bolt/deps/llvm-18.1.8/llvm/lib/Target/AArch64/AArch64PointerAuth.cpp

428 lines
15 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===-- AArch64PointerAuth.cpp -- Harden code using PAuth ------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AArch64PointerAuth.h"
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
using namespace llvm;
using namespace llvm::AArch64PAuth;
#define AARCH64_POINTER_AUTH_NAME "AArch64 Pointer Authentication"
namespace {
class AArch64PointerAuth : public MachineFunctionPass {
public:
static char ID;
AArch64PointerAuth() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return AARCH64_POINTER_AUTH_NAME; }
private:
/// An immediate operand passed to BRK instruction, if it is ever emitted.
const unsigned BrkOperand = 0xc471;
const AArch64Subtarget *Subtarget = nullptr;
const AArch64InstrInfo *TII = nullptr;
const AArch64RegisterInfo *TRI = nullptr;
void signLR(MachineFunction &MF, MachineBasicBlock::iterator MBBI) const;
void authenticateLR(MachineFunction &MF,
MachineBasicBlock::iterator MBBI) const;
bool checkAuthenticatedLR(MachineBasicBlock::iterator TI) const;
};
} // end anonymous namespace
INITIALIZE_PASS(AArch64PointerAuth, "aarch64-ptrauth",
AARCH64_POINTER_AUTH_NAME, false, false)
FunctionPass *llvm::createAArch64PointerAuthPass() {
return new AArch64PointerAuth();
}
char AArch64PointerAuth::ID = 0;
// Where PAuthLR support is not known at compile time, it is supported using
// PACM. PACM is in the hint space so has no effect when PAuthLR is not
// supported by the hardware, but will alter the behaviour of PACI*SP, AUTI*SP
// and RETAA/RETAB if the hardware supports PAuthLR.
static void BuildPACM(const AArch64Subtarget &Subtarget, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc DL,
MachineInstr::MIFlag Flags, MCSymbol *PACSym = nullptr) {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
auto &MFnI = *MBB.getParent()->getInfo<AArch64FunctionInfo>();
// ADR X16,<address_of_PACIASP>
if (PACSym) {
assert(Flags == MachineInstr::FrameDestroy);
BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADR))
.addReg(AArch64::X16, RegState::Define)
.addSym(PACSym);
}
// Only emit PACM if -mbranch-protection has +pc and the target does not
// have feature +pauth-lr.
if (MFnI.branchProtectionPAuthLR() && !Subtarget.hasPAuthLR())
BuildMI(MBB, MBBI, DL, TII->get(AArch64::PACM)).setMIFlag(Flags);
}
void AArch64PointerAuth::signLR(MachineFunction &MF,
MachineBasicBlock::iterator MBBI) const {
auto &MFnI = *MF.getInfo<AArch64FunctionInfo>();
bool UseBKey = MFnI.shouldSignWithBKey();
bool EmitCFI = MFnI.needsDwarfUnwindInfo(MF);
bool NeedsWinCFI = MF.hasWinCFI();
MachineBasicBlock &MBB = *MBBI->getParent();
// Debug location must be unknown, see AArch64FrameLowering::emitPrologue.
DebugLoc DL;
if (UseBKey) {
BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITBKEY))
.setMIFlag(MachineInstr::FrameSetup);
}
// PAuthLR authentication instructions need to know the value of PC at the
// point of signing (PACI*).
if (MFnI.branchProtectionPAuthLR()) {
MCSymbol *PACSym = MF.getMMI().getContext().createTempSymbol();
MFnI.setSigningInstrLabel(PACSym);
}
// No SEH opcode for this one; it doesn't materialize into an
// instruction on Windows.
