the unsigned/signed
|
||
|
/// system if \p Pred is signed/unsigned.
|
||
|
void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
|
||
|
unsigned NumIn, unsigned NumOut,
|
||
|
SmallVectorImpl<StackEntry> &DFSInStack);
|
||
|
};
|
||
|
|
||
|
/// Represents a (Coefficient * Variable) entry after IR decomposition.
|
||
|
struct DecompEntry {
|
||
|
int64_t Coefficient;
|
||
|
Value *Variable;
|
||
|
/// True if the variable is known positive in the current constraint.
|
||
|
bool IsKnownNonNegative;
|
||
|
|
||
|
DecompEntry(int64_t Coefficient, Value *Variable,
|
||
|
bool IsKnownNonNegative = false)
|
||
|
: Coefficient(Coefficient), Variable(Variable),
|
||
|
IsKnownNonNegative(IsKnownNonNegative) {}
|
||
|
};
|
||
|
|
||
|
/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
|
||
|
struct Decomposition {
|
||
|
int64_t Offset = 0;
|
||
|
SmallVector<DecompEntry, 3> Vars;
|
||
|
|
||
|
Decomposition(int64_t Offset) : Offset(Offset) {}
|
||
|
Decomposition(Value *V, bool IsKnownNonNegative = false) {
|
||
|
Vars.emplace_back(1, V, IsKnownNonNegative);
|
||
|
}
|
||
|
Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
|
||
|
: Offset(Offset), Vars(Vars) {}
|
||
|
|
||
|
void add(int64_t OtherOffset) {
|
||
|
Offset = addWithOverflow(Offset, OtherOffset);
|
||
|
}
|
||
|
|
||
|
void add(const Decomposition &Other) {
|
||
|
add(Other.Offset);
|
||
|
append_range(Vars, Other.Vars);
|
||
|
}
|
||
|
|
||
|
void sub(const Decomposition &Other) {
|
||
|
Decomposition Tmp = Other;
|
||
|
Tmp.mul(-1);
|
||
|
add(Tmp.Offset);
|
||
|
append_range(Vars, Tmp.Vars);
|
||
|
}
|
||
|
|
||
|
void mul(int64_t Factor) {
|
||
|
Offset = multiplyWithOverflow(Offset, Factor);
|
||
|
for (auto &Var : Vars)
|
||
|
Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Variable and constant offsets for a chain of GEPs, with base pointer BasePtr.
|
||
|
struct OffsetResult {
|
||
|
Value *BasePtr;
|
||
|
APInt ConstantOffset;
|
||
|
MapVector<Value *, APInt> VariableOffsets;
|
||
|
bool AllInbounds;
|
||
|
|
||
|
OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {}
|
||
|
|
||
|
OffsetResult(GEPOperator &GEP, const DataLayout &DL)
|
||
|
: BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) {
|
||
|
ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0);
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
// Try to collect variable and constant offsets for \p GEP, partly traversing
|
||
|
// nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting
|
||
|
// the offset fails.
|
||
|
static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) {
|
||
|
OffsetResult Result(GEP, DL);
|
||
|
unsigned BitWidth = Result.ConstantOffset.getBitWidth();
|
||
|
if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets,
|
||
|
Result.ConstantOffset))
|
||
|
return {};
|
||
|
|
||
|
// If we have a nested GEP, check if we can combine the constant offset of the
|
||
|
// inner GEP with the outer GEP.
|
||
|
if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) {
|
||
|
MapVector<Value *, APInt> VariableOffsets2;
|
||
|
APInt ConstantOffset2(BitWidth, 0);
|
||
|
bool CanCollectInner = InnerGEP->collectOffset(
|
||
|
DL, BitWidth, VariableOffsets2, ConstantOffset2);
|
||
|
// TODO: Support cases with more than 1 variable offset.
|
||
|
if (!CanCollectInner || Result.VariableOffsets.size() > 1 ||
|
||
|
VariableOffsets2.size() > 1 ||
|
||
|
(Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) {
|
||
|
// More than 1 variable index, use outer result.
|
||
|
return Result;
|
||
|
}
|
||
|
Result.BasePtr = InnerGEP->getPointerOperand();
|
||
|
Result.ConstantOffset += ConstantOffset2;
|
||
|
if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1)
|
||
|
Result.VariableOffsets = VariableOffsets2;
|
||
|
Result.AllInbounds &= InnerGEP->isInBounds();
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
static Decomposition decompose(Value *V,
|
||
|
SmallVectorImpl<ConditionTy> &Preconditions,
|
||
|
bool IsSigned, const DataLayout &DL);
|
||
|
|
||
|
static bool canUseSExt(ConstantInt *CI) {
|
||
|
const APInt &Val = CI->getValue();
|
||
|
return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
|
||
|
}
|
||
|
|
||
|
static Decomposition decomposeGEP(GEPOperator &GEP,
|
||
|
SmallVectorImpl<ConditionTy> &Preconditions,
|
||
|
bool IsSigned, const DataLayout &DL) {
|
||
|
// Do not reason about pointers where the index size is larger than 64 bits,
|
||
|
// as the coefficients used to encode constraints are 64 bit integers.
|
||
|
if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
|
||
|
return &GEP;
|
||
|
|
||
|
assert(!IsSigned && "The logic below only supports decomposition for "
|
||
|
"unsigned predicates at the moment.");
|
||
|
const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] =
|
||
|
collectOffsets(GEP, DL);
|
||
|
if (!BasePtr || !AllInbounds)
|
||
|
return &GEP;
|
||
|
|
||
|
Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr));
|
||
|
for (auto [Index, Scale] : VariableOffsets) {
|
||
|
auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
|
||
|
IdxResult.mul(Scale.getSExtValue());
|
||
|
Result.add(IdxResult);
|
||
|
|
||
|
// If Op0 is signed non-negative, the GEP is increasing monotonically and
|
||
|
// can be de-composed.
|
||
|
if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
||
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
|
||
|
ConstantInt::get(Index->getType(), 0));
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
// Decomposes \p V into a constant offset + list of pairs { Coefficient,
|
||
|
// Variable } where Coefficient * Variable. The sum of the constant offset and
|
||
|
// pairs equals \p V.
|
||
|
static Decomposition decompose(Value *V,
|
||
|
SmallVectorImpl<ConditionTy> &Preconditions,
|
||
|
bool IsSigned, const DataLayout &DL) {
|
||
|
|
||
|
auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
|
||
|
bool IsSignedB) {
|
||
|
auto ResA = decompose(A, Preconditions, IsSigned, DL);
|
||
|
auto ResB = decompose(B, Preconditions, IsSignedB, DL);
|
||
|
ResA.add(ResB);
|
||
|
return ResA;
|
||
|
};
|
||
|
|
||
|
Type *Ty = V->getType()->getScalarType();
|
||
|
if (Ty->isPointerTy() && !IsSigned) {
|
||
|
if (auto *GEP = dyn_cast<GEPOperator>(V))
|
||
|
return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
|
||
|
if (isa<ConstantPointerNull>(V))
|
||
|
return int64_t(0);
|
||
|
|
||
|
return V;
|
||
|
}
|
||
|
|
||
|
// Don't handle integers > 64 bit. Our coefficients are 64-bit large, so
|
||
|
// coefficient add/mul may wrap, while the operation in the full bit width
|
||
|
// would not.
|
||
|
if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64)
|
||
|
return V;
|
||
|
|
||
|
// Decompose \p V used with a signed predicate.
