bolt/deps/llvm-18.1.8/clang/unittests/Analysis/FlowSensitive/TestingSupport.h

546 lines
21 KiB
C
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===--- TestingSupport.h - Testing utils for dataflow analyses -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines utilities to simplify testing of dataflow analyses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_
#define LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_
#include <functional>
#include <memory>
#include <optional>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchersInternal.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysis.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/MatchSwitch.h"
#include "clang/Analysis/FlowSensitive/NoopLattice.h"
#include "clang/Analysis/FlowSensitive/WatchedLiteralsSolver.h"
#include "clang/Basic/LLVM.h"
#include "clang/Serialization/PCHContainerOperations.h"
#include "clang/Tooling/ArgumentsAdjusters.h"
#include "clang/Tooling/Tooling.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Testing/Annotations/Annotations.h"
namespace clang {
namespace dataflow {
// Requires a `<<` operator for the `Lattice` type.
// FIXME: move to a non-test utility library.
template <typename Lattice>
std::ostream &operator<<(std::ostream &OS,
const DataflowAnalysisState<Lattice> &S) {
// FIXME: add printing support for the environment.
return OS << "{lattice=" << S.Lattice << ", environment=...}";
}
namespace test {
// Caps the number of block visits in any individual analysis. Given that test
// code is typically quite small, we set a low number to help catch any problems
// early. But, the choice is arbitrary.
constexpr std::int32_t MaxBlockVisitsInAnalysis = 2'000;
/// Returns the environment at the program point marked with `Annotation` from
/// the mapping of annotated program points to analysis state.
///
/// Requirements:
///
/// `Annotation` must be present as a key in `AnnotationStates`.
template <typename LatticeT>
const Environment &getEnvironmentAtAnnotation(
const llvm::StringMap<DataflowAnalysisState<LatticeT>> &AnnotationStates,
llvm::StringRef Annotation) {
auto It = AnnotationStates.find(Annotation);
assert(It != AnnotationStates.end());
return It->getValue().Env;
}
/// Contains data structures required and produced by a dataflow analysis run.
struct AnalysisOutputs {
/// Input code that is analyzed. Points within the code may be marked with
/// annotations to facilitate testing.
///
/// Example:
/// void target(int *x) {
/// *x; // [[p]]
/// }
/// From the annotation `p`, the line number and analysis state immediately
/// after the statement `*x` can be retrieved and verified.
llvm::Annotations Code;
/// AST context generated from `Code`.
ASTContext &ASTCtx;
/// The function whose body is analyzed.
const FunctionDecl *Target;
/// Contains the control flow graph built from the body of the `Target`
/// function and is analyzed.
const ControlFlowContext &CFCtx;
/// The analysis to be run.
TypeErasedDataflowAnalysis &Analysis;
/// Initial state to start the analysis.
const Environment &InitEnv;
// Stores the state of a CFG block if it has been evaluated by the analysis.
// The indices correspond to the block IDs.
llvm::ArrayRef<std::optional<TypeErasedDataflowAnalysisState>> BlockStates;
};
/// Arguments for building the dataflow analysis.
template <typename AnalysisT> struct AnalysisInputs {
/// Required fields are set in constructor.
AnalysisInputs(
llvm::StringRef CodeArg,
ast_matchers::internal::Matcher<FunctionDecl> TargetFuncMatcherArg,
std::function<AnalysisT(ASTContext &, Environment &)> MakeAnalysisArg)
: Code(CodeArg), TargetFuncMatcher(std::move(TargetFuncMatcherArg)),
MakeAnalysis(std::move(MakeAnalysisArg)) {}
/// Optional fields can be set with methods of the form `withFieldName(...)`.
