823 lines
28 KiB
C++
823 lines
28 KiB
C++
|
//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "SIMachineFunctionInfo.h"
|
||
|
#include "AMDGPUSubtarget.h"
|
||
|
#include "AMDGPUTargetMachine.h"
|
||
|
#include "GCNSubtarget.h"
|
||
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
||
|
#include "SIRegisterInfo.h"
|
||
|
#include "Utils/AMDGPUBaseInfo.h"
|
||
|
#include "llvm/CodeGen/LiveIntervals.h"
|
||
|
#include "llvm/CodeGen/MIRParser/MIParser.h"
|
||
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
||
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
||
|
#include "llvm/CodeGen/MachineFunction.h"
|
||
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
||
|
#include "llvm/IR/CallingConv.h"
|
||
|
#include "llvm/IR/DiagnosticInfo.h"
|
||
|
#include "llvm/IR/Function.h"
|
||
|
#include <cassert>
|
||
|
#include <optional>
|
||
|
#include <vector>
|
||
|
|
||
|
#define MAX_LANES 64
|
||
|
|
||
|
using namespace llvm;
|
||
|
|
||
|
const GCNTargetMachine &getTM(const GCNSubtarget *STI) {
|
||
|
const SITargetLowering *TLI = STI->getTargetLowering();
|
||
|
return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine());
|
||
|
}
|
||
|
|
||
|
SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F,
|
||
|
const GCNSubtarget *STI)
|
||
|
: AMDGPUMachineFunction(F, *STI), Mode(F, *STI), GWSResourcePSV(getTM(STI)),
|
||
|
UserSGPRInfo(F, *STI), WorkGroupIDX(false), WorkGroupIDY(false),
|
||
|
WorkGroupIDZ(false), WorkGroupInfo(false), LDSKernelId(false),
|
||
|
PrivateSegmentWaveByteOffset(false), WorkItemIDX(false),
|
||
|
WorkItemIDY(false), WorkItemIDZ(false), ImplicitArgPtr(false),
|
||
|
GITPtrHigh(0xffffffff), HighBitsOf32BitAddress(0) {
|
||
|
const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI);
|
||
|
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
|
||
|
WavesPerEU = ST.getWavesPerEU(F);
|
||
|
|
||
|
Occupancy = ST.computeOccupancy(F, getLDSSize());
|
||
|
CallingConv::ID CC = F.getCallingConv();
|
||
|
|
||
|
VRegFlags.reserve(1024);
|
||
|
|
||
|
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
|
||
|
CC == CallingConv::SPIR_KERNEL;
|
||
|
|
||
|
if (IsKernel) {
|
||
|
WorkGroupIDX = true;
|
||
|
WorkItemIDX = true;
|
||
|
} else if (CC == CallingConv::AMDGPU_PS) {
|
||
|
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
|
||
|
}
|
||
|
|
||
|
MayNeedAGPRs = ST.hasMAIInsts();
|
||
|
|
||
|
if (AMDGPU::isChainCC(CC)) {
|
||
|
// Chain functions don't receive an SP from their caller, but are free to
|
||
|
// set one up. For now, we can use s32 to match what amdgpu_gfx functions
|
||
|
// would use if called, but this can be revisited.
|
||
|
// FIXME: Only reserve this if we actually need it.
|
||
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
||
|
|
||
|
ScratchRSrcReg = AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51;
|
||
|
|
||
|
ArgInfo.PrivateSegmentBuffer =
|
||
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
||
|
|
||
|
ImplicitArgPtr = false;
|
||
|
} else if (!isEntryFunction()) {
|
||
|
if (CC != CallingConv::AMDGPU_Gfx)
|
||
|
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
|
||
|
|
||
|
// TODO: Pick a high register, and shift down, similar to a kernel.
|
||
|
FrameOffsetReg = AMDGPU::SGPR33;
|
||
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
||
|
|
||
|
if (!ST.enableFlatScratch()) {
|
||
|
// Non-entry functions have no special inputs for now, other registers
|
||
|
// required for scratch access.