|
||
|
if (IsSigned) {
|
||
|
if (auto *CI = dyn_cast<ConstantInt>(V)) {
|
||
|
if (canUseSExt(CI))
|
||
|
return CI->getSExtValue();
|
||
|
}
|
||
|
Value *Op0;
|
||
|
Value *Op1;
|
||
|
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
|
||
|
return MergeResults(Op0, Op1, IsSigned);
|
||
|
|
||
|
ConstantInt *CI;
|
||
|
if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
|
||
|
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
|
||
|
Result.mul(CI->getSExtValue());
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
// (shl nsw x, shift) is (mul nsw x, (1<<shift)), with the exception of
|
||
|
// shift == bw-1.
|
||
|
if (match(V, m_NSWShl(m_Value(Op0), m_ConstantInt(CI)))) {
|
||
|
uint64_t Shift = CI->getValue().getLimitedValue();
|
||
|
if (Shift < Ty->getIntegerBitWidth() - 1) {
|
||
|
assert(Shift < 64 && "Would overflow");
|
||
|
auto Result = decompose(Op0, Preconditions, IsSigned, DL);
|
||
|
Result.mul(int64_t(1) << Shift);
|
||
|
return Result;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return V;
|
||
|
}
|
||
|
|
||
|
if (auto *CI = dyn_cast<ConstantInt>(V)) {
|
||
|
if (CI->uge(MaxConstraintValue))
|
||
|
return V;
|
||
|
return int64_t(CI->getZExtValue());
|
||
|
}
|
||
|
|
||
|
Value *Op0;
|
||
|
bool IsKnownNonNegative = false;
|
||
|
if (match(V, m_ZExt(m_Value(Op0)))) {
|
||
|
IsKnownNonNegative = true;
|
||
|
V = Op0;
|
||
|
}
|
||
|
|
||
|
Value *Op1;
|
||
|
ConstantInt *CI;
|
||
|
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
|
||
|
return MergeResults(Op0, Op1, IsSigned);
|
||
|
}
|
||
|
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
|
||
|
if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
||
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
|
||
|
ConstantInt::get(Op0->getType(), 0));
|
||
|
if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
||
|
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
|
||
|
ConstantInt::get(Op1->getType(), 0));
|
||
|
|
||
|
return MergeResults(Op0, Op1, IsSigned);
|
||
|
}
|
||
|
|
||
|
if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
|
||
|
canUseSExt(CI)) {
|
||
|
Preconditions.emplace_back(
|
||
|
CmpInst::ICMP_UGE, Op0,
|
||
|
ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
|
||
|
return MergeResults(Op0, CI, true);
|
||
|
}
|
||
|
|
||
|
// Decompose or as an add if there are no common bits between the operands.
|
||
|
if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI))))
|
||
|
return MergeResults(Op0, CI, IsSigned);
|
||
|
|
||
|
if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
|
||
|
if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
|
||
|
return {V, IsKnownNonNegative};
|
||
|
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
|
||
|
Result.mul(int64_t{1} << CI->getSExtValue());
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
|
||
|
(!CI->isNegative())) {
|
||
|
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
|
||
|
Result.mul(CI->getSExtValue());
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) {
|
||
|
auto ResA = decompose(Op0, Preconditions, IsSigned, DL);
|
||
|
auto ResB = decompose(Op1, Preconditions, IsSigned, DL);
|
||
|
ResA.sub(ResB);
|
||
|
return ResA;
|
||
|
}
|
||
|
|
||
|
return {V, IsKnownNonNegative};
|
||
|
}
|
||
|
|
||
|
ConstraintTy
|
||
|
ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
|
||
|
SmallVectorImpl<Value *> &NewVariables) const {
|
||
|
assert(NewVariables.empty() && "NewVariables must be empty when passed in");
|
||
|
bool IsEq = false;
|
||
|
bool IsNe = false;
|
||
|
|
||
|
// Try to convert Pred to one of ULE/SLT/SLE/SLT.
|
||
|
switch (Pred) {
|
||
|
case CmpInst::ICMP_UGT:
|
||
|
case CmpInst::ICMP_UGE:
|
||
|
case CmpInst::ICMP_SGT:
|
||
|
case CmpInst::ICMP_SGE: {
|
||
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
||
|
std::swap(Op0, Op1);
|
||
|
break;
|
||
|
}
|
||
|
case CmpInst::ICMP_EQ:
|
||
|
if (match(Op1, m_Zero())) {
|
||
|
Pred = CmpInst::ICMP_ULE;
|
||
|
} else {
|
||
|
IsEq = true;
|
||
|
Pred = CmpInst::ICMP_ULE;
|
||
|
}
|
||
|
break;
|
||
|
case CmpInst::ICMP_NE:
|
||
|
if (match(Op1, m_Zero())) {
|
||
|
Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
|
||
|
std::swap(Op0, Op1);
|
||
|
} else {
|
||
|
IsNe = true;
|
||
|
Pred = CmpInst::ICMP_ULE;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
|
||
|
Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
|
||
|
return {};
|
||
|
|
||
|
SmallVector<ConditionTy, 4> Preconditions;
|
||
|
bool IsSigned = CmpInst::isSigned(Pred);
|
||
|
auto &Value2Index = getValue2Index(IsSigned);
|
||
|
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
|
||
|
Preconditions, IsSigned, DL);
|
||
|
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
|
||
|
Preconditions, IsSigned, DL);
|
||
|
int64_t Offset1 = ADec.Offset;
|
||
|
int64_t Offset2 = BDec.Offset;
|
||
|
Offset1 *= -1;
|
||
|
|
||
|
auto &VariablesA = ADec.Vars;
|
||
|
auto &VariablesB = BDec.Vars;
|
||
|
|
||
|
// First try to look up \p V in Value2Index and NewVariables. Otherwise add a
|
||
|
// new entry to NewVariables.
|
||
|
SmallDenseMap<Value *, unsigned> NewIndexMap;
|
||
|
auto GetOrAddIndex = [&Value2Index, &NewVariables,
|
||
|
&NewIndexMap](Value *V) -> unsigned {
|
||
|
auto V2I = Value2Index.find(V);
|
||
|
if (V2I != Value2Index.end())
|
||
|
return V2I->second;
|
||
|
auto Insert =
|
||
|
NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
|
||
|
if (Insert.second)
|
||
|
NewVariables.push_back(V);
|
||
|
return Insert.first->second;
|
||
|
};
|
||
|
|
||
|
// Make sure all variables have entries in Value2Index or NewVariables.
|
||
|
for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
|
||
|
GetOrAddIndex(KV.Variable);
|
||
|
|
||
|
// Build result constraint, by first adding all coefficients from A and then
|
||
|
// subtracting all coefficients from B.
|
||
|
ConstraintTy Res(
|
||
|
SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
|
||
|
IsSigned, IsEq, IsNe);
|
||
|
// Collect variables that are known to be positive in all uses in the
|
||
|
// constraint.
|
||
|
SmallDenseMap<Value *, bool> KnownNonNegativeVariables;
|
||
|
auto &R = Res.Coefficients;
|
||
|
for (const auto &KV : VariablesA) {
|
||
|
R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
|
||
|
auto I =
|
||
|
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
|
||
|
I.first->second &= KV.IsKnownNonNegative;
|
||
|
}
|
||
|
|
||
|
for (const auto &KV : VariablesB) {
|
||
|
if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
|
||
|
R[GetOrAddIndex(KV.Variable)]))
|
||
|
return {};
|
||
|
auto I =
|
||
|
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
|
||
|
I.first->second &= KV.IsKnownNonNegative;
|
||
|
}
|
||
|
|
||
|
int64_t OffsetSum;
|
||
|
if (AddOverflow(Offset1, Offset2, OffsetSum))
|
||
|
return {};
|
||
|
if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
|
||
|
if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
|
||
|
return {};
|
||
|
R[0] = OffsetSum;
|
||
|
Res.Preconditions = std::move(Preconditions);
|
||
|
|
||
|
// Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
|
||
|
// variables.
