1028 lines
38 KiB
C++
1028 lines
38 KiB
C++
|
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This file implements the guard widening pass. The semantics of the
|
||
|
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
|
||
|
// more often that it did before the transform. This optimization is called
|
||
|
// "widening" and can be used hoist and common runtime checks in situations like
|
||
|
// these:
|
||
|
//
|
||
|
// %cmp0 = 7 u< Length
|
||
|
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
|
||
|
// call @unknown_side_effects()
|
||
|
// %cmp1 = 9 u< Length
|
||
|
// call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
|
||
|
// ...
|
||
|
//
|
||
|
// =>
|
||
|
//
|
||
|
// %cmp0 = 9 u< Length
|
||
|
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
|
||
|
// call @unknown_side_effects()
|
||
|
// ...
|
||
|
//
|
||
|
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
|
||
|
// generic implementation of the same function, which will have the correct
|
||
|
// semantics from that point onward. It is always _legal_ to deoptimize (so
|
||
|
// replacing %cmp0 with false is "correct"), though it may not always be
|
||
|
// profitable to do so.
|
||
|
//
|
||
|
// NB! This pass is a work in progress. It hasn't been tuned to be "production
|
||
|
// ready" yet. It is known to have quadriatic running time and will not scale
|
||
|
// to large numbers of guards
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/Scalar/GuardWidening.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/DepthFirstIterator.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/Analysis/AssumptionCache.h"
|
||
|
#include "llvm/Analysis/GuardUtils.h"
|
||
|
#include "llvm/Analysis/LoopInfo.h"
|
||
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
||
|
#include "llvm/Analysis/PostDominators.h"
|
||
|
#include "llvm/Analysis/ValueTracking.h"
|
||
|
#include "llvm/IR/ConstantRange.h"
|
||
|
#include "llvm/IR/Dominators.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/PatternMatch.h"
|
||
|
#include "llvm/Support/CommandLine.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/KnownBits.h"
|
||
|
#include "llvm/Transforms/Scalar.h"
|
||
|
#include "llvm/Transforms/Utils/GuardUtils.h"
|
||
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||
|
#include <functional>
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
#define DEBUG_TYPE "guard-widening"
|
||
|
|
||
|
STATISTIC(GuardsEliminated, "Number of eliminated guards");
|
||
|
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
|
||
|
STATISTIC(FreezeAdded, "Number of freeze instruction introduced");
|
||
|
|
||
|
static cl::opt<bool>
|
||
|
WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
|
||
|
cl::desc("Whether or not we should widen guards "
|
||
|
"expressed as branches by widenable conditions"),
|
||
|
cl::init(true));
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
// Get the condition of \p I. It can either be a guard or a conditional branch.
|
||
|
static Value *getCondition(Instruction *I) {
|
||
|
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
|
||
|
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
|
||
|
"Bad guard intrinsic?");
|
||
|
return GI->getArgOperand(0);
|
||
|
}
|
||
|
Value *Cond, *WC;
|
||
|
BasicBlock *IfTrueBB, *IfFalseBB;
|
||
|
if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
|
||
|
return Cond;
|
||
|
|
||
|
return cast<BranchInst>(I)->getCondition();
|
||
|
}
|
||
|
|
||
|
// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
|
||
|
// conditional branch.
|
||
|
static void setCondition(Instruction *I, Value *NewCond) {
|
||
|
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
|
||
|
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
|
||
|
"Bad guard intrinsic?");
|
||
|
GI->setArgOperand(0, NewCond);
|
||
|
return;
|
||
|
}
|
||
|
cast<BranchInst>(I)->setCondition(NewCond);
|
||
|
}
|
||
|
|
||
|
// Eliminates the guard instruction properly.
|
||
|
static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
|
||
|
GuardInst->eraseFromParent();
|
||
|
if (MSSAU)
|
||
|
MSSAU->removeMemoryAccess(GuardInst);
|
||
|
++GuardsEliminated;
|
||
|
}
|
||
|
|
||
|
/// Find a point at which the widened condition of \p Guard should be inserted.
|
||
|
/// When it is represented as intrinsic call, we can do it right before the call
|
||
|
/// instruction. However, when we are dealing with widenable branch, we must
|
||
|
/// account for the following situation: widening should not turn a
|
||
|
/// loop-invariant condition into a loop-variant. It means that if
|
||
|
/// widenable.condition() call is invariant (w.r.t. any loop), the new wide
|
||
|
/// condition should stay invariant. Otherwise there can be a miscompile, like
|
||
|
/// the one described at https://github.com/llvm/llvm-project/issues/60234. The
|
||
|
/// safest way to do it is to expand the new condition at WC's block.
|
||
|
static Instruction *findInsertionPointForWideCondition(Instruction *WCOrGuard) {
|
||
|
if (isGuard(WCOrGuard))
|
||
|
return WCOrGuard;
|
||
|
if (auto WC = extractWidenableCondition(WCOrGuard))
|
||
|
return cast<Instruction>(WC);
|
||
|
return nullptr;
|
||
|
}
|
||
|
|
||
|
class GuardWideningImpl {
|
||
|
DominatorTree &DT;
|
||
|
PostDominatorTree *PDT;
|
||
|
LoopInfo &LI;
|
||
|
AssumptionCache &AC;
|
||
|
MemorySSAUpdater *MSSAU;
|
||
|
|
||
|
/// Together, these describe the region of interest. This might be all of
|
||
|
/// the blocks within a function, or only a given loop's blocks and preheader.