|
||
|
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
|
||
|
|
||
|
ArgInfo.PrivateSegmentBuffer =
|
||
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
||
|
}
|
||
|
|
||
|
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
|
||
|
ImplicitArgPtr = true;
|
||
|
} else {
|
||
|
ImplicitArgPtr = false;
|
||
|
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
|
||
|
MaxKernArgAlign);
|
||
|
|
||
|
if (ST.hasGFX90AInsts() &&
|
||
|
ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() &&
|
||
|
!mayUseAGPRs(F))
|
||
|
MayNeedAGPRs = false; // We will select all MAI with VGPR operands.
|
||
|
}
|
||
|
|
||
|
if (!AMDGPU::isGraphics(CC) ||
|
||
|
(CC == CallingConv::AMDGPU_CS && ST.hasArchitectedSGPRs())) {
|
||
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
|
||
|
WorkGroupIDX = true;
|
||
|
|
||
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
|
||
|
WorkGroupIDY = true;
|
||
|
|
||
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
|
||
|
WorkGroupIDZ = true;
|
||
|
}
|
||
|
|
||
|
if (!AMDGPU::isGraphics(CC)) {
|
||
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
|
||
|
WorkItemIDX = true;
|
||
|
|
||
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") &&
|
||
|
ST.getMaxWorkitemID(F, 1) != 0)
|
||
|
WorkItemIDY = true;
|
||
|
|
||
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") &&
|
||
|
ST.getMaxWorkitemID(F, 2) != 0)
|
||
|
WorkItemIDZ = true;
|
||
|
|
||
|
if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id"))
|
||
|
LDSKernelId = true;
|
||
|
}
|
||
|
|
||
|
if (isEntryFunction()) {
|
||
|
// X, XY, and XYZ are the only supported combinations, so make sure Y is
|
||
|
// enabled if Z is.
|
||
|
if (WorkItemIDZ)
|
||
|
WorkItemIDY = true;
|
||
|
|
||
|
if (!ST.flatScratchIsArchitected()) {
|
||
|
PrivateSegmentWaveByteOffset = true;
|
||
|
|
||
|
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
|
||
|
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
|
||
|
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
|
||
|
ArgInfo.PrivateSegmentWaveByteOffset =
|
||
|
ArgDescriptor::createRegister(AMDGPU::SGPR5);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
|
||
|
StringRef S = A.getValueAsString();
|
||
|
if (!S.empty())
|
||
|
S.consumeInteger(0, GITPtrHigh);
|
||
|
|
||
|
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
|
||
|
S = A.getValueAsString();
|
||
|
if (!S.empty())
|
||
|
S.consumeInteger(0, HighBitsOf32BitAddress);
|
||
|
|
||
|
// On GFX908, in order to guarantee copying between AGPRs, we need a scratch
|
||
|
// VGPR available at all times. For now, reserve highest available VGPR. After
|
||
|
// RA, shift it to the lowest available unused VGPR if the one exist.
|
||
|
if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
|
||
|
VGPRForAGPRCopy =
|
||
|
AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
MachineFunctionInfo *SIMachineFunctionInfo::clone(
|
||
|
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
|
||
|
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
|
||
|
const {
|
||
|
return DestMF.cloneInfo<SIMachineFunctionInfo>(*this);
|
||
|
}
|
||
|
|
||
|
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
|
||
|
limitOccupancy(getMaxWavesPerEU());
|
||
|
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
|
||
|
limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(),
|
||
|
MF.getFunction()));
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
|
||
|
const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.PrivateSegmentBuffer =
|
||
|
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
|
||
|
NumUserSGPRs += 4;
|
||
|
return ArgInfo.PrivateSegmentBuffer.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.DispatchPtr.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.QueuePtr.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.KernargSegmentPtr
|
||
|
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.KernargSegmentPtr.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.DispatchID.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.FlatScratchInit.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
|
||
|
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
||
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
||
|
NumUserSGPRs += 2;
|
||
|
return ArgInfo.ImplicitBufferPtr.getRegister();
|
||
|
}
|
||
|
|
||
|
Register SIMachineFunctionInfo::addLDSKernelId() {
|
||
|
ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR());
|
||
|
NumUserSGPRs += 1;
|
||
|
return ArgInfo.LDSKernelId.getRegister();
|
||
|
}
|
||
|
|
||
|
SmallVectorImpl<MCRegister> *SIMachineFunctionInfo::addPreloadedKernArg(
|
||
|
const SIRegisterInfo &TRI, const TargetRegisterClass *RC,
|
||
|
unsigned AllocSizeDWord, int KernArgIdx, int PaddingSGPRs) {
|
||
|
assert(!ArgInfo.PreloadKernArgs.count(KernArgIdx) &&
|
||
|
"Preload kernel argument allocated twice.");
|
||
|
NumUserSGPRs += PaddingSGPRs;
|
||
|
// If the available register tuples are aligned with the kernarg to be
|
||
|
// preloaded use that register, otherwise we need to use a set of SGPRs and
|
||
|
// merge them.