|
||
|
while (!NewVariables.empty()) {
|
||
|
int64_t Last = R.back();
|
||
|
if (Last != 0)
|
||
|
break;
|
||
|
R.pop_back();
|
||
|
Value *RemovedV = NewVariables.pop_back_val();
|
||
|
NewIndexMap.erase(RemovedV);
|
||
|
}
|
||
|
|
||
|
// Add extra constraints for variables that are known positive.
|
||
|
for (auto &KV : KnownNonNegativeVariables) {
|
||
|
if (!KV.second ||
|
||
|
(!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
|
||
|
continue;
|
||
|
SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
|
||
|
C[GetOrAddIndex(KV.first)] = -1;
|
||
|
Res.ExtraInfo.push_back(C);
|
||
|
}
|
||
|
return Res;
|
||
|
}
|
||
|
|
||
|
ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
|
||
|
Value *Op0,
|
||
|
Value *Op1) const {
|
||
|
Constant *NullC = Constant::getNullValue(Op0->getType());
|
||
|
// Handle trivially true compares directly to avoid adding V UGE 0 constraints
|
||
|
// for all variables in the unsigned system.
|
||
|
if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) ||
|
||
|
(Pred == CmpInst::ICMP_UGE && Op1 == NullC)) {
|
||
|
auto &Value2Index = getValue2Index(false);
|
||
|
// Return constraint that's trivially true.
|
||
|
return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false,
|
||
|
false, false);
|
||
|
}
|
||
|
|
||
|
// If both operands are known to be non-negative, change signed predicates to
|
||
|
// unsigned ones. This increases the reasoning effectiveness in combination
|
||
|
// with the signed <-> unsigned transfer logic.
|
||
|
if (CmpInst::isSigned(Pred) &&
|
||
|
isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
|
||
|
isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
|
||
|
Pred = CmpInst::getUnsignedPredicate(Pred);
|
||
|
|
||
|
SmallVector<Value *> NewVariables;
|
||
|
ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
|
||
|
if (!NewVariables.empty())
|
||
|
return {};
|
||
|
return R;
|
||
|
}
|
||
|
|
||
|
bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
|
||
|
return Coefficients.size() > 0 &&
|
||
|
all_of(Preconditions, [&Info](const ConditionTy &C) {
|
||
|
return Info.doesHold(C.Pred, C.Op0, C.Op1);
|
||
|
});
|
||
|
}
|
||
|
|
||
|
std::optional<bool>
|
||
|
ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
|
||
|
bool IsConditionImplied = CS.isConditionImplied(Coefficients);
|
||
|
|
||
|
if (IsEq || IsNe) {
|
||
|
auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
|
||
|
bool IsNegatedOrEqualImplied =
|
||
|
!NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
|
||
|
|
||
|
// In order to check that `%a == %b` is true (equality), both conditions `%a
|
||
|
// >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
|
||
|
// is true), we return true if they both hold, false in the other cases.
|
||
|
if (IsConditionImplied && IsNegatedOrEqualImplied)
|
||
|
return IsEq;
|
||
|
|
||
|
auto Negated = ConstraintSystem::negate(Coefficients);
|
||
|
bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
|
||
|
|
||
|
auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
|
||
|
bool IsStrictLessThanImplied =
|
||
|
!StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
|
||
|
|
||
|
// In order to check that `%a != %b` is true (non-equality), either
|
||
|
// condition `%a > %b` or `%a < %b` must hold true. When checking for
|
||
|
// non-equality (`IsNe` is true), we return true if one of the two holds,
|
||
|
// false in the other cases.
|
||
|
if (IsNegatedImplied || IsStrictLessThanImplied)
|
||
|
return IsNe;
|
||
|
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
if (IsConditionImplied)
|
||
|
return true;
|
||
|
|
||
|
auto Negated = ConstraintSystem::negate(Coefficients);
|
||
|
auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
|
||
|
if (IsNegatedImplied)
|
||
|
return false;
|
||
|
|
||
|
// Neither the condition nor its negated holds, did not prove anything.
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
|
||
|
Value *B) const {
|
||
|
auto R = getConstraintForSolving(Pred, A, B);
|
||
|
return R.isValid(*this) &&
|
||
|
getCS(R.IsSigned).isConditionImplied(R.Coefficients);
|
||
|
}
|
||
|
|
||
|
void ConstraintInfo::transferToOtherSystem(
|
||
|
CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
|
||
|
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
|
||
|
auto IsKnownNonNegative = [this](Value *V) {
|
||
|
return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) ||
|
||
|
isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1);
|
||
|
};
|
||
|
// Check if we can combine facts from the signed and unsigned systems to
|
||
|
// derive additional facts.
|
||
|
if (!A->getType()->isIntegerTy())
|
||
|
return;
|
||
|
// FIXME: This currently depends on the order we add facts. Ideally we
|
||
|
// would first add all known facts and only then try to add additional
|
||
|
// facts.
|
||
|
switch (Pred) {
|
||
|
default:
|
||
|
break;
|
||
|
case CmpInst::ICMP_ULT:
|
||
|
case CmpInst::ICMP_ULE:
|
||
|
// If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
|
||
|
if (IsKnownNonNegative(B)) {
|
||
|
addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
|
||
|
NumOut, DFSInStack);
|
||
|
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
|
||
|
DFSInStack);
|
||
|
}
|
||
|
break;
|
||
|
case CmpInst::ICMP_UGE:
|
||
|
case CmpInst::ICMP_UGT:
|
||
|
// If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
|
||
|
if (IsKnownNonNegative(A)) {
|
||
|
addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
|
||
|
NumOut, DFSInStack);
|
||
|
addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
|
||
|
DFSInStack);
|
||
|
}
|
||
|
break;
|
||
|
case CmpInst::ICMP_SLT:
|
||
|
if (IsKnownNonNegative(A))
|
||
|
addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
|
||
|
break;
|
||
|
case CmpInst::ICMP_SGT: {
|
||
|
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
|
||
|
addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
|
||
|
NumOut, DFSInStack);
|
||
|
if (IsKnownNonNegative(B))
|
||
|
addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
case CmpInst::ICMP_SGE:
|
||
|
if (IsKnownNonNegative(B))
|
||
|
addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
|
||
|
static void dumpConstraint(ArrayRef<int64_t> C,
|
||
|
const DenseMap<Value *, unsigned> &Value2Index) {
|
||
|
ConstraintSystem CS(Value2Index);
|
||
|
CS.addVariableRowFill(C);
|
||
|
CS.dump();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void State::addInfoForInductions(BasicBlock &BB) {
|
||
|
auto *L = LI.getLoopFor(&BB);
|
||
|
if (!L || L->getHeader() != &BB)
|
||
|
return;
|
||
|
|
||
|
Value *A;
|
||
|
Value *B;
|
||
|
CmpInst::Predicate Pred;
|
||
|
|
||
|
if (!match(BB.getTerminator(),
|
||
|
m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value())))
|
||
|
return;
|
||
|
PHINode *PN = dyn_cast<PHINode>(A);
|
||
|
if (!PN) {
|
||
|
Pred = CmpInst::getSwappedPredicate(Pred);
|
||
|
std::swap(A, B);
|
||
|
PN = dyn_cast<PHINode>(A);
|
||
|
}
|
||
|
|
||
|
if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 ||
|
||
|
!SE.isSCEVable(PN->getType()))
|
||
|
return;
|
||
|
|
||
|
BasicBlock *InLoopSucc = nullptr;
|
||
|
if (Pred == CmpInst::ICMP_NE)
|
||
|
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0);
|
||
|
else if (Pred == CmpInst::ICMP_EQ)
|
||
|
InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1);
|
||
|
else
|
||
|
return;
|
||
|
|
||
|
if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB)
|
||
|
return;
|
||
|
|
||
|
auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN));
|
||
|
BasicBlock *LoopPred = L->getLoopPredecessor();
|
||
|
if (!AR || AR->getLoop() != L || !LoopPred)
|
||
|
return;
|
||
|
|
||
|
const SCEV *StartSCEV = AR->getStart();
|
||
|
Value *StartValue = nullptr;
|
||
|
if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) {
|
||
|
StartValue = C->getValue();
|
||
|
} else {
|
||
|
StartValue = PN->getIncomingValueForBlock(LoopPred);
|
||
|
assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value");
|
||
|
}
|
||
|
|
||
|
DomTreeNode *DTN = DT.getNode(InLoopSucc);
|
||
|
auto IncUnsigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT);
|
||
|
auto IncSigned = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_SGT);
|
||
|
bool MonotonicallyIncreasingUnsigned =
|
||
|
IncUnsigned && *IncUnsigned == ScalarEvolution::MonotonicallyIncreasing;
|
||
|
bool MonotonicallyIncreasingSigned =
|
||
|
IncSigned && *IncSigned == ScalarEvolution::MonotonicallyIncreasing;
|
||
|
// If SCEV guarantees that AR does not wrap, PN >= StartValue can be added
|
||
|
// unconditionally.