|
||
|
DomTreeNode *Root;
|
||
|
std::function<bool(BasicBlock*)> BlockFilter;
|
||
|
|
||
|
/// The set of guards and conditional branches whose conditions have been
|
||
|
/// widened into dominating guards.
|
||
|
SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
|
||
|
|
||
|
/// The set of guards which have been widened to include conditions to other
|
||
|
/// guards.
|
||
|
DenseSet<Instruction *> WidenedGuards;
|
||
|
|
||
|
/// Try to eliminate instruction \p Instr by widening it into an earlier
|
||
|
/// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
|
||
|
/// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
|
||
|
/// maps BasicBlocks to the set of guards seen in that block.
|
||
|
bool eliminateInstrViaWidening(
|
||
|
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
|
||
|
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
|
||
|
&GuardsPerBlock);
|
||
|
|
||
|
/// Used to keep track of which widening potential is more effective.
|
||
|
enum WideningScore {
|
||
|
/// Don't widen.
|
||
|
WS_IllegalOrNegative,
|
||
|
|
||
|
/// Widening is performance neutral as far as the cycles spent in check
|
||
|
/// conditions goes (but can still help, e.g., code layout, having less
|
||
|
/// deopt state).
|
||
|
WS_Neutral,
|
||
|
|
||
|
/// Widening is profitable.
|
||
|
WS_Positive,
|
||
|
|
||
|
/// Widening is very profitable. Not significantly different from \c
|
||
|
/// WS_Positive, except by the order.
|
||
|
WS_VeryPositive
|
||
|
};
|
||
|
|
||
|
static StringRef scoreTypeToString(WideningScore WS);
|
||
|
|
||
|
/// Compute the score for widening the condition in \p DominatedInstr
|
||
|
/// into \p WideningPoint.
|
||
|
WideningScore computeWideningScore(Instruction *DominatedInstr,
|
||
|
Instruction *ToWiden,
|
||
|
Instruction *WideningPoint,
|
||
|
SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden);
|
||
|
|
||
|
/// Helper to check if \p V can be hoisted to \p InsertPos.
|
||
|
bool canBeHoistedTo(const Value *V, const Instruction *InsertPos) const {
|
||
|
SmallPtrSet<const Instruction *, 8> Visited;
|
||
|
return canBeHoistedTo(V, InsertPos, Visited);
|
||
|
}
|
||
|
|
||
|
bool canBeHoistedTo(const Value *V, const Instruction *InsertPos,
|
||
|
SmallPtrSetImpl<const Instruction *> &Visited) const;
|
||
|
|
||
|
bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
|
||
|
const Instruction *InsertPos) const {
|
||
|
return all_of(Checks,
|
||
|
[&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
|
||
|
}
|
||
|
/// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
|
||
|
/// canBeHoistedTo returned true.
|
||
|
void makeAvailableAt(Value *V, Instruction *InsertPos) const;
|
||
|
|
||
|
void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
|
||
|
Instruction *InsertPos) const {
|
||
|
for (Value *V : Checks)
|
||
|
makeAvailableAt(V, InsertPos);
|
||
|
}
|
||
|
|
||
|
/// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
|
||
|
/// to generate an expression computing the logical AND of \p ChecksToHoist
|
||
|
/// and \p ChecksToWiden. Return true if the expression computing the AND is
|
||
|
/// only as expensive as computing one of the set of expressions. If \p
|
||
|
/// InsertPt is true then actually generate the resulting expression, make it
|
||
|
/// available at \p InsertPt and return it in \p Result (else no change to the
|
||
|
/// IR is made).
|
||
|
std::optional<Value *> mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden,
|
||
|
Instruction *InsertPt);
|
||
|
|
||
|
/// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
|
||
|
/// it available at InsertPt
|
||
|
Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
Value *OldCondition, Instruction *InsertPt);
|
||
|
|
||
|
/// Adds freeze to Orig and push it as far as possible very aggressively.
|
||
|
/// Also replaces all uses of frozen instruction with frozen version.
|
||
|
Value *freezeAndPush(Value *Orig, Instruction *InsertPt);
|
||
|
|
||
|
/// Represents a range check of the form \c Base + \c Offset u< \c Length,
|
||
|
/// with the constraint that \c Length is not negative. \c CheckInst is the
|
||
|
/// pre-existing instruction in the IR that computes the result of this range
|
||
|
/// check.