|
||
|
Register PreloadReg =
|
||
|
TRI.getMatchingSuperReg(getNextUserSGPR(), AMDGPU::sub0, RC);
|
||
|
if (PreloadReg &&
|
||
|
(RC == &AMDGPU::SReg_32RegClass || RC == &AMDGPU::SReg_64RegClass)) {
|
||
|
ArgInfo.PreloadKernArgs[KernArgIdx].Regs.push_back(PreloadReg);
|
||
|
NumUserSGPRs += AllocSizeDWord;
|
||
|
} else {
|
||
|
for (unsigned I = 0; I < AllocSizeDWord; ++I) {
|
||
|
ArgInfo.PreloadKernArgs[KernArgIdx].Regs.push_back(getNextUserSGPR());
|
||
|
NumUserSGPRs++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Track the actual number of SGPRs that HW will preload to.
|
||
|
UserSGPRInfo.allocKernargPreloadSGPRs(AllocSizeDWord + PaddingSGPRs);
|
||
|
return &ArgInfo.PreloadKernArgs[KernArgIdx].Regs;
|
||
|
}
|
||
|
|
||
|
void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR,
|
||
|
uint64_t Size, Align Alignment) {
|
||
|
// Skip if it is an entry function or the register is already added.
|
||
|
if (isEntryFunction() || WWMSpills.count(VGPR))
|
||
|
return;
|
||
|
|
||
|
// Skip if this is a function with the amdgpu_cs_chain or
|
||
|
// amdgpu_cs_chain_preserve calling convention and this is a scratch register.
|
||
|
// We never need to allocate a spill for these because we don't even need to
|
||
|
// restore the inactive lanes for them (they're scratchier than the usual
|
||
|
// scratch registers).
|
||
|
if (isChainFunction() && SIRegisterInfo::isChainScratchRegister(VGPR))
|
||
|
return;
|
||
|
|
||
|
WWMSpills.insert(std::make_pair(
|
||
|
VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment)));
|
||
|
}
|
||
|
|
||
|
// Separate out the callee-saved and scratch registers.
|
||
|
void SIMachineFunctionInfo::splitWWMSpillRegisters(
|
||
|
MachineFunction &MF,
|
||
|
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
|
||
|
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const {
|
||
|
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
|
||
|
for (auto &Reg : WWMSpills) {
|
||
|
if (isCalleeSavedReg(CSRegs, Reg.first))
|
||
|
CalleeSavedRegs.push_back(Reg);
|
||
|
else
|
||
|
ScratchRegs.push_back(Reg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
|
||
|
MCPhysReg Reg) const {
|
||
|
for (unsigned I = 0; CSRegs[I]; ++I) {
|
||
|
if (CSRegs[I] == Reg)
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void SIMachineFunctionInfo::shiftSpillPhysVGPRsToLowestRange(
|
||
|
MachineFunction &MF) {
|
||
|
const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
|
||
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
for (unsigned I = 0, E = SpillPhysVGPRs.size(); I < E; ++I) {
|
||
|
Register Reg = SpillPhysVGPRs[I];
|
||
|
Register NewReg =
|
||
|
TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
|
||
|
if (!NewReg || NewReg >= Reg)
|
||
|
break;
|
||
|
|
||
|
MRI.replaceRegWith(Reg, NewReg);
|
||
|
|
||
|
// Update various tables with the new VGPR.