|
||
|
if (MonotonicallyIncreasingUnsigned)
|
||
|
WorkList.push_back(
|
||
|
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue));
|
||
|
if (MonotonicallyIncreasingSigned)
|
||
|
WorkList.push_back(
|
||
|
FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_SGE, PN, StartValue));
|
||
|
|
||
|
APInt StepOffset;
|
||
|
if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
|
||
|
StepOffset = C->getAPInt();
|
||
|
else
|
||
|
return;
|
||
|
|
||
|
// Make sure the bound B is loop-invariant.
|
||
|
if (!L->isLoopInvariant(B))
|
||
|
return;
|
||
|
|
||
|
// Handle negative steps.
|
||
|
if (StepOffset.isNegative()) {
|
||
|
// TODO: Extend to allow steps > -1.
|
||
|
if (!(-StepOffset).isOne())
|
||
|
return;
|
||
|
|
||
|
// AR may wrap.
|
||
|
// Add StartValue >= PN conditional on B <= StartValue which guarantees that
|
||
|
// the loop exits before wrapping with a step of -1.
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_UGE, StartValue, PN,
|
||
|
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_SGE, StartValue, PN,
|
||
|
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
|
||
|
// Add PN > B conditional on B <= StartValue which guarantees that the loop
|
||
|
// exits when reaching B with a step of -1.
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_UGT, PN, B,
|
||
|
ConditionTy(CmpInst::ICMP_ULE, B, StartValue)));
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_SGT, PN, B,
|
||
|
ConditionTy(CmpInst::ICMP_SLE, B, StartValue)));
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Make sure AR either steps by 1 or that the value we compare against is a
|
||
|
// GEP based on the same start value and all offsets are a multiple of the
|
||
|
// step size, to guarantee that the induction will reach the value.
|
||
|
if (StepOffset.isZero() || StepOffset.isNegative())
|
||
|
return;
|
||
|
|
||
|
if (!StepOffset.isOne()) {
|
||
|
// Check whether B-Start is known to be a multiple of StepOffset.
|
||
|
const SCEV *BMinusStart = SE.getMinusSCEV(SE.getSCEV(B), StartSCEV);
|
||
|
if (isa<SCEVCouldNotCompute>(BMinusStart) ||
|
||
|
!SE.getConstantMultiple(BMinusStart).urem(StepOffset).isZero())
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// AR may wrap. Add PN >= StartValue conditional on StartValue <= B which
|
||
|
// guarantees that the loop exits before wrapping in combination with the
|
||
|
// restrictions on B and the step above.
|
||
|
if (!MonotonicallyIncreasingUnsigned)
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_UGE, PN, StartValue,
|
||
|
ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
|
||
|
if (!MonotonicallyIncreasingSigned)
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_SGE, PN, StartValue,
|
||
|
ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
|
||
|
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_ULT, PN, B,
|
||
|
ConditionTy(CmpInst::ICMP_ULE, StartValue, B)));
|
||
|
WorkList.push_back(FactOrCheck::getConditionFact(
|
||
|
DTN, CmpInst::ICMP_SLT, PN, B,
|
||
|
ConditionTy(CmpInst::ICMP_SLE, StartValue, B)));
|
||
|
}
|
||
|
|
||
|
void State::addInfoFor(BasicBlock &BB) {
|
||
|
addInfoForInductions(BB);
|
||
|
|
||
|
// True as long as long as the current instruction is guaranteed to execute.
|
||
|
bool GuaranteedToExecute = true;
|
||
|
// Queue conditions and assumes.
|
||
|
for (Instruction &I : BB) {
|
||
|
if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
|
||
|
for (Use &U : Cmp->uses()) {
|
||
|
auto *UserI = getContextInstForUse(U);
|
||
|
auto *DTN = DT.getNode(UserI->getParent());
|
||
|
if (!DTN)
|
||
|
continue;
|
||
|
WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
auto *II = dyn_cast<IntrinsicInst>(&I);
|
||
|
Intrinsic::ID ID = II ? II->getIntrinsicID() : Intrinsic::not_intrinsic;
|
||
|
switch (ID) {
|
||
|
case Intrinsic::assume: {
|
||
|
Value *A, *B;
|
||
|
CmpInst::Predicate Pred;
|
||
|
if (!match(I.getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
|
||
|
break;
|
||
|
if (GuaranteedToExecute) {
|
||
|
// The assume is guaranteed to execute when BB is entered, hence Cond
|
||
|
// holds on entry to BB.
|
||
|
WorkList.emplace_back(FactOrCheck::getConditionFact(
|
||
|
DT.getNode(I.getParent()), Pred, A, B));
|
||
|
} else {
|
||
|
WorkList.emplace_back(
|
||
|
FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
// Enqueue ssub_with_overflow for simplification.
|
||
|
case Intrinsic::ssub_with_overflow:
|
||
|
WorkList.push_back(
|
||
|
FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
|
||
|
break;
|
||
|
// Enqueue the intrinsics to add extra info.
|
||
|
case Intrinsic::umin:
|
||
|
case Intrinsic::umax:
|
||
|
case Intrinsic::smin:
|
||
|
case Intrinsic::smax:
|
||
|
// TODO: Check if it is possible to instead only added the min/max facts
|
||
|
// when simplifying uses of the min/max intrinsics.