if (MFnI.branchProtectionPAuthLR() && Subtarget->hasPAuthLR()) {
BuildMI(MBB, MBBI, DL,
TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSPPC
: AArch64::PACIASPPC))
.setMIFlag(MachineInstr::FrameSetup)
->setPreInstrSymbol(MF, MFnI.getSigningInstrLabel());
} else {
BuildPACM(*Subtarget, MBB, MBBI, DL, MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL,
TII->get(MFnI.shouldSignWithBKey() ? AArch64::PACIBSP
: AArch64::PACIASP))
.setMIFlag(MachineInstr::FrameSetup)
->setPreInstrSymbol(MF, MFnI.getSigningInstrLabel());
}
if (EmitCFI) {
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
} else if (NeedsWinCFI) {
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
.setMIFlag(MachineInstr::FrameSetup);
}
}
void AArch64PointerAuth::authenticateLR(
MachineFunction &MF, MachineBasicBlock::iterator MBBI) const {
const AArch64FunctionInfo *MFnI = MF.getInfo<AArch64FunctionInfo>();
bool UseBKey = MFnI->shouldSignWithBKey();
bool EmitAsyncCFI = MFnI->needsAsyncDwarfUnwindInfo(MF);
bool NeedsWinCFI = MF.hasWinCFI();
MachineBasicBlock &MBB = *MBBI->getParent();
DebugLoc DL = MBBI->getDebugLoc();
// MBBI points to a PAUTH_EPILOGUE instruction to be replaced and
// TI points to a terminator instruction that may or may not be combined.
// Note that inserting new instructions "before MBBI" and "before TI" is
// not the same because if ShadowCallStack is enabled, its instructions
// are placed between MBBI and TI.
MachineBasicBlock::iterator TI = MBB.getFirstInstrTerminator();
// The AUTIASP instruction assembles to a hint instruction before v8.3a so
// this instruction can safely used for any v8a architecture.
// From v8.3a onwards there are optimised authenticate LR and return
// instructions, namely RETA{A,B}, that can be used instead. In this case the
// DW_CFA_AARCH64_negate_ra_state can't be emitted.
bool TerminatorIsCombinable =
TI != MBB.end() && TI->getOpcode() == AArch64::RET;
MCSymbol *PACSym = MFnI->getSigningInstrLabel();
if (Subtarget->hasPAuth() && TerminatorIsCombinable && !NeedsWinCFI &&
!MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack)) {
if (MFnI->branchProtectionPAuthLR() && Subtarget->hasPAuthLR()) {
assert(PACSym && "No PAC instruction to refer to");
BuildMI(MBB, TI, DL,
TII->get(UseBKey ? AArch64::RETABSPPCi : AArch64::RETAASPPCi))
.addSym(PACSym)
.copyImplicitOps(*MBBI)
.setMIFlag(MachineInstr::FrameDestroy);
} else {
BuildPACM(*Subtarget, MBB, TI, DL, MachineInstr::FrameDestroy, PACSym);
BuildMI(MBB, TI, DL, TII->get(UseBKey ? AArch64::RETAB : AArch64::RETAA))
.copyImplicitOps(*MBBI)
.setMIFlag(MachineInstr::FrameDestroy);
}
MBB.erase(TI);
} else {
if (MFnI->branchProtectionPAuthLR() && Subtarget->hasPAuthLR()) {
assert(PACSym && "No PAC instruction to refer to");
BuildMI(MBB, MBBI, DL,
TII->get(UseBKey ? AArch64::AUTIBSPPCi : AArch64::AUTIASPPCi))
.addSym(PACSym)
.setMIFlag(MachineInstr::FrameDestroy);
} else {
BuildPACM(*Subtarget, MBB, MBBI, DL, MachineInstr::FrameDestroy, PACSym);
BuildMI(MBB, MBBI, DL,
TII->get(UseBKey ? AArch64::AUTIBSP : AArch64::AUTIASP))
.setMIFlag(MachineInstr::FrameDestroy);
}
if (EmitAsyncCFI) {
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameDestroy);
}
if (NeedsWinCFI) {
BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PACSignLR))
.setMIFlag(MachineInstr::FrameDestroy);
}
}
}
namespace {
// Mark dummy LDR instruction as volatile to prevent removing it as dead code.