AnalysisInputs<AnalysisT> &&
withSetupTest(std::function<llvm::Error(AnalysisOutputs &)> Arg) && {
SetupTest = std::move(Arg);
return std::move(*this);
}
AnalysisInputs<AnalysisT> &&withPostVisitCFG(
std::function<void(
ASTContext &, const CFGElement &,
const TransferStateForDiagnostics<typename AnalysisT::Lattice> &)>
Arg) && {
PostVisitCFG = std::move(Arg);
return std::move(*this);
}
AnalysisInputs<AnalysisT> &&withASTBuildArgs(ArrayRef<std::string> Arg) && {
ASTBuildArgs = std::move(Arg);
return std::move(*this);
}
AnalysisInputs<AnalysisT> &&
withASTBuildVirtualMappedFiles(tooling::FileContentMappings Arg) && {
ASTBuildVirtualMappedFiles = std::move(Arg);
return std::move(*this);
}
AnalysisInputs<AnalysisT> &&
withBuiltinOptions(DataflowAnalysisContext::Options Options) && {
BuiltinOptions = std::move(Options);
return std::move(*this);
}
AnalysisInputs<AnalysisT> &&
withSolverFactory(std::function<std::unique_ptr<Solver>()> Factory) && {
assert(Factory);
SolverFactory = std::move(Factory);
return std::move(*this);
}
/// Required. Input code that is analyzed.
llvm::StringRef Code;
/// Required. All functions that match this matcher are analyzed.
ast_matchers::internal::Matcher<FunctionDecl> TargetFuncMatcher;
/// Required. The analysis to be run is constructed with this function that
/// takes as argument the AST generated from the code being analyzed and the
/// initial state from which the analysis starts with.
std::function<AnalysisT(ASTContext &, Environment &)> MakeAnalysis;
/// Optional. If provided, this function is executed immediately before
/// running the dataflow analysis to allow for additional setup. All fields in
/// the `AnalysisOutputs` argument will be initialized except for the
/// `BlockStates` field which is only computed later during the analysis.
std::function<llvm::Error(AnalysisOutputs &)> SetupTest = nullptr;
/// Optional. If provided, this function is applied on each CFG element after
/// the analysis has been run.
std::function<void(
ASTContext &, const CFGElement &,
const TransferStateForDiagnostics<typename AnalysisT::Lattice> &)>
PostVisitCFG = nullptr;
/// Optional. Options for building the AST context.
ArrayRef<std::string> ASTBuildArgs = {};
/// Optional. Options for building the AST context.
tooling::FileContentMappings ASTBuildVirtualMappedFiles = {};
/// Configuration options for the built-in model.
DataflowAnalysisContext::Options BuiltinOptions;
/// SAT solver factory.
std::function<std::unique_ptr<Solver>()> SolverFactory = [] {
return std::make_unique<WatchedLiteralsSolver>();
};
};
/// Returns assertions based on annotations that are present after statements in
/// `AnnotatedCode`.
llvm::Expected<llvm::DenseMap<const Stmt *, std::string>>
buildStatementToAnnotationMapping(const FunctionDecl *Func,
llvm::Annotations AnnotatedCode);
/// Returns line numbers and content of the annotations in `AnnotatedCode`
/// within the token range `BoundingRange`.
llvm::DenseMap<unsigned, std::string> buildLineToAnnotationMapping(
const SourceManager &SM, const LangOptions &LangOpts,
SourceRange BoundingRange, llvm::Annotations AnnotatedCode);
/// Runs dataflow specified from `AI.MakeAnalysis` and `AI.PostVisitCFG` on all
/// functions that match `AI.TargetFuncMatcher` in `AI.Code`. Given the
/// analysis outputs, `VerifyResults` checks that the results from the analysis
/// are correct.
///
/// Requirements:
///
/// `AnalysisT` contains a type `Lattice`.
///
/// `Code`, `TargetFuncMatcher` and `MakeAnalysis` must be provided in `AI`.
///
/// `VerifyResults` must be provided.
template <typename AnalysisT>
llvm::Error
checkDataflow(AnalysisInputs<AnalysisT> AI,
std::function<void(const AnalysisOutputs &)> VerifyResults) {
// Build AST context from code.