|
||
|
class RangeCheck {
|
||
|
const Value *Base;
|
||
|
const ConstantInt *Offset;
|
||
|
const Value *Length;
|
||
|
ICmpInst *CheckInst;
|
||
|
|
||
|
public:
|
||
|
explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
|
||
|
const Value *Length, ICmpInst *CheckInst)
|
||
|
: Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
|
||
|
|
||
|
void setBase(const Value *NewBase) { Base = NewBase; }
|
||
|
void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
|
||
|
|
||
|
const Value *getBase() const { return Base; }
|
||
|
const ConstantInt *getOffset() const { return Offset; }
|
||
|
const APInt &getOffsetValue() const { return getOffset()->getValue(); }
|
||
|
const Value *getLength() const { return Length; };
|
||
|
ICmpInst *getCheckInst() const { return CheckInst; }
|
||
|
|
||
|
void print(raw_ostream &OS, bool PrintTypes = false) {
|
||
|
OS << "Base: ";
|
||
|
Base->printAsOperand(OS, PrintTypes);
|
||
|
OS << " Offset: ";
|
||
|
Offset->printAsOperand(OS, PrintTypes);
|
||
|
OS << " Length: ";
|
||
|
Length->printAsOperand(OS, PrintTypes);
|
||
|
}
|
||
|
|
||
|
LLVM_DUMP_METHOD void dump() {
|
||
|
print(dbgs());
|
||
|
dbgs() << "\n";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Parse \p ToParse into a conjunction (logical-and) of range checks; and
|
||
|
/// append them to \p Checks. Returns true on success, may clobber \c Checks
|
||
|
/// on failure.
|
||
|
bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
|
||
|
SmallVectorImpl<RangeCheck> &Checks) {
|
||
|
for (auto CheckCond : ToParse) {
|
||
|
if (!parseRangeChecks(CheckCond, Checks))
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);
|
||
|
|
||
|
/// Combine the checks in \p Checks into a smaller set of checks and append
|
||
|
/// them into \p CombinedChecks. Return true on success (i.e. all of checks
|
||
|
/// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
|
||
|
/// and \p CombinedChecks on success and on failure.
|
||
|
bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
|
||
|
SmallVectorImpl<RangeCheck> &CombinedChecks) const;
|
||
|
|
||
|
/// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
|
||
|
/// for the price of computing only one of the set of expressions?
|
||
|
bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden) {
|
||
|
return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/nullptr)
|
||
|
.has_value();
|
||
|
}
|
||
|
|
||
|
/// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
|
||
|
void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden,
|
||
|
Instruction *ToWiden) {
|
||
|
Instruction *InsertPt = findInsertionPointForWideCondition(ToWiden);
|
||
|
auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
|
||
|
Value *Result = MergedCheck ? *MergedCheck
|
||
|
: hoistChecks(ChecksToHoist,
|
||
|
getCondition(ToWiden), InsertPt);
|
||
|
|
||
|
if (isGuardAsWidenableBranch(ToWiden)) {
|
||
|
setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
|
||
|
return;
|
||
|
}
|
||
|
setCondition(ToWiden, Result);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
|
||
|
LoopInfo &LI, AssumptionCache &AC,
|
||
|
MemorySSAUpdater *MSSAU, DomTreeNode *Root,
|
||
|
std::function<bool(BasicBlock *)> BlockFilter)
|
||
|
: DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
|
||
|
BlockFilter(BlockFilter) {}
|
||
|
|
||
|
/// The entry point for this pass.
|
||
|
bool run();
|
||
|
};
|
||
|
}
|
||
|
|
||
|
static bool isSupportedGuardInstruction(const Instruction *Insn) {
|
||
|
if (isGuard(Insn))
|
||
|
return true;
|
||
|
if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
|
||
|
return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool GuardWideningImpl::run() {
|
||
|
DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
|
||
|
bool Changed = false;
|
||
|
for (auto DFI = df_begin(Root), DFE = df_end(Root);
|
||
|
DFI != DFE; ++DFI) {
|
||
|
auto *BB = (*DFI)->getBlock();
|
||
|
if (!BlockFilter(BB))
|
||
|
continue;
|
||
|
|
||
|
auto &CurrentList = GuardsInBlock[BB];
|
||
|
|
||
|
for (auto &I : *BB)
|
||
|
if (isSupportedGuardInstruction(&I))
|
||
|
CurrentList.push_back(cast<Instruction>(&I));
|
||
|
|
||
|
for (auto *II : CurrentList)
|
||
|
Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
|
||
|
}
|
||
|
|
||
|
assert(EliminatedGuardsAndBranches.empty() || Changed);
|
||
|
for (auto *I : EliminatedGuardsAndBranches)
|
||
|
if (!WidenedGuards.count(I)) {
|
||
|
assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
|
||
|
if (isSupportedGuardInstruction(I))
|
||
|
eliminateGuard(I, MSSAU);
|
||
|
else {
|
||
|
assert(isa<BranchInst>(I) &&
|
||
|
"Eliminated something other than guard or branch?");
|
||
|
++CondBranchEliminated;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
bool GuardWideningImpl::eliminateInstrViaWidening(
|
||
|
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
|
||
|
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
|
||
|
&GuardsInBlock) {
|
||
|
SmallVector<Value *> ChecksToHoist;
|
||
|
parseWidenableGuard(Instr, ChecksToHoist);
|
||
|
// Ignore trivial true or false conditions. These instructions will be
|
||
|
// trivially eliminated by any cleanup pass. Do not erase them because other
|
||
|
// guards can possibly be widened into them.
|
||
|
if (ChecksToHoist.empty() ||
|
||
|
(ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
|
||
|
return false;
|
||
|
|
||
|
Instruction *BestSoFar = nullptr;
|
||
|
auto BestScoreSoFar = WS_IllegalOrNegative;
|
||
|
|
||
|
// In the set of dominating guards, find the one we can merge GuardInst with
|
||
|
// for the most profit.