|
||
|
SpillPhysVGPRs[I] = NewReg;
|
||
|
WWMReservedRegs.remove(Reg);
|
||
|
WWMReservedRegs.insert(NewReg);
|
||
|
WWMSpills.insert(std::make_pair(NewReg, WWMSpills[Reg]));
|
||
|
WWMSpills.erase(Reg);
|
||
|
|
||
|
for (MachineBasicBlock &MBB : MF) {
|
||
|
MBB.removeLiveIn(Reg);
|
||
|
MBB.sortUniqueLiveIns();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::allocateVirtualVGPRForSGPRSpills(
|
||
|
MachineFunction &MF, int FI, unsigned LaneIndex) {
|
||
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
Register LaneVGPR;
|
||
|
if (!LaneIndex) {
|
||
|
LaneVGPR = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
||
|
SpillVGPRs.push_back(LaneVGPR);
|
||
|
} else {
|
||
|
LaneVGPR = SpillVGPRs.back();
|
||
|
}
|
||
|
|
||
|
SGPRSpillsToVirtualVGPRLanes[FI].push_back(
|
||
|
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::allocatePhysicalVGPRForSGPRSpills(
|
||
|
MachineFunction &MF, int FI, unsigned LaneIndex, bool IsPrologEpilog) {
|
||
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
||
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
Register LaneVGPR;
|
||
|
if (!LaneIndex) {
|
||
|
// Find the highest available register if called before RA to ensure the
|
||
|
// lowest registers are available for allocation. The LaneVGPR, in that
|
||
|
// case, will be shifted back to the lowest range after VGPR allocation.
|
||
|
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF,
|
||
|
!IsPrologEpilog);
|
||
|
if (LaneVGPR == AMDGPU::NoRegister) {
|
||
|
// We have no VGPRs left for spilling SGPRs. Reset because we will not
|
||
|
// partially spill the SGPR to VGPRs.
|
||
|
SGPRSpillsToPhysicalVGPRLanes.erase(FI);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
allocateWWMSpill(MF, LaneVGPR);
|
||
|
reserveWWMRegister(LaneVGPR);
|
||
|
for (MachineBasicBlock &MBB : MF) {
|
||
|
MBB.addLiveIn(LaneVGPR);
|
||
|
MBB.sortUniqueLiveIns();
|
||
|
}
|
||
|
SpillPhysVGPRs.push_back(LaneVGPR);
|
||
|
} else {
|
||
|
LaneVGPR = SpillPhysVGPRs.back();
|
||
|
}
|
||
|
|
||
|
SGPRSpillsToPhysicalVGPRLanes[FI].push_back(
|
||
|
SIRegisterInfo::SpilledReg(LaneVGPR, LaneIndex));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(
|
||
|
MachineFunction &MF, int FI, bool SpillToPhysVGPRLane,
|
||
|
bool IsPrologEpilog) {
|
||
|
std::vector<SIRegisterInfo::SpilledReg> &SpillLanes =
|
||
|
SpillToPhysVGPRLane ? SGPRSpillsToPhysicalVGPRLanes[FI]
|
||
|
: SGPRSpillsToVirtualVGPRLanes[FI];
|
||
|
|
||
|
// This has already been allocated.
|
||
|
if (!SpillLanes.empty())
|
||
|
return true;
|
||
|
|
||
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
||
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
||
|
unsigned WaveSize = ST.getWavefrontSize();
|
||
|
|
||
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
||
|
unsigned NumLanes = Size / 4;
|
||
|
|
||
|
if (NumLanes > WaveSize)
|
||
|
return false;
|
||
|
|
||
|
assert(Size >= 4 && "invalid sgpr spill size");
|
||
|
assert(ST.getRegisterInfo()->spillSGPRToVGPR() &&
|
||
|
"not spilling SGPRs to VGPRs");
|
||
|
|
||
|
unsigned &NumSpillLanes = SpillToPhysVGPRLane ? NumPhysicalVGPRSpillLanes
|
||
|
: NumVirtualVGPRSpillLanes;
|
||
|
|
||
|
for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) {
|
||
|
unsigned LaneIndex = (NumSpillLanes % WaveSize);
|
||
|
|
||
|
bool Allocated = SpillToPhysVGPRLane
|
||
|
? allocatePhysicalVGPRForSGPRSpills(MF, FI, LaneIndex,
|
||
|
IsPrologEpilog)
|
||
|
: allocateVirtualVGPRForSGPRSpills(MF, FI, LaneIndex);
|
||
|
if (!Allocated) {
|
||
|
NumSpillLanes -= I;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
|
||
|
/// Either AGPR is spilled to VGPR to vice versa.