llvm::Annotations AnnotatedCode(AI.Code);
auto Unit = tooling::buildASTFromCodeWithArgs(
AnnotatedCode.code(), AI.ASTBuildArgs, "input.cc", "clang-dataflow-test",
std::make_shared<PCHContainerOperations>(),
tooling::getClangStripDependencyFileAdjuster(),
AI.ASTBuildVirtualMappedFiles);
auto &Context = Unit->getASTContext();
if (Context.getDiagnostics().getClient()->getNumErrors() != 0) {
return llvm::make_error<llvm::StringError>(
llvm::errc::invalid_argument, "Source file has syntax or type errors, "
"they were printed to the test log");
}
std::function<void(const CFGElement &,
const TypeErasedDataflowAnalysisState &)>
TypeErasedPostVisitCFG = nullptr;
if (AI.PostVisitCFG) {
TypeErasedPostVisitCFG = [&AI, &Context](
const CFGElement &Element,
const TypeErasedDataflowAnalysisState &State) {
AI.PostVisitCFG(Context, Element,
TransferStateForDiagnostics<typename AnalysisT::Lattice>(
llvm::any_cast<const typename AnalysisT::Lattice &>(
State.Lattice.Value),
State.Env));
};
}
SmallVector<ast_matchers::BoundNodes, 1> MatchResult = ast_matchers::match(
ast_matchers::functionDecl(ast_matchers::hasBody(ast_matchers::stmt()),
AI.TargetFuncMatcher)
.bind("target"),
Context);
if (MatchResult.empty())
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"didn't find any matching target functions");
for (const ast_matchers::BoundNodes &BN : MatchResult) {
// Get the AST node of the target function.
const FunctionDecl *Target = BN.getNodeAs<FunctionDecl>("target");
if (Target == nullptr)
return llvm::make_error<llvm::StringError>(
llvm::errc::invalid_argument, "Could not find the target function.");
// Build the control flow graph for the target function.
auto MaybeCFCtx = ControlFlowContext::build(*Target);
if (!MaybeCFCtx) return MaybeCFCtx.takeError();
auto &CFCtx = *MaybeCFCtx;
// Initialize states for running dataflow analysis.
DataflowAnalysisContext DACtx(AI.SolverFactory(),
{/*Opts=*/AI.BuiltinOptions});
Environment InitEnv(DACtx, *Target);
auto Analysis = AI.MakeAnalysis(Context, InitEnv);
AnalysisOutputs AO{AnnotatedCode, Context, Target, CFCtx,
Analysis, InitEnv, {}};
// Additional test setup.
if (AI.SetupTest) {
if (auto Error = AI.SetupTest(AO)) return Error;
}
// If successful, the dataflow analysis returns a mapping from block IDs to
// the post-analysis states for the CFG blocks that have been evaluated.
llvm::Expected<std::vector<std::optional<TypeErasedDataflowAnalysisState>>>
MaybeBlockStates =
runTypeErasedDataflowAnalysis(CFCtx, Analysis, InitEnv,
TypeErasedPostVisitCFG,
MaxBlockVisitsInAnalysis);
if (!MaybeBlockStates) return MaybeBlockStates.takeError();
AO.BlockStates = *MaybeBlockStates;
// Verify dataflow analysis outputs.
VerifyResults(AO);
}
return llvm::Error::success();
}
/// Runs dataflow specified from `AI.MakeAnalysis` and `AI.PostVisitCFG` on all
/// functions that match `AI.TargetFuncMatcher` in `AI.Code`. Given the
/// annotation line numbers and analysis outputs, `VerifyResults` checks that
/// the results from the analysis are correct.
///
/// Requirements:
///
/// `AnalysisT` contains a type `Lattice`.
///
/// `Code`, `TargetFuncMatcher` and `MakeAnalysis` must be provided in `AI`.
///
/// `VerifyResults` must be provided.
template <typename AnalysisT>
llvm::Error
checkDataflow(AnalysisInputs<AnalysisT> AI,
std::function<void(const llvm::DenseMap<unsigned, std::string> &,
const AnalysisOutputs &)>
VerifyResults) {
return checkDataflow<AnalysisT>(
std::move(AI), [&VerifyResults](const AnalysisOutputs &AO) {
auto AnnotationLinesAndContent = buildLineToAnnotationMapping(
AO.ASTCtx.getSourceManager(), AO.ASTCtx.getLangOpts(),
AO.Target->getSourceRange(), AO.Code);
VerifyResults(AnnotationLinesAndContent, AO);
});
}
/// Runs dataflow specified from `AI.MakeAnalysis` and `AI.PostVisitCFG` on all
/// functions that match `AI.TargetFuncMatcher` in `AI.Code`. Given the state
/// computed at each annotated statement and analysis outputs, `VerifyResults`
/// checks that the results from the analysis are correct.