|
||
|
for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
|
||
|
auto *CurBB = DFSI.getPath(i)->getBlock();
|
||
|
if (!BlockFilter(CurBB))
|
||
|
break;
|
||
|
assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
|
||
|
const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
|
||
|
|
||
|
auto I = GuardsInCurBB.begin();
|
||
|
auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
|
||
|
: GuardsInCurBB.end();
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
{
|
||
|
unsigned Index = 0;
|
||
|
for (auto &I : *CurBB) {
|
||
|
if (Index == GuardsInCurBB.size())
|
||
|
break;
|
||
|
if (GuardsInCurBB[Index] == &I)
|
||
|
Index++;
|
||
|
}
|
||
|
assert(Index == GuardsInCurBB.size() &&
|
||
|
"Guards expected to be in order!");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
|
||
|
|
||
|
for (auto *Candidate : make_range(I, E)) {
|
||
|
auto *WideningPoint = findInsertionPointForWideCondition(Candidate);
|
||
|
if (!WideningPoint)
|
||
|
continue;
|
||
|
SmallVector<Value *> CandidateChecks;
|
||
|
parseWidenableGuard(Candidate, CandidateChecks);
|
||
|
auto Score = computeWideningScore(Instr, Candidate, WideningPoint,
|
||
|
ChecksToHoist, CandidateChecks);
|
||
|
LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
|
||
|
<< " is " << scoreTypeToString(Score) << "\n");
|
||
|
if (Score > BestScoreSoFar) {
|
||
|
BestScoreSoFar = Score;
|
||
|
BestSoFar = Candidate;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (BestScoreSoFar == WS_IllegalOrNegative) {
|
||
|
LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
assert(BestSoFar != Instr && "Should have never visited same guard!");
|
||
|
assert(DT.dominates(BestSoFar, Instr) && "Should be!");
|
||
|
|
||
|
LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
|
||
|
<< " with score " << scoreTypeToString(BestScoreSoFar)
|
||
|
<< "\n");
|
||
|
SmallVector<Value *> ChecksToWiden;
|
||
|
parseWidenableGuard(BestSoFar, ChecksToWiden);
|
||
|
widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
|
||
|
auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
|
||
|
setCondition(Instr, NewGuardCondition);
|
||
|
EliminatedGuardsAndBranches.push_back(Instr);
|
||
|
WidenedGuards.insert(BestSoFar);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
|
||
|
Instruction *DominatedInstr, Instruction *ToWiden,
|
||
|
Instruction *WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden) {
|
||
|
Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
|
||
|
Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
|
||
|
bool HoistingOutOfLoop = false;
|
||
|
|
||
|
if (DominatingGuardLoop != DominatedInstrLoop) {
|
||
|
// Be conservative and don't widen into a sibling loop. TODO: If the
|
||
|
// sibling is colder, we should consider allowing this.
|
||
|
if (DominatingGuardLoop &&
|
||
|
!DominatingGuardLoop->contains(DominatedInstrLoop))
|
||
|
return WS_IllegalOrNegative;
|
||
|
|
||
|
HoistingOutOfLoop = true;
|
||
|
}
|
||
|
|
||
|
if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
|
||
|
return WS_IllegalOrNegative;
|
||
|
// Further in the GuardWideningImpl::hoistChecks the entire condition might be
|
||
|
// widened, not the parsed list of checks. So we need to check the possibility
|
||
|
// of that condition hoisting.
|
||
|
if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
|
||
|
return WS_IllegalOrNegative;
|
||
|
|
||
|
// If the guard was conditional executed, it may never be reached
|
||
|
// dynamically. There are two potential downsides to hoisting it out of the
|
||
|
// conditionally executed region: 1) we may spuriously deopt without need and
|
||
|
// 2) we have the extra cost of computing the guard condition in the common
|
||
|
// case. At the moment, we really only consider the second in our heuristic
|
||
|
// here. TODO: evaluate cost model for spurious deopt
|
||
|
// NOTE: As written, this also lets us hoist right over another guard which
|
||
|
// is essentially just another spelling for control flow.
|
||
|
if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
|
||
|
return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
|
||
|
|
||
|
if (HoistingOutOfLoop)
|
||
|
return WS_Positive;
|
||
|
|
||
|
// For a given basic block \p BB, return its successor which is guaranteed or
|
||
|
// highly likely will be taken as its successor.
|
||
|
auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
|
||
|
if (auto *UniqueSucc = BB->getUniqueSuccessor())
|
||
|
return UniqueSucc;
|
||
|
auto *Term = BB->getTerminator();
|
||
|
Value *Cond = nullptr;
|
||
|
const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
|
||
|
using namespace PatternMatch;
|
||
|
if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
|
||
|
m_BasicBlock(IfFalse))))
|
||
|
return nullptr;
|
||
|
// For constant conditions, only one dynamical successor is possible
|
||
|
if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
|
||
|
return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
|
||
|
// If one of successors ends with deopt, another one is likely.