|
||
|
if (!isGuaranteedNotToBePoison(&I))
|
||
|
break;
|
||
|
[[fallthrough]];
|
||
|
case Intrinsic::abs:
|
||
|
WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
|
||
|
}
|
||
|
|
||
|
if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
|
||
|
for (auto &Case : Switch->cases()) {
|
||
|
BasicBlock *Succ = Case.getCaseSuccessor();
|
||
|
Value *V = Case.getCaseValue();
|
||
|
if (!canAddSuccessor(BB, Succ))
|
||
|
continue;
|
||
|
WorkList.emplace_back(FactOrCheck::getConditionFact(
|
||
|
DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
|
||
|
if (!Br || !Br->isConditional())
|
||
|
return;
|
||
|
|
||
|
Value *Cond = Br->getCondition();
|
||
|
|
||
|
// If the condition is a chain of ORs/AND and the successor only has the
|
||
|
// current block as predecessor, queue conditions for the successor.
|
||
|
Value *Op0, *Op1;
|
||
|
if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
|
||
|
match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
||
|
bool IsOr = match(Cond, m_LogicalOr());
|
||
|
bool IsAnd = match(Cond, m_LogicalAnd());
|
||
|
// If there's a select that matches both AND and OR, we need to commit to
|
||
|
// one of the options. Arbitrarily pick OR.
|
||
|
if (IsOr && IsAnd)
|
||
|
IsAnd = false;
|
||
|
|
||
|
BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
|
||
|
if (canAddSuccessor(BB, Successor)) {
|
||
|
SmallVector<Value *> CondWorkList;
|
||
|
SmallPtrSet<Value *, 8> SeenCond;
|
||
|
auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
|
||
|
if (SeenCond.insert(V).second)
|
||
|
CondWorkList.push_back(V);
|
||
|
};
|
||
|
QueueValue(Op1);
|
||
|
QueueValue(Op0);
|
||
|
while (!CondWorkList.empty()) {
|
||
|
Value *Cur = CondWorkList.pop_back_val();
|
||
|
if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
|
||
|
WorkList.emplace_back(FactOrCheck::getConditionFact(
|
||
|
DT.getNode(Successor),
|
||
|
IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
|
||
|
: Cmp->getPredicate(),
|
||
|
Cmp->getOperand(0), Cmp->getOperand(1)));
|
||
|
continue;
|
||
|
}
|
||
|
if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
|
||
|
QueueValue(Op1);
|
||
|
QueueValue(Op0);
|
||
|
continue;
|
||
|
}
|
||
|
if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
||
|
QueueValue(Op1);
|
||
|
QueueValue(Op0);
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
|
||
|
if (!CmpI)
|
||
|
return;
|
||
|
if (canAddSuccessor(BB, Br->getSuccessor(0)))
|
||
|
WorkList.emplace_back(FactOrCheck::getConditionFact(
|
||
|
DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
|
||
|
CmpI->getOperand(0), CmpI->getOperand(1)));
|
||
|
if (canAddSuccessor(BB, Br->getSuccessor(1)))
|
||
|
WorkList.emplace_back(FactOrCheck::getConditionFact(
|
||
|
DT.getNode(Br->getSuccessor(1)),
|
||
|
CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
|
||
|
CmpI->getOperand(1)));
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
static void dumpUnpackedICmp(raw_ostream &OS, ICmpInst::Predicate Pred,
|
||
|
Value *LHS, Value *RHS) {
|
||
|
OS << "icmp " << Pred << ' ';
|
||
|
LHS->printAsOperand(OS, /*PrintType=*/true);
|
||
|
OS << ", ";
|
||
|
RHS->printAsOperand(OS, /*PrintType=*/false);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
namespace {
|
||
|
/// Helper to keep track of a condition and if it should be treated as negated
|
||
|
/// for reproducer construction.
|
||
|
/// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
|
||
|
/// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
|
||
|
struct ReproducerEntry {
|
||
|
ICmpInst::Predicate Pred;
|
||
|
Value *LHS;
|
||
|
Value *RHS;
|
||
|
|
||
|
ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
|
||
|
: Pred(Pred), LHS(LHS), RHS(RHS) {}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
/// Helper function to generate a reproducer function for simplifying \p Cond.
|
||
|
/// The reproducer function contains a series of @llvm.assume calls, one for
|
||
|
/// each condition in \p Stack. For each condition, the operand instruction are
|
||
|
/// cloned until we reach operands that have an entry in \p Value2Index. Those
|
||
|
/// will then be added as function arguments. \p DT is used to order cloned
|
||
|
/// instructions. The reproducer function will get added to \p M, if it is
|
||
|
/// non-null. Otherwise no reproducer function is generated.
|
||
|
static void generateReproducer(CmpInst *Cond, Module *M,
|
||
|
ArrayRef<ReproducerEntry> Stack,
|
||
|
ConstraintInfo &Info, DominatorTree &DT) {
|
||
|
if (!M)
|
||
|
return;
|
||
|
|
||
|
LLVMContext &Ctx = Cond->getContext();
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
|
||
|
|
||
|
ValueToValueMapTy Old2New;
|
||
|
SmallVector<Value *> Args;
|
||
|
SmallPtrSet<Value *, 8> Seen;
|
||
|
// Traverse Cond and its operands recursively until we reach a value that's in
|
||
|
// Value2Index or not an instruction, or not a operation that
|
||
|
// ConstraintElimination can decompose. Such values will be considered as
|
||
|
// external inputs to the reproducer, they are collected and added as function
|
||
|
// arguments later.
|
||
|
auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
|
||
|
auto &Value2Index = Info.getValue2Index(IsSigned);
|
||
|
SmallVector<Value *, 4> WorkList(Ops);
|
||
|
while (!WorkList.empty()) {
|
||
|
Value *V = WorkList.pop_back_val();
|
||
|
if (!Seen.insert(V).second)
|
||
|
continue;
|
||
|
if (Old2New.find(V) != Old2New.end())
|
||
|
continue;
|
||
|
if (isa<Constant>(V))
|
||
|
continue;
|
||
|
|
||
|
auto *I = dyn_cast<Instruction>(V);
|
||
|
if (Value2Index.contains(V) || !I ||
|
||
|
!isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
|
||
|
Old2New[V] = V;
|
||
|
Args.push_back(V);
|
||
|
LLVM_DEBUG(dbgs() << " found external input " << *V << "\n");
|
||
|
} else {
|
||
|
append_range(WorkList, I->operands());
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
for (auto &Entry : Stack)
|
||
|
if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
|
||
|
CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
|
||
|
CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
|
||
|
|
||
|
SmallVector<Type *> ParamTys;
|
||
|
for (auto *P : Args)
|
||
|
ParamTys.push_back(P->getType());
|
||
|
|
||
|
FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
|
||
|
/*isVarArg=*/false);
|
||
|
Function *F = Function::Create(FTy, Function::ExternalLinkage,
|
||
|
Cond->getModule()->getName() +
|
||
|
Cond->getFunction()->getName() + "repro",
|
||
|
M);
|
||
|
// Add arguments to the reproducer function for each external value collected.
|
||
|
for (unsigned I = 0; I < Args.size(); ++I) {
|
||
|
F->getArg(I)->setName(Args[I]->getName());
|
||
|
Old2New[Args[I]] = F->getArg(I);
|
||
|
}
|
||
|
|
||
|
BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
|
||
|
IRBuilder<> Builder(Entry);
|
||
|
Builder.CreateRet(Builder.getTrue());
|
||
|
Builder.SetInsertPoint(Entry->getTerminator());
|
||
|
|
||
|
// Clone instructions in \p Ops and their operands recursively until reaching
|
||
|
// an value in Value2Index (external input to the reproducer). Update Old2New
|
||
|
// mapping for the original and cloned instructions. Sort instructions to
|
||
|
// clone by dominance, then insert the cloned instructions in the function.