MachineMemOperand *createCheckMemOperand(MachineFunction &MF,
const AArch64Subtarget &Subtarget) {
MachinePointerInfo PointerInfo(Subtarget.getAddressCheckPSV());
auto MOVolatileLoad =
MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
return MF.getMachineMemOperand(PointerInfo, MOVolatileLoad, 4, Align(4));
}
} // namespace
MachineBasicBlock &llvm::AArch64PAuth::checkAuthenticatedRegister(
MachineBasicBlock::iterator MBBI, AuthCheckMethod Method,
Register AuthenticatedReg, Register TmpReg, bool UseIKey, unsigned BrkImm) {
MachineBasicBlock &MBB = *MBBI->getParent();
MachineFunction &MF = *MBB.getParent();
const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
const AArch64InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MBBI->getDebugLoc();
// First, handle the methods not requiring creating extra MBBs.
switch (Method) {
default:
break;
case AuthCheckMethod::None:
return MBB;
case AuthCheckMethod::DummyLoad:
BuildMI(MBB, MBBI, DL, TII->get(AArch64::LDRWui), getWRegFromXReg(TmpReg))
.addReg(AArch64::LR)
.addImm(0)
.addMemOperand(createCheckMemOperand(MF, Subtarget));
return MBB;
}
// Control flow has to be changed, so arrange new MBBs.
// At now, at least an AUT* instruction is expected before MBBI
assert(MBBI != MBB.begin() &&
"Cannot insert the check at the very beginning of MBB");
// The block to insert check into.
MachineBasicBlock *CheckBlock = &MBB;
// The remaining part of the original MBB that is executed on success.
MachineBasicBlock *SuccessBlock = MBB.splitAt(*std::prev(MBBI));
// The block that explicitly generates a break-point exception on failure.
MachineBasicBlock *BreakBlock =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.push_back(BreakBlock);
MBB.splitSuccessor(SuccessBlock, BreakBlock);
assert(CheckBlock->getFallThrough() == SuccessBlock);
BuildMI(BreakBlock, DL, TII->get(AArch64::BRK)).addImm(BrkImm);
switch (Method) {
case AuthCheckMethod::None:
case AuthCheckMethod::DummyLoad:
llvm_unreachable("Should be handled above");
case AuthCheckMethod::HighBitsNoTBI:
BuildMI(CheckBlock, DL, TII->get(AArch64::EORXrs), TmpReg)
.addReg(AuthenticatedReg)
.addReg(AuthenticatedReg)
.addImm(1);
BuildMI(CheckBlock, DL, TII->get(AArch64::TBNZX))
.addReg(TmpReg)
.addImm(62)
.addMBB(BreakBlock);
return *SuccessBlock;
case AuthCheckMethod::XPACHint:
assert(AuthenticatedReg == AArch64::LR &&
"XPACHint mode is only compatible with checking the LR register");
assert(UseIKey && "XPACHint mode is only compatible with I-keys");
BuildMI(CheckBlock, DL, TII->get(AArch64::ORRXrs), TmpReg)
.addReg(AArch64::XZR)
.addReg(AArch64::LR)
.addImm(0);
BuildMI(CheckBlock, DL, TII->get(AArch64::XPACLRI));
BuildMI(CheckBlock, DL, TII->get(AArch64::SUBSXrs), AArch64::XZR)
.addReg(TmpReg)
.addReg(AArch64::LR)
.addImm(0);
BuildMI(CheckBlock, DL, TII->get(AArch64::Bcc))
.addImm(AArch64CC::NE)
.addMBB(BreakBlock);
return *SuccessBlock;
}
llvm_unreachable("Unknown AuthCheckMethod enum");
}
unsigned llvm::AArch64PAuth::getCheckerSizeInBytes(AuthCheckMethod Method) {
switch (Method) {
case AuthCheckMethod::None:
return 0;
case AuthCheckMethod::DummyLoad:
return 4;
case AuthCheckMethod::HighBitsNoTBI:
return 12;
case AuthCheckMethod::XPACHint:
return 20;
}
llvm_unreachable("Unknown AuthCheckMethod enum");
}
bool AArch64PointerAuth::checkAuthenticatedLR(
MachineBasicBlock::iterator TI) const {
AuthCheckMethod Method = Subtarget->getAuthenticatedLRCheckMethod();
if (Method == AuthCheckMethod::None)
return false;
// FIXME If FEAT_FPAC is implemented by the CPU, this check can be skipped.