|
||
|
if (IfFalse->getPostdominatingDeoptimizeCall())
|
||
|
return IfTrue;
|
||
|
if (IfTrue->getPostdominatingDeoptimizeCall())
|
||
|
return IfFalse;
|
||
|
// TODO: Use branch frequency metatada to allow hoisting through non-deopt
|
||
|
// branches?
|
||
|
return nullptr;
|
||
|
};
|
||
|
|
||
|
// Returns true if we might be hoisting above explicit control flow into a
|
||
|
// considerably hotter block. Note that this completely ignores implicit
|
||
|
// control flow (guards, calls which throw, etc...). That choice appears
|
||
|
// arbitrary (we assume that implicit control flow exits are all rare).
|
||
|
auto MaybeHoistingToHotterBlock = [&]() {
|
||
|
const auto *DominatingBlock = WideningPoint->getParent();
|
||
|
const auto *DominatedBlock = DominatedInstr->getParent();
|
||
|
|
||
|
// Descend as low as we can, always taking the likely successor.
|
||
|
assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
|
||
|
assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
|
||
|
assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
|
||
|
while (DominatedBlock != DominatingBlock) {
|
||
|
auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
|
||
|
// No likely successor?
|
||
|
if (!LikelySucc)
|
||
|
break;
|
||
|
// Only go down the dominator tree.
|
||
|
if (!DT.properlyDominates(DominatingBlock, LikelySucc))
|
||
|
break;
|
||
|
DominatingBlock = LikelySucc;
|
||
|
}
|
||
|
|
||
|
// Found?
|
||
|
if (DominatedBlock == DominatingBlock)
|
||
|
return false;
|
||
|
// We followed the likely successor chain and went past the dominated
|
||
|
// block. It means that the dominated guard is in dead/very cold code.
|
||
|
if (!DT.dominates(DominatingBlock, DominatedBlock))
|
||
|
return true;
|
||
|
// TODO: diamond, triangle cases
|
||
|
if (!PDT)
|
||
|
return true;
|
||
|
return !PDT->dominates(DominatedBlock, DominatingBlock);
|
||
|
};
|
||
|
|
||
|
return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
|
||
|
}
|
||
|
|
||
|
bool GuardWideningImpl::canBeHoistedTo(
|
||
|
const Value *V, const Instruction *Loc,
|
||
|
SmallPtrSetImpl<const Instruction *> &Visited) const {
|
||
|
auto *Inst = dyn_cast<Instruction>(V);
|
||
|
if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
|
||
|
return true;
|
||
|
|
||
|
if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
|
||
|
Inst->mayReadFromMemory())
|
||
|
return false;
|
||
|
|
||
|
Visited.insert(Inst);
|
||
|
|
||
|
// We only want to go _up_ the dominance chain when recursing.
|
||
|
assert(!isa<PHINode>(Loc) &&
|
||
|
"PHIs should return false for isSafeToSpeculativelyExecute");
|
||
|
assert(DT.isReachableFromEntry(Inst->getParent()) &&
|
||
|
"We did a DFS from the block entry!");
|
||
|
return all_of(Inst->operands(),
|
||
|
[&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
|
||
|
}
|
||
|
|
||
|
void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
|
||
|
auto *Inst = dyn_cast<Instruction>(V);
|
||
|
if (!Inst || DT.dominates(Inst, Loc))
|
||
|
return;
|
||
|
|
||
|
assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
|
||
|
!Inst->mayReadFromMemory() &&
|
||
|
"Should've checked with canBeHoistedTo!");
|
||
|
|
||
|
for (Value *Op : Inst->operands())
|
||
|
makeAvailableAt(Op, Loc);
|
||
|
|
||
|
Inst->moveBefore(Loc);
|
||
|
}
|
||
|
|
||
|
// Return Instruction before which we can insert freeze for the value V as close
|
||
|
// to def as possible. If there is no place to add freeze, return empty.
|
||
|
static std::optional<BasicBlock::iterator>
|
||
|
getFreezeInsertPt(Value *V, const DominatorTree &DT) {
|
||
|
auto *I = dyn_cast<Instruction>(V);
|
||
|
if (!I)
|
||
|
return DT.getRoot()->getFirstNonPHIOrDbgOrAlloca()->getIterator();
|
||
|
|
||
|
std::optional<BasicBlock::iterator> Res = I->getInsertionPointAfterDef();
|
||
|
// If there is no place to add freeze - return nullptr.
|
||
|
if (!Res || !DT.dominates(I, &**Res))
|
||
|
return std::nullopt;
|
||
|
|
||
|
Instruction *ResInst = &**Res;
|
||
|
|
||
|
// If there is a User dominated by original I, then it should be dominated
|
||
|
// by Freeze instruction as well.