|
||
|
/// Returns true if a \p FI can be eliminated completely.
|
||
|
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
|
||
|
int FI,
|
||
|
bool isAGPRtoVGPR) {
|
||
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
||
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
||
|
|
||
|
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
|
||
|
|
||
|
auto &Spill = VGPRToAGPRSpills[FI];
|
||
|
|
||
|
// This has already been allocated.
|
||
|
if (!Spill.Lanes.empty())
|
||
|
return Spill.FullyAllocated;
|
||
|
|
||
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
||
|
unsigned NumLanes = Size / 4;
|
||
|
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
|
||
|
|
||
|
const TargetRegisterClass &RC =
|
||
|
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
|
||
|
auto Regs = RC.getRegisters();
|
||
|
|
||
|
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
|
||
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
||
|
Spill.FullyAllocated = true;
|
||
|
|
||
|
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
|
||
|
// once.
|
||
|
BitVector OtherUsedRegs;
|
||
|
OtherUsedRegs.resize(TRI->getNumRegs());
|
||
|
|
||
|
const uint32_t *CSRMask =
|
||
|
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
|
||
|
if (CSRMask)
|
||
|
OtherUsedRegs.setBitsInMask(CSRMask);
|
||
|
|
||
|
// TODO: Should include register tuples, but doesn't matter with current
|
||
|
// usage.
|
||
|
for (MCPhysReg Reg : SpillAGPR)
|
||
|
OtherUsedRegs.set(Reg);
|
||
|
for (MCPhysReg Reg : SpillVGPR)
|
||
|
OtherUsedRegs.set(Reg);
|
||
|
|
||
|
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
|
||
|
for (int I = NumLanes - 1; I >= 0; --I) {
|
||
|
NextSpillReg = std::find_if(
|
||
|
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
|
||
|
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
|
||
|
!OtherUsedRegs[Reg];
|
||
|
});
|
||
|
|
||
|
if (NextSpillReg == Regs.end()) { // Registers exhausted
|
||
|
Spill.FullyAllocated = false;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
OtherUsedRegs.set(*NextSpillReg);
|
||
|
SpillRegs.push_back(*NextSpillReg);
|
||
|
MRI.reserveReg(*NextSpillReg, TRI);
|
||
|
Spill.Lanes[I] = *NextSpillReg++;
|
||
|
}
|
||
|
|
||
|
return Spill.FullyAllocated;
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::removeDeadFrameIndices(
|
||
|
MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) {
|
||
|
// Remove dead frame indices from function frame, however keep FP & BP since
|
||
|
// spills for them haven't been inserted yet. And also make sure to remove the
|
||
|
// frame indices from `SGPRSpillsToVirtualVGPRLanes` data structure,
|
||
|
// otherwise, it could result in an unexpected side effect and bug, in case of
|
||
|
// any re-mapping of freed frame indices by later pass(es) like "stack slot
|
||
|
// coloring".
|
||
|
for (auto &R : make_early_inc_range(SGPRSpillsToVirtualVGPRLanes)) {
|
||
|
MFI.RemoveStackObject(R.first);
|
||
|
SGPRSpillsToVirtualVGPRLanes.erase(R.first);
|
||
|
}
|
||
|
|
||
|
// Remove the dead frame indices of CSR SGPRs which are spilled to physical
|
||
|
// VGPR lanes during SILowerSGPRSpills pass.
|
||
|
if (!ResetSGPRSpillStackIDs) {
|
||
|
for (auto &R : make_early_inc_range(SGPRSpillsToPhysicalVGPRLanes)) {
|
||
|
MFI.RemoveStackObject(R.first);
|
||
|
SGPRSpillsToPhysicalVGPRLanes.erase(R.first);
|
||
|
}
|
||
|
}
|
||
|
bool HaveSGPRToMemory = false;
|
||
|
|
||
|
if (ResetSGPRSpillStackIDs) {
|
||
|
// All other SGPRs must be allocated on the default stack, so reset the
|
||
|
// stack ID.