|
||
|
auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
|
||
|
SmallVector<Value *, 4> WorkList(Ops);
|
||
|
SmallVector<Instruction *> ToClone;
|
||
|
auto &Value2Index = Info.getValue2Index(IsSigned);
|
||
|
while (!WorkList.empty()) {
|
||
|
Value *V = WorkList.pop_back_val();
|
||
|
if (Old2New.find(V) != Old2New.end())
|
||
|
continue;
|
||
|
|
||
|
auto *I = dyn_cast<Instruction>(V);
|
||
|
if (!Value2Index.contains(V) && I) {
|
||
|
Old2New[V] = nullptr;
|
||
|
ToClone.push_back(I);
|
||
|
append_range(WorkList, I->operands());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sort(ToClone,
|
||
|
[&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
|
||
|
for (Instruction *I : ToClone) {
|
||
|
Instruction *Cloned = I->clone();
|
||
|
Old2New[I] = Cloned;
|
||
|
Old2New[I]->setName(I->getName());
|
||
|
Cloned->insertBefore(&*Builder.GetInsertPoint());
|
||
|
Cloned->dropUnknownNonDebugMetadata();
|
||
|
Cloned->setDebugLoc({});
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Materialize the assumptions for the reproducer using the entries in Stack.
|
||
|
// That is, first clone the operands of the condition recursively until we
|
||
|
// reach an external input to the reproducer and add them to the reproducer
|
||
|
// function. Then add an ICmp for the condition (with the inverse predicate if
|
||
|
// the entry is negated) and an assert using the ICmp.
|
||
|
for (auto &Entry : Stack) {
|
||
|
if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
|
||
|
continue;
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << " Materializing assumption ";
|
||
|
dumpUnpackedICmp(dbgs(), Entry.Pred, Entry.LHS, Entry.RHS);
|
||
|
dbgs() << "\n");
|
||
|
CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
|
||
|
|
||
|
auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
|
||
|
Builder.CreateAssumption(Cmp);
|
||
|
}
|
||
|
|
||
|
// Finally, clone the condition to reproduce and remap instruction operands in
|
||
|
// the reproducer using Old2New.
|
||
|
CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
|
||
|
Entry->getTerminator()->setOperand(0, Cond);
|
||
|
remapInstructionsInBlocks({Entry}, Old2New);
|
||
|
|
||
|
assert(!verifyFunction(*F, &dbgs()));
|
||
|
}
|
||
|
|
||
|
static std::optional<bool> checkCondition(CmpInst::Predicate Pred, Value *A,
|
||
|
Value *B, Instruction *CheckInst,
|
||
|
ConstraintInfo &Info) {
|
||
|
LLVM_DEBUG(dbgs() << "Checking " << *CheckInst << "\n");
|
||
|
|
||
|
auto R = Info.getConstraintForSolving(Pred, A, B);
|
||
|
if (R.empty() || !R.isValid(Info)){
|
||
|
LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
auto &CSToUse = Info.getCS(R.IsSigned);
|
||
|
|
||
|
// If there was extra information collected during decomposition, apply
|
||
|
// it now and remove it immediately once we are done with reasoning
|
||
|
// about the constraint.
|
||
|
for (auto &Row : R.ExtraInfo)
|
||
|
CSToUse.addVariableRow(Row);
|
||
|
auto InfoRestorer = make_scope_exit([&]() {
|
||
|
for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
|
||
|
CSToUse.popLastConstraint();
|
||
|
});
|
||
|
|
||
|
if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
|
||
|
if (!DebugCounter::shouldExecute(EliminatedCounter))
|
||
|
return std::nullopt;
|
||
|
|
||
|
LLVM_DEBUG({
|
||
|
dbgs() << "Condition ";
|
||
|
dumpUnpackedICmp(
|
||
|
dbgs(), *ImpliedCondition ? Pred : CmpInst::getInversePredicate(Pred),
|
||
|
A, B);
|
||
|
dbgs() << " implied by dominating constraints\n";
|
||
|
CSToUse.dump();
|
||
|
});
|
||
|
return ImpliedCondition;
|
||
|
}
|
||
|
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
static bool checkAndReplaceCondition(
|
||
|
CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
|
||
|
Instruction *ContextInst, Module *ReproducerModule,
|
||
|
ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
|
||
|
SmallVectorImpl<Instruction *> &ToRemove) {
|
||
|
auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
|
||
|
generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
|
||
|
Constant *ConstantC = ConstantInt::getBool(
|
||
|
CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
|
||
|
Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
|
||
|
ContextInst](Use &U) {
|
||
|
auto *UserI = getContextInstForUse(U);
|
||
|
auto *DTN = DT.getNode(UserI->getParent());
|
||
|
if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
|
||
|
return false;
|
||
|
if (UserI->getParent() == ContextInst->getParent() &&
|
||
|
UserI->comesBefore(ContextInst))
|
||
|
return false;
|
||
|
|
||
|
// Conditions in an assume trivially simplify to true. Skip uses
|
||
|
// in assume calls to not destroy the available information.
|
||
|
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
|
||
|
return !II || II->getIntrinsicID() != Intrinsic::assume;
|
||
|
});
|
||
|
NumCondsRemoved++;
|
||
|
if (Cmp->use_empty())
|
||
|
ToRemove.push_back(Cmp);
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
if (auto ImpliedCondition =
|
||
|
checkCondition(Cmp->getPredicate(), Cmp->getOperand(0),
|
||
|
Cmp->getOperand(1), Cmp, Info))
|
||
|
return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
|
||
|
Module *ReproducerModule,
|
||
|
SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
|
||
|
SmallVectorImpl<StackEntry> &DFSInStack) {
|
||
|
Info.popLastConstraint(E.IsSigned);
|
||
|
// Remove variables in the system that went out of scope.
|
||
|
auto &Mapping = Info.getValue2Index(E.IsSigned);
|
||
|
for (Value *V : E.ValuesToRelease)
|
||
|
Mapping.erase(V);
|
||
|
Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
|
||
|
DFSInStack.pop_back();
|
||
|
if (ReproducerModule)
|
||
|
ReproducerCondStack.pop_back();
|
||
|
}
|
||
|
|
||
|
/// Check if either the first condition of an AND or OR is implied by the
|
||
|
/// (negated in case of OR) second condition or vice versa.
|
||
|
static bool checkOrAndOpImpliedByOther(
|
||
|
FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
|
||
|
SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
|
||
|
SmallVectorImpl<StackEntry> &DFSInStack) {
|
||
|
|
||
|
CmpInst::Predicate Pred;
|
||
|
Value *A, *B;
|
||
|
Instruction *JoinOp = CB.getContextInst();
|
||
|
CmpInst *CmpToCheck = cast<CmpInst>(CB.getInstructionToSimplify());
|
||
|
unsigned OtherOpIdx = JoinOp->getOperand(0) == CmpToCheck ? 1 : 0;
|
||
|
|
||
|
// Don't try to simplify the first condition of a select by the second, as
|
||
|
// this may make the select more poisonous than the original one.
|
||
|
// TODO: check if the first operand may be poison.
|
||
|
if (OtherOpIdx != 0 && isa<SelectInst>(JoinOp))
|
||
|
return false;
|
||
|
|
||
|
if (!match(JoinOp->getOperand(OtherOpIdx),
|
||
|
m_ICmp(Pred, m_Value(A), m_Value(B))))
|
||
|
return false;
|
||
|
|
||
|
// For OR, check if the negated condition implies CmpToCheck.