|
||
|
if (any_of(I->users(), [&](User *U) {
|
||
|
Instruction *User = cast<Instruction>(U);
|
||
|
return ResInst != User && DT.dominates(I, User) &&
|
||
|
!DT.dominates(ResInst, User);
|
||
|
}))
|
||
|
return std::nullopt;
|
||
|
return Res;
|
||
|
}
|
||
|
|
||
|
Value *GuardWideningImpl::freezeAndPush(Value *Orig, Instruction *InsertPt) {
|
||
|
if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
|
||
|
return Orig;
|
||
|
std::optional<BasicBlock::iterator> InsertPtAtDef =
|
||
|
getFreezeInsertPt(Orig, DT);
|
||
|
if (!InsertPtAtDef) {
|
||
|
FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
|
||
|
FI->insertBefore(InsertPt);
|
||
|
return FI;
|
||
|
}
|
||
|
if (isa<Constant>(Orig) || isa<GlobalValue>(Orig)) {
|
||
|
BasicBlock::iterator InsertPt = *InsertPtAtDef;
|
||
|
FreezeInst *FI = new FreezeInst(Orig, "gw.freeze");
|
||
|
FI->insertBefore(*InsertPt->getParent(), InsertPt);
|
||
|
return FI;
|
||
|
}
|
||
|
|
||
|
SmallSet<Value *, 16> Visited;
|
||
|
SmallVector<Value *, 16> Worklist;
|
||
|
SmallSet<Instruction *, 16> DropPoisonFlags;
|
||
|
SmallVector<Value *, 16> NeedFreeze;
|
||
|
DenseMap<Value *, FreezeInst *> CacheOfFreezes;
|
||
|
|
||
|
// A bit overloaded data structures. Visited contains constant/GV
|
||
|
// if we already met it. In this case CacheOfFreezes has a freeze if it is
|
||
|
// required.
|
||
|
auto handleConstantOrGlobal = [&](Use &U) {
|
||
|
Value *Def = U.get();
|
||
|
if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
|
||
|
return false;
|
||
|
|
||
|
if (Visited.insert(Def).second) {
|
||
|
if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
|
||
|
return true;
|
||
|
BasicBlock::iterator InsertPt = *getFreezeInsertPt(Def, DT);
|
||
|
FreezeInst *FI = new FreezeInst(Def, Def->getName() + ".gw.fr");
|
||
|
FI->insertBefore(*InsertPt->getParent(), InsertPt);
|
||
|
CacheOfFreezes[Def] = FI;
|
||
|
}
|
||
|
|
||
|
if (CacheOfFreezes.count(Def))
|
||
|
U.set(CacheOfFreezes[Def]);
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
Worklist.push_back(Orig);
|
||
|
while (!Worklist.empty()) {
|
||
|
Value *V = Worklist.pop_back_val();
|
||
|
if (!Visited.insert(V).second)
|
||
|
continue;
|
||
|
|
||
|
if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
|
||
|
continue;
|
||
|
|
||
|
Instruction *I = dyn_cast<Instruction>(V);
|
||
|
if (!I || canCreateUndefOrPoison(cast<Operator>(I),
|
||
|
/*ConsiderFlagsAndMetadata*/ false)) {
|
||
|
NeedFreeze.push_back(V);
|
||
|
continue;
|
||
|
}
|
||
|
// Check all operands. If for any of them we cannot insert Freeze,
|
||
|
// stop here. Otherwise, iterate.
|
||
|
if (any_of(I->operands(), [&](Value *Op) {
|
||
|
return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
|
||
|
})) {
|
||
|
NeedFreeze.push_back(I);
|
||
|
continue;
|
||
|
}
|
||
|
DropPoisonFlags.insert(I);
|
||
|
for (Use &U : I->operands())
|
||
|
if (!handleConstantOrGlobal(U))
|
||
|
Worklist.push_back(U.get());
|
||
|
}
|
||
|
for (Instruction *I : DropPoisonFlags)
|
||
|
I->dropPoisonGeneratingFlagsAndMetadata();
|
||
|
|
||
|
Value *Result = Orig;
|
||
|
for (Value *V : NeedFreeze) {
|
||
|
BasicBlock::iterator FreezeInsertPt = *getFreezeInsertPt(V, DT);
|
||
|
FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr");
|
||
|
FI->insertBefore(*FreezeInsertPt->getParent(), FreezeInsertPt);
|
||
|
++FreezeAdded;
|
||
|
if (V == Orig)
|
||
|
Result = FI;
|
||
|
V->replaceUsesWithIf(
|
||
|
FI, [&](const Use & U)->bool { return U.getUser() != FI; });
|
||
|
}
|
||
|
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
std::optional<Value *>
|
||
|
GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
SmallVectorImpl<Value *> &ChecksToWiden,
|
||
|
Instruction *InsertPt) {
|
||
|
using namespace llvm::PatternMatch;
|
||
|
|
||
|
Value *Result = nullptr;
|
||
|
{
|
||
|
// L >u C0 && L >u C1 -> L >u max(C0, C1)
|
||
|
ConstantInt *RHS0, *RHS1;
|
||
|
Value *LHS;
|
||
|
ICmpInst::Predicate Pred0, Pred1;
|
||
|
// TODO: Support searching for pairs to merge from both whole lists of
|
||
|
// ChecksToHoist and ChecksToWiden.
|
||
|
if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
|
||
|
match(ChecksToWiden.front(),
|
||
|
m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
|
||
|
match(ChecksToHoist.front(),
|
||
|
m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
|
||
|
|
||
|
ConstantRange CR0 =
|
||
|
ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
|
||
|
ConstantRange CR1 =
|
||
|
ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
|
||
|
|
||
|
// Given what we're doing here and the semantics of guards, it would
|
||
|
// be correct to use a subset intersection, but that may be too
|
||
|
// aggressive in cases we care about.