assert(!TI->getMF()->hasWinCFI() && "WinCFI is not yet supported");
// The following code may create a signing oracle:
//
// <authenticate LR>
// TCRETURN ; the callee may sign and spill the LR in its prologue
//
// To avoid generating a signing oracle, check the authenticated value
// before possibly re-signing it in the callee, as follows:
//
// <authenticate LR>
// <check if LR contains a valid address>
// b.<cond> break_block
// ret_block:
// TCRETURN
// break_block:
// brk <BrkOperand>
//
// or just
//
// <authenticate LR>
// ldr tmp, [lr]
// TCRETURN
// TmpReg is chosen assuming X16 and X17 are dead after TI.
assert(AArch64InstrInfo::isTailCallReturnInst(*TI) &&
"Tail call is expected");
Register TmpReg =
TI->readsRegister(AArch64::X16, TRI) ? AArch64::X17 : AArch64::X16;
assert(!TI->readsRegister(TmpReg, TRI) &&
"More than a single register is used by TCRETURN");
checkAuthenticatedRegister(TI, Method, AArch64::LR, TmpReg, /*UseIKey=*/true,
BrkOperand);
return true;
}
bool AArch64PointerAuth::runOnMachineFunction(MachineFunction &MF) {
const auto *MFnI = MF.getInfo<AArch64FunctionInfo>();
Subtarget = &MF.getSubtarget<AArch64Subtarget>();
TII = Subtarget->getInstrInfo();
TRI = Subtarget->getRegisterInfo();
SmallVector<MachineBasicBlock::instr_iterator> PAuthPseudoInstrs;
SmallVector<MachineBasicBlock::instr_iterator> TailCallInstrs;
bool Modified = false;
bool HasAuthenticationInstrs = false;
for (auto &MBB : MF) {
// Using instr_iterator to catch unsupported bundled TCRETURN* instructions
// instead of just skipping them.
for (auto &MI : MBB.instrs()) {
switch (MI.getOpcode()) {
default:
// Bundled TCRETURN* instructions (such as created by KCFI)
// are not supported yet, but no support is required if no
// PAUTH_EPILOGUE instructions exist in the same function.
// Skip the BUNDLE instruction itself (actual bundled instructions
// follow it in the instruction list).
if (MI.isBundle())
continue;
if (AArch64InstrInfo::isTailCallReturnInst(MI))
TailCallInstrs.push_back(MI.getIterator());
break;
case AArch64::PAUTH_PROLOGUE:
case AArch64::PAUTH_EPILOGUE:
assert(!MI.isBundled());
PAuthPseudoInstrs.push_back(MI.getIterator());
break;
}
}
}
for (auto It : PAuthPseudoInstrs) {
switch (It->getOpcode()) {
case AArch64::PAUTH_PROLOGUE:
signLR(MF, It);
break;
case AArch64::PAUTH_EPILOGUE:
authenticateLR(MF, It);
HasAuthenticationInstrs = true;
break;
default:
llvm_unreachable("Unhandled opcode");
}
It->eraseFromParent();
Modified = true;
}
// FIXME Do we need to emit any PAuth-related epilogue code at all
// when SCS is enabled?
if (HasAuthenticationInstrs &&
!MFnI->needsShadowCallStackPrologueEpilogue(MF)) {
for (auto TailCall : TailCallInstrs) {
assert(!TailCall->isBundled() && "Not yet supported");
Modified |= checkAuthenticatedLR(TailCall);
}
}
return Modified;
}