|
||
|
bool IsOr = match(JoinOp, m_LogicalOr());
|
||
|
if (IsOr)
|
||
|
Pred = CmpInst::getInversePredicate(Pred);
|
||
|
|
||
|
// Optimistically add fact from first condition.
|
||
|
unsigned OldSize = DFSInStack.size();
|
||
|
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
|
||
|
if (OldSize == DFSInStack.size())
|
||
|
return false;
|
||
|
|
||
|
bool Changed = false;
|
||
|
// Check if the second condition can be simplified now.
|
||
|
if (auto ImpliedCondition =
|
||
|
checkCondition(CmpToCheck->getPredicate(), CmpToCheck->getOperand(0),
|
||
|
CmpToCheck->getOperand(1), CmpToCheck, Info)) {
|
||
|
if (IsOr && isa<SelectInst>(JoinOp)) {
|
||
|
JoinOp->setOperand(
|
||
|
OtherOpIdx == 0 ? 2 : 0,
|
||
|
ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
|
||
|
} else
|
||
|
JoinOp->setOperand(
|
||
|
1 - OtherOpIdx,
|
||
|
ConstantInt::getBool(JoinOp->getType(), *ImpliedCondition));
|
||
|
|
||
|
Changed = true;
|
||
|
}
|
||
|
|
||
|
// Remove entries again.
|
||
|
while (OldSize < DFSInStack.size()) {
|
||
|
StackEntry E = DFSInStack.back();
|
||
|
removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
|
||
|
DFSInStack);
|
||
|
}
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
|
||
|
unsigned NumIn, unsigned NumOut,
|
||
|
SmallVectorImpl<StackEntry> &DFSInStack) {
|
||
|
// If the constraint has a pre-condition, skip the constraint if it does not
|
||
|
// hold.
|
||
|
SmallVector<Value *> NewVariables;
|
||
|
auto R = getConstraint(Pred, A, B, NewVariables);
|
||
|
|
||
|
// TODO: Support non-equality for facts as well.
|
||
|
if (!R.isValid(*this) || R.isNe())
|
||
|
return;
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Adding '"; dumpUnpackedICmp(dbgs(), Pred, A, B);
|
||
|
dbgs() << "'\n");
|
||
|
bool Added = false;
|
||
|
auto &CSToUse = getCS(R.IsSigned);
|
||
|
if (R.Coefficients.empty())
|
||
|
return;
|
||
|
|
||
|
Added |= CSToUse.addVariableRowFill(R.Coefficients);
|
||
|
|
||
|
// If R has been added to the system, add the new variables and queue it for
|
||
|
// removal once it goes out-of-scope.
|
||
|
if (Added) {
|
||
|
SmallVector<Value *, 2> ValuesToRelease;
|
||
|
auto &Value2Index = getValue2Index(R.IsSigned);
|
||
|
for (Value *V : NewVariables) {
|
||
|
Value2Index.insert({V, Value2Index.size() + 1});
|
||
|
ValuesToRelease.push_back(V);
|
||
|
}
|
||
|
|
||
|
LLVM_DEBUG({
|
||
|
dbgs() << " constraint: ";
|
||
|
dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
|
||
|
dbgs() << "\n";
|
||
|
});
|
||
|
|
||
|
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
|
||
|
std::move(ValuesToRelease));
|
||
|
|
||
|
if (!R.IsSigned) {
|
||
|
for (Value *V : NewVariables) {
|
||
|
ConstraintTy VarPos(SmallVector<int64_t, 8>(Value2Index.size() + 1, 0),
|
||
|
false, false, false);
|
||
|
VarPos.Coefficients[Value2Index[V]] = -1;
|
||
|
CSToUse.addVariableRow(VarPos.Coefficients);
|
||
|
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
|
||
|
SmallVector<Value *, 2>());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (R.isEq()) {
|
||
|
// Also add the inverted constraint for equality constraints.
|
||
|
for (auto &Coeff : R.Coefficients)
|
||
|
Coeff *= -1;
|
||
|
CSToUse.addVariableRowFill(R.Coefficients);
|
||
|
|
||
|
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
|
||
|
SmallVector<Value *, 2>());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
|
||
|
SmallVectorImpl<Instruction *> &ToRemove) {
|
||
|
bool Changed = false;
|
||
|
IRBuilder<> Builder(II->getParent(), II->getIterator());
|
||
|
Value *Sub = nullptr;
|
||
|
for (User *U : make_early_inc_range(II->users())) {
|
||
|
if (match(U, m_ExtractValue<0>(m_Value()))) {
|
||
|
if (!Sub)
|
||
|
Sub = Builder.CreateSub(A, B);
|
||
|
U->replaceAllUsesWith(Sub);
|
||
|
Changed = true;
|
||
|
} else if (match(U, m_ExtractValue<1>(m_Value()))) {
|
||
|
U->replaceAllUsesWith(Builder.getFalse());
|
||
|
Changed = true;
|
||
|
} else
|
||
|
continue;
|
||
|
|
||
|
if (U->use_empty()) {
|
||
|
auto *I = cast<Instruction>(U);
|
||
|
ToRemove.push_back(I);
|
||
|
I->setOperand(0, PoisonValue::get(II->getType()));
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (II->use_empty()) {
|
||
|
II->eraseFromParent();
|
||
|
Changed = true;
|
||
|
}
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
static bool
|
||
|
tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
|
||
|
SmallVectorImpl<Instruction *> &ToRemove) {
|
||
|
auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
|
||
|
ConstraintInfo &Info) {
|
||
|
auto R = Info.getConstraintForSolving(Pred, A, B);
|
||
|
if (R.size() < 2 || !R.isValid(Info))
|
||
|
return false;
|
||
|
|
||
|
auto &CSToUse = Info.getCS(R.IsSigned);
|
||
|
return CSToUse.isConditionImplied(R.Coefficients);
|
||
|
};
|
||
|
|
||
|
bool Changed = false;
|
||
|
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
|
||
|
// If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
|
||
|
// can be simplified to a regular sub.
|
||
|
Value *A = II->getArgOperand(0);
|
||
|
Value *B = II->getArgOperand(1);
|
||
|
if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
|
||
|
!DoesConditionHold(CmpInst::ICMP_SGE, B,
|
||
|
ConstantInt::get(A->getType(), 0), Info))
|
||
|
return false;
|
||
|
Changed = replaceSubOverflowUses(II, A, B, ToRemove);
|
||
|
}
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI,
|
||
|
ScalarEvolution &SE,
|
||
|
OptimizationRemarkEmitter &ORE) {
|
||
|
bool Changed = false;
|
||
|
DT.updateDFSNumbers();
|
||
|
SmallVector<Value *> FunctionArgs;
|
||
|
for (Value &Arg : F.args())
|
||
|
FunctionArgs.push_back(&Arg);
|
||
|
ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
|
||
|
State S(DT, LI, SE);
|
||
|
std::unique_ptr<Module> ReproducerModule(
|
||
|
DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
|
||
|
|
||
|
// First, collect conditions implied by branches and blocks with their
|
||
|
// Dominator DFS in and out numbers.
|
||
|
for (BasicBlock &BB : F) {
|
||
|
if (!DT.getNode(&BB))
|
||
|
continue;
|
||
|
S.addInfoFor(BB);
|
||
|
}
|
||
|
|
||
|
// Next, sort worklist by dominance, so that dominating conditions to check
|
||
|
// and facts come before conditions and facts dominated by them. If a
|
||
|
// condition to check and a fact have the same numbers, conditional facts come
|
||
|
// first. Assume facts and checks are ordered according to their relative
|
||
|
// order in the containing basic block. Also make sure conditions with
|
||
|
// constant operands come before conditions without constant operands. This
|
||
|
// increases the effectiveness of the current signed <-> unsigned fact
|
||
|
// transfer logic.