|
||
|
if (std::optional<ConstantRange> Intersect =
|
||
|
CR0.exactIntersectWith(CR1)) {
|
||
|
APInt NewRHSAP;
|
||
|
CmpInst::Predicate Pred;
|
||
|
if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
|
||
|
if (InsertPt) {
|
||
|
ConstantInt *NewRHS =
|
||
|
ConstantInt::get(InsertPt->getContext(), NewRHSAP);
|
||
|
assert(canBeHoistedTo(LHS, InsertPt) && "must be");
|
||
|
makeAvailableAt(LHS, InsertPt);
|
||
|
Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
|
||
|
if (parseRangeChecks(ChecksToWiden, Checks) &&
|
||
|
parseRangeChecks(ChecksToHoist, Checks) &&
|
||
|
combineRangeChecks(Checks, CombinedChecks)) {
|
||
|
if (InsertPt) {
|
||
|
for (auto &RC : CombinedChecks) {
|
||
|
makeAvailableAt(RC.getCheckInst(), InsertPt);
|
||
|
if (Result)
|
||
|
Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
|
||
|
InsertPt);
|
||
|
else
|
||
|
Result = RC.getCheckInst();
|
||
|
}
|
||
|
assert(Result && "Failed to find result value");
|
||
|
Result->setName("wide.chk");
|
||
|
Result = freezeAndPush(Result, InsertPt);
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
}
|
||
|
// We were not able to compute ChecksToHoist AND ChecksToWiden for the price
|
||
|
// of one.
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
|
||
|
Value *OldCondition,
|
||
|
Instruction *InsertPt) {
|
||
|
assert(!ChecksToHoist.empty());
|
||
|
IRBuilder<> Builder(InsertPt);
|
||
|
makeAvailableAt(ChecksToHoist, InsertPt);
|
||
|
makeAvailableAt(OldCondition, InsertPt);
|
||
|
Value *Result = Builder.CreateAnd(ChecksToHoist);
|
||
|
Result = freezeAndPush(Result, InsertPt);
|
||
|
Result = Builder.CreateAnd(OldCondition, Result);
|
||
|
Result->setName("wide.chk");
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
bool GuardWideningImpl::parseRangeChecks(
|
||
|
Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks) {
|
||
|
using namespace llvm::PatternMatch;
|
||
|
|
||
|
auto *IC = dyn_cast<ICmpInst>(CheckCond);
|
||
|
if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
|
||
|
(IC->getPredicate() != ICmpInst::ICMP_ULT &&
|
||
|
IC->getPredicate() != ICmpInst::ICMP_UGT))
|
||
|
return false;
|
||
|
|
||
|
const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
|
||
|
if (IC->getPredicate() == ICmpInst::ICMP_UGT)
|
||
|
std::swap(CmpLHS, CmpRHS);
|
||
|
|
||
|
auto &DL = IC->getModule()->getDataLayout();
|
||
|
|
||
|
GuardWideningImpl::RangeCheck Check(
|
||
|
CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
|
||
|
CmpRHS, IC);
|
||
|
|
||
|
if (!isKnownNonNegative(Check.getLength(), DL))
|
||
|
return false;
|
||
|
|
||
|
// What we have in \c Check now is a correct interpretation of \p CheckCond.
|
||
|
// Try to see if we can move some constant offsets into the \c Offset field.
|
||
|
|
||
|
bool Changed;
|
||
|
auto &Ctx = CheckCond->getContext();
|
||
|
|
||
|
do {
|
||
|
Value *OpLHS;
|
||
|
ConstantInt *OpRHS;
|
||
|
Changed = false;
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
|
||
|
assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
|
||
|
"Unreachable instruction?");
|
||
|
#endif
|
||
|
|
||
|
if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
|
||
|
Check.setBase(OpLHS);
|
||
|
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
|
||
|
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
|
||
|
Changed = true;
|
||
|
} else if (match(Check.getBase(),
|
||
|
m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
|
||
|
KnownBits Known = computeKnownBits(OpLHS, DL);
|
||
|
if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
|
||
|
Check.setBase(OpLHS);
|
||
|
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
|
||
|
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
} while (Changed);
|
||
|
|
||
|
Checks.push_back(Check);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool GuardWideningImpl::combineRangeChecks(
|
||
|
SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
|
||
|
SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
|
||
|
unsigned OldCount = Checks.size();
|
||
|
while (!Checks.empty()) {
|
||
|
// Pick all of the range checks with a specific base and length, and try to
|
||
|
// merge them.
|
||
|
const Value *CurrentBase = Checks.front().getBase();
|
||
|
const Value *CurrentLength = Checks.front().getLength();
|
||
|
|
||
|
SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
|
||
|
|
||
|
auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
|
||
|
return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
|
||
|
};
|
||
|
|
||
|
copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
|
||
|
erase_if(Checks, IsCurrentCheck);
|
||
|
|
||
|
assert(CurrentChecks.size() != 0 && "We know we have at least one!");
|
||
|
|
||
|
if (CurrentChecks.size() < 3) {
|
||
|
llvm::append_range(RangeChecksOut, CurrentChecks);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// CurrentChecks.size() will typically be 3 here, but so far there has been
|
||
|
// no need to hard-code that fact.