///
/// Requirements:
///
/// `AnalysisT` contains a type `Lattice`.
///
/// `Code`, `TargetFuncMatcher` and `MakeAnalysis` must be provided in `AI`.
///
/// `VerifyResults` must be provided.
///
/// Any annotations appearing in `Code` must come after a statement.
///
/// There can be at most one annotation attached per statement.
///
/// Annotations must not be repeated.
template <typename AnalysisT>
llvm::Error
checkDataflow(AnalysisInputs<AnalysisT> AI,
std::function<void(const llvm::StringMap<DataflowAnalysisState<
typename AnalysisT::Lattice>> &,
const AnalysisOutputs &)>
VerifyResults) {
// Compute mapping from nodes of annotated statements to the content in the
// annotation.
llvm::DenseMap<const Stmt *, std::string> StmtToAnnotations;
auto SetupTest = [&StmtToAnnotations,
PrevSetupTest = std::move(AI.SetupTest)](
AnalysisOutputs &AO) -> llvm::Error {
auto MaybeStmtToAnnotations = buildStatementToAnnotationMapping(
cast<FunctionDecl>(AO.InitEnv.getDeclCtx()), AO.Code);
if (!MaybeStmtToAnnotations) {
return MaybeStmtToAnnotations.takeError();
}
StmtToAnnotations = std::move(*MaybeStmtToAnnotations);
return PrevSetupTest ? PrevSetupTest(AO) : llvm::Error::success();
};
using StateT = DataflowAnalysisState<typename AnalysisT::Lattice>;
// Save the states computed for program points immediately following annotated
// statements. The saved states are keyed by the content of the annotation.
llvm::StringMap<StateT> AnnotationStates;
auto PostVisitCFG =
[&StmtToAnnotations, &AnnotationStates,
PrevPostVisitCFG = std::move(AI.PostVisitCFG)](
ASTContext &Ctx, const CFGElement &Elt,
const TransferStateForDiagnostics<typename AnalysisT::Lattice>
&State) {
if (PrevPostVisitCFG) {
PrevPostVisitCFG(Ctx, Elt, State);
}
// FIXME: Extend retrieval of state for non statement constructs.
auto Stmt = Elt.getAs<CFGStmt>();
if (!Stmt)
return;
auto It = StmtToAnnotations.find(Stmt->getStmt());
if (It == StmtToAnnotations.end())
return;
auto [_, InsertSuccess] = AnnotationStates.insert(
{It->second, StateT{State.Lattice, State.Env.fork()}});
(void)_;
(void)InsertSuccess;
assert(InsertSuccess);
};
return checkDataflow<AnalysisT>(
std::move(AI)
.withSetupTest(std::move(SetupTest))
.withPostVisitCFG(std::move(PostVisitCFG)),
[&VerifyResults, &AnnotationStates](const AnalysisOutputs &AO) {
VerifyResults(AnnotationStates, AO);
// `checkDataflow()` can analyze more than one function. Reset the
// variables to prepare for analyzing the next function.
AnnotationStates.clear();
});
}
using BuiltinOptions = DataflowAnalysisContext::Options;
/// Runs dataflow on function named `TargetFun` in `Code` with a `NoopAnalysis`
/// and calls `VerifyResults` to verify the results.
llvm::Error checkDataflowWithNoopAnalysis(
llvm::StringRef Code,
std::function<
void(const llvm::StringMap<DataflowAnalysisState<NoopLattice>> &,
ASTContext &)>
VerifyResults = [](const auto &, auto &) {},
DataflowAnalysisOptions Options = {BuiltinOptions()},
LangStandard::Kind Std = LangStandard::lang_cxx17,
llvm::StringRef TargetFun = "target");
/// Runs dataflow on function matched by `TargetFuncMatcher` in `Code` with a
/// `NoopAnalysis` and calls `VerifyResults` to verify the results.
llvm::Error checkDataflowWithNoopAnalysis(
llvm::StringRef Code,
ast_matchers::internal::Matcher<FunctionDecl> TargetFuncMatcher,
std::function<
void(const llvm::StringMap<DataflowAnalysisState<NoopLattice>> &,
ASTContext &)>
VerifyResults = [](const auto &, auto &) {},
DataflowAnalysisOptions Options = {BuiltinOptions()},
LangStandard::Kind Std = LangStandard::lang_cxx17,
std::function<llvm::StringMap<QualType>(QualType)> SyntheticFieldCallback =
{});
/// Returns the `ValueDecl` for the given identifier.