|
||
|
stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
|
||
|
auto HasNoConstOp = [](const FactOrCheck &B) {
|
||
|
Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
|
||
|
Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
|
||
|
return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
|
||
|
};
|
||
|
// If both entries have the same In numbers, conditional facts come first.
|
||
|
// Otherwise use the relative order in the basic block.
|
||
|
if (A.NumIn == B.NumIn) {
|
||
|
if (A.isConditionFact() && B.isConditionFact()) {
|
||
|
bool NoConstOpA = HasNoConstOp(A);
|
||
|
bool NoConstOpB = HasNoConstOp(B);
|
||
|
return NoConstOpA < NoConstOpB;
|
||
|
}
|
||
|
if (A.isConditionFact())
|
||
|
return true;
|
||
|
if (B.isConditionFact())
|
||
|
return false;
|
||
|
auto *InstA = A.getContextInst();
|
||
|
auto *InstB = B.getContextInst();
|
||
|
return InstA->comesBefore(InstB);
|
||
|
}
|
||
|
return A.NumIn < B.NumIn;
|
||
|
});
|
||
|
|
||
|
SmallVector<Instruction *> ToRemove;
|
||
|
|
||
|
// Finally, process ordered worklist and eliminate implied conditions.
|
||
|
SmallVector<StackEntry, 16> DFSInStack;
|
||
|
SmallVector<ReproducerEntry> ReproducerCondStack;
|
||
|
for (FactOrCheck &CB : S.WorkList) {
|
||
|
// First, pop entries from the stack that are out-of-scope for CB. Remove
|
||
|
// the corresponding entry from the constraint system.
|
||
|
while (!DFSInStack.empty()) {
|
||
|
auto &E = DFSInStack.back();
|
||
|
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
|
||
|
<< "\n");
|
||
|
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
|
||
|
assert(E.NumIn <= CB.NumIn);
|
||
|
if (CB.NumOut <= E.NumOut)
|
||
|
break;
|
||
|
LLVM_DEBUG({
|
||
|
dbgs() << "Removing ";
|
||
|
dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
|
||
|
Info.getValue2Index(E.IsSigned));
|
||
|
dbgs() << "\n";
|
||
|
});
|
||
|
removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
|
||
|
DFSInStack);
|
||
|
}
|
||
|
|
||
|
// For a block, check if any CmpInsts become known based on the current set
|
||
|
// of constraints.
|
||
|
if (CB.isCheck()) {
|
||
|
Instruction *Inst = CB.getInstructionToSimplify();
|
||
|
if (!Inst)
|
||
|
continue;
|
||
|
LLVM_DEBUG(dbgs() << "Processing condition to simplify: " << *Inst
|
||
|
<< "\n");
|
||
|
if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
|
||
|
Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
|
||
|
} else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
|
||
|
bool Simplified = checkAndReplaceCondition(
|
||
|
Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
|
||
|
ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
|
||
|
if (!Simplified &&
|
||
|
match(CB.getContextInst(), m_LogicalOp(m_Value(), m_Value()))) {
|
||
|
Simplified =
|
||
|
checkOrAndOpImpliedByOther(CB, Info, ReproducerModule.get(),
|
||
|
ReproducerCondStack, DFSInStack);
|
||
|
}
|
||
|
Changed |= Simplified;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
|
||
|
LLVM_DEBUG(dbgs() << "Processing fact to add to the system: ";
|
||
|
dumpUnpackedICmp(dbgs(), Pred, A, B); dbgs() << "\n");
|
||
|
if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
|
||
|
LLVM_DEBUG(
|
||
|
dbgs()
|
||
|
<< "Skip adding constraint because system has too many rows.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
|
||
|
if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
|
||
|
ReproducerCondStack.emplace_back(Pred, A, B);
|
||
|
|
||
|
Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
|
||
|
if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
|
||
|
// Add dummy entries to ReproducerCondStack to keep it in sync with
|
||
|
// DFSInStack.
|
||
|
for (unsigned I = 0,
|
||
|
E = (DFSInStack.size() - ReproducerCondStack.size());
|
||
|
I < E; ++I) {
|
||
|
ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
|
||
|
nullptr, nullptr);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
ICmpInst::Predicate Pred;
|
||
|
if (!CB.isConditionFact()) {
|
||
|
Value *X;
|
||
|
if (match(CB.Inst, m_Intrinsic<Intrinsic::abs>(m_Value(X)))) {
|
||
|
// TODO: Add CB.Inst >= 0 fact.
|
||
|
AddFact(CmpInst::ICMP_SGE, CB.Inst, X);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
|
||
|
Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
|
||
|
AddFact(Pred, MinMax, MinMax->getLHS());
|
||
|
AddFact(Pred, MinMax, MinMax->getRHS());
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Value *A = nullptr, *B = nullptr;
|
||
|
if (CB.isConditionFact()) {
|
||
|
Pred = CB.Cond.Pred;
|
||
|
A = CB.Cond.Op0;
|
||
|
B = CB.Cond.Op1;
|
||
|
if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE &&
|
||
|
!Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) {
|
||
|
LLVM_DEBUG({
|
||
|
dbgs() << "Not adding fact ";
|
||
|
dumpUnpackedICmp(dbgs(), Pred, A, B);
|
||
|
dbgs() << " because precondition ";
|
||
|
dumpUnpackedICmp(dbgs(), CB.DoesHold.Pred, CB.DoesHold.Op0,
|
||
|
CB.DoesHold.Op1);
|
||
|
dbgs() << " does not hold.\n";
|
||
|
});
|
||
|
continue;
|
||
|
}
|
||
|
} else {
|
||
|
bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
|
||
|
m_ICmp(Pred, m_Value(A), m_Value(B))));
|
||
|
(void)Matched;
|
||
|
assert(Matched && "Must have an assume intrinsic with a icmp operand");
|
||
|
}
|
||
|
AddFact(Pred, A, B);
|
||
|
}
|
||
|
|
||
|
if (ReproducerModule && !ReproducerModule->functions().empty()) {
|
||
|
std::string S;
|
||
|
raw_string_ostream StringS(S);
|
||
|
ReproducerModule->print(StringS, nullptr);
|
||
|
StringS.flush();
|
||
|
OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
|
||
|
Rem << ore::NV("module") << S;
|
||
|
ORE.emit(Rem);
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
unsigned SignedEntries =
|
||
|
count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
|
||
|
assert(Info.getCS(false).size() - FunctionArgs.size() ==
|
||
|
DFSInStack.size() - SignedEntries &&
|
||
|
"updates to CS and DFSInStack are out of sync");
|
||
|
assert(Info.getCS(true).size() == SignedEntries &&
|
||
|
"updates to CS and DFSInStack are out of sync");
|
||
|
#endif
|
||
|
|
||
|
for (Instruction *I : ToRemove)
|
||
|
I->eraseFromParent();
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
|
||
|
FunctionAnalysisManager &AM) {
|
||
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
||
|
auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
|
||
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
||
|
if (!eliminateConstraints(F, DT, LI, SE, ORE))
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
PreservedAnalyses PA;
|
||
|
PA.preserve<DominatorTreeAnalysis>();
|
||
|
PA.preserve<LoopAnalysis>();
|
||
|
PA.preserve<ScalarEvolutionAnalysis>();
|
||
|
PA.preserveSet<CFGAnalyses>();
|
||
|
return PA;
|
||
|
}
|