|
||
|
|
||
|
llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
|
||
|
const GuardWideningImpl::RangeCheck &RHS) {
|
||
|
return LHS.getOffsetValue().slt(RHS.getOffsetValue());
|
||
|
});
|
||
|
|
||
|
// Note: std::sort should not invalidate the ChecksStart iterator.
|
||
|
|
||
|
const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
|
||
|
const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
|
||
|
|
||
|
unsigned BitWidth = MaxOffset->getValue().getBitWidth();
|
||
|
if ((MaxOffset->getValue() - MinOffset->getValue())
|
||
|
.ugt(APInt::getSignedMinValue(BitWidth)))
|
||
|
return false;
|
||
|
|
||
|
APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
|
||
|
const APInt &HighOffset = MaxOffset->getValue();
|
||
|
auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
|
||
|
return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
|
||
|
};
|
||
|
|
||
|
if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
|
||
|
return false;
|
||
|
|
||
|
// We have a series of f+1 checks as:
|
||
|
//
|
||
|
// I+k_0 u< L ... Chk_0
|
||
|
// I+k_1 u< L ... Chk_1
|
||
|
// ...
|
||
|
// I+k_f u< L ... Chk_f
|
||
|
//
|
||
|
// with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
|
||
|
// k_f-k_0 u< INT_MIN+k_f ... Precond_1
|
||
|
// k_f != k_0 ... Precond_2
|
||
|
//
|
||
|
// Claim:
|
||
|
// Chk_0 AND Chk_f implies all the other checks
|
||
|
//
|
||
|
// Informal proof sketch:
|
||
|
//
|
||
|
// We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
|
||
|
// (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
|
||
|
// thus I+k_f is the greatest unsigned value in that range.
|
||
|
//
|
||
|
// This combined with Ckh_(f+1) shows that everything in that range is u< L.
|
||
|
// Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
|
||
|
// lie in [I+k_0,I+k_f], this proving our claim.
|
||
|
//
|
||
|
// To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
|
||
|
// two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
|
||
|
// since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
|
||
|
// range by definition, and the latter case is impossible:
|
||
|
//
|
||
|
// 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
|
||
|
// xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
||
|
//
|
||
|
// For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
|
||
|
// with 'x' above) to be at least >u INT_MIN.
|
||
|
|
||
|
RangeChecksOut.emplace_back(CurrentChecks.front());
|
||
|
RangeChecksOut.emplace_back(CurrentChecks.back());
|
||
|
}
|
||
|
|
||
|
assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
|
||
|
return RangeChecksOut.size() != OldCount;
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
|
||
|
switch (WS) {
|
||
|
case WS_IllegalOrNegative:
|
||
|
return "IllegalOrNegative";
|
||
|
case WS_Neutral:
|
||
|
return "Neutral";
|
||
|
case WS_Positive:
|
||
|
return "Positive";
|
||
|
case WS_VeryPositive:
|
||
|
return "VeryPositive";
|
||
|
}
|
||
|
|
||
|
llvm_unreachable("Fully covered switch above!");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
PreservedAnalyses GuardWideningPass::run(Function &F,
|
||
|
FunctionAnalysisManager &AM) {
|
||
|
// Avoid requesting analyses if there are no guards or widenable conditions.
|
||
|
auto *GuardDecl = F.getParent()->getFunction(
|
||
|
Intrinsic::getName(Intrinsic::experimental_guard));
|
||
|
bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
|
||
|
auto *WCDecl = F.getParent()->getFunction(
|
||
|
Intrinsic::getName(Intrinsic::experimental_widenable_condition));
|
||
|
bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
|
||
|
if (!HasIntrinsicGuards && !HasWidenableConditions)
|
||
|
return PreservedAnalyses::all();
|
||
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
||
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
||
|
auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
|
||
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
||
|
auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
|
||
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
||
|
if (MSSAA)
|
||
|
MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
|
||
|
if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
|
||
|
DT.getRootNode(), [](BasicBlock *) { return true; })
|
||
|
.run())
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
PreservedAnalyses PA;
|
||
|
PA.preserveSet<CFGAnalyses>();
|
||
|
PA.preserve<MemorySSAAnalysis>();
|
||
|
return PA;
|
||
|
}
|
||
|
|
||
|
PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
|
||
|
LoopStandardAnalysisResults &AR,
|
||
|
LPMUpdater &U) {
|
||
|
BasicBlock *RootBB = L.getLoopPredecessor();
|
||
|
if (!RootBB)
|
||
|
RootBB = L.getHeader();
|
||
|
auto BlockFilter = [&](BasicBlock *BB) {
|
||
|
return BB == RootBB || L.contains(BB);
|
||
|
};
|
||
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
||
|
if (AR.MSSA)
|
||
|
MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
|
||
|
if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
|
||
|
MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
|
||
|
BlockFilter)
|
||
|
.run())
|
||
|
return PreservedAnalyses::all();
|
||
|
|
||
|
auto PA = getLoopPassPreservedAnalyses();
|
||
|
if (AR.MSSA)
|
||
|
PA.preserve<MemorySSAAnalysis>();
|
||
|
return PA;
|
||
|
}
|