///
/// Requirements:
///
/// `Name` must be unique in `ASTCtx`.
const ValueDecl *findValueDecl(ASTContext &ASTCtx, llvm::StringRef Name);
/// Returns the `IndirectFieldDecl` for the given identifier.
///
/// Requirements:
///
/// `Name` must be unique in `ASTCtx`.
const IndirectFieldDecl *findIndirectFieldDecl(ASTContext &ASTCtx,
llvm::StringRef Name);
/// Returns the storage location (of type `LocT`) for the given identifier.
/// `LocT` must be a subclass of `StorageLocation` and must be of the
/// appropriate type.
///
/// Requirements:
///
/// `Name` must be unique in `ASTCtx`.
template <class LocT>
LocT &getLocForDecl(ASTContext &ASTCtx, const Environment &Env,
llvm::StringRef Name) {
const ValueDecl *VD = findValueDecl(ASTCtx, Name);
assert(VD != nullptr);
return *cast<LocT>(Env.getStorageLocation(*VD));
}
/// Returns the value (of type `ValueT`) for the given identifier.
/// `ValueT` must be a subclass of `Value` and must be of the appropriate type.
///
/// Requirements:
///
/// `Name` must be unique in `ASTCtx`.
template <class ValueT>
ValueT &getValueForDecl(ASTContext &ASTCtx, const Environment &Env,
llvm::StringRef Name) {
const ValueDecl *VD = findValueDecl(ASTCtx, Name);
assert(VD != nullptr);
return *cast<ValueT>(Env.getValue(*VD));
}
/// Returns the value of a `Field` on the record referenced by `Loc.`
/// Returns null if `Loc` is null.
inline Value *getFieldValue(const RecordStorageLocation *Loc,
const ValueDecl &Field, const Environment &Env) {
if (Loc == nullptr)
return nullptr;
StorageLocation *FieldLoc = Loc->getChild(Field);
if (FieldLoc == nullptr)
return nullptr;
return Env.getValue(*FieldLoc);
}
/// Creates and owns constraints which are boolean values.
class ConstraintContext {
unsigned NextAtom = 0;
llvm::BumpPtrAllocator A;
const Formula *make(Formula::Kind K,
llvm::ArrayRef<const Formula *> Operands) {
return &Formula::create(A, K, Operands);
}
public:
// Returns a reference to a fresh atomic variable.
const Formula *atom() {
return &Formula::create(A, Formula::AtomRef, {}, NextAtom++);
}
// Returns a reference to a literal boolean value.
const Formula *literal(bool B) {
return &Formula::create(A, Formula::Literal, {}, B);
}
// Creates a boolean conjunction.
const Formula *conj(const Formula *LHS, const Formula *RHS) {
return make(Formula::And, {LHS, RHS});
}
// Creates a boolean disjunction.
const Formula *disj(const Formula *LHS, const Formula *RHS) {
return make(Formula::Or, {LHS, RHS});
}
// Creates a boolean negation.
const Formula *neg(const Formula *Operand) {
return make(Formula::Not, {Operand});
}
// Creates a boolean implication.
const Formula *impl(const Formula *LHS, const Formula *RHS) {
return make(Formula::Implies, {LHS, RHS});
}
// Creates a boolean biconditional.
const Formula *iff(const Formula *LHS, const Formula *RHS) {
return make(Formula::Equal, {LHS, RHS});
}
};
/// Parses a list of formulas, separated by newlines, and returns them.
/// On parse errors, calls `ADD_FAILURE()` to fail the current test.
std::vector<const Formula *> parseFormulas(Arena &A, StringRef Lines);
} // namespace test
} // namespace dataflow
} // namespace clang
#endif // LLVM_CLANG_ANALYSIS_FLOW_SENSITIVE_TESTING_SUPPORT_H_