|
||
|
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E;
|
||
|
++I) {
|
||
|
if (!checkIndexInPrologEpilogSGPRSpills(I)) {
|
||
|
if (MFI.getStackID(I) == TargetStackID::SGPRSpill) {
|
||
|
MFI.setStackID(I, TargetStackID::Default);
|
||
|
HaveSGPRToMemory = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (auto &R : VGPRToAGPRSpills) {
|
||
|
if (R.second.IsDead)
|
||
|
MFI.RemoveStackObject(R.first);
|
||
|
}
|
||
|
|
||
|
return HaveSGPRToMemory;
|
||
|
}
|
||
|
|
||
|
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
|
||
|
const SIRegisterInfo &TRI) {
|
||
|
if (ScavengeFI)
|
||
|
return *ScavengeFI;
|
||
|
if (isBottomOfStack()) {
|
||
|
ScavengeFI = MFI.CreateFixedObject(
|
||
|
TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false);
|
||
|
} else {
|
||
|
ScavengeFI = MFI.CreateStackObject(
|
||
|
TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
|
||
|
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
|
||
|
}
|
||
|
return *ScavengeFI;
|
||
|
}
|
||
|
|
||
|
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
|
||
|
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
|
||
|
return AMDGPU::SGPR0 + NumUserSGPRs;
|
||
|
}
|
||
|
|
||
|
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
|
||
|
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
|
||
|
}
|
||
|
|
||
|
void SIMachineFunctionInfo::MRI_NoteNewVirtualRegister(Register Reg) {
|
||
|
VRegFlags.grow(Reg);
|
||
|
}
|
||
|
|
||
|
void SIMachineFunctionInfo::MRI_NoteCloneVirtualRegister(Register NewReg,
|
||
|
Register SrcReg) {
|
||
|
VRegFlags.grow(NewReg);
|
||
|
VRegFlags[NewReg] = VRegFlags[SrcReg];
|
||
|
}
|
||
|
|
||
|
Register
|
||
|
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
|
||
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
||
|
if (!ST.isAmdPalOS())
|
||
|
return Register();
|
||
|
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
|
||
|
if (ST.hasMergedShaders()) {
|
||
|
switch (MF.getFunction().getCallingConv()) {
|
||
|
case CallingConv::AMDGPU_HS:
|
||
|
case CallingConv::AMDGPU_GS:
|
||
|
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
|
||
|
// ES+GS merged shader on gfx9+.
|
||
|
GitPtrLo = AMDGPU::SGPR8;
|
||
|
return GitPtrLo;
|
||
|
default:
|
||
|
return GitPtrLo;
|
||
|
}
|
||
|
}
|
||
|
return GitPtrLo;
|
||
|
}
|
||
|
|
||
|
static yaml::StringValue regToString(Register Reg,
|
||
|
const TargetRegisterInfo &TRI) {
|
||
|
yaml::StringValue Dest;
|
||
|
{
|
||
|
raw_string_ostream OS(Dest.Value);
|
||
|
OS << printReg(Reg, &TRI);
|
||
|
}
|
||
|
return Dest;
|
||
|
}
|
||
|
|
||
|
static std::optional<yaml::SIArgumentInfo>
|
||
|
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
|
||
|
const TargetRegisterInfo &TRI) {
|
||
|
yaml::SIArgumentInfo AI;
|
||
|
|
||
|
auto convertArg = [&](std::optional<yaml::SIArgument> &A,
|
||
|
const ArgDescriptor &Arg) {
|
||
|
if (!Arg)
|
||
|
return false;
|
||
|
|
||
|
// Create a register or stack argument.
|
||
|
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
|
||
|
if (Arg.isRegister()) {
|
||
|
raw_string_ostream OS(SA.RegisterName.Value);
|
||
|
OS << printReg(Arg.getRegister(), &TRI);
|
||
|
} else
|
||
|
SA.StackOffset = Arg.getStackOffset();
|
||
|
// Check and update the optional mask.
|
||
|
if (Arg.isMasked())
|
||
|
SA.Mask = Arg.getMask();
|
||
|
|
||
|
A = SA;
|
||
|
return true;
|
||
|
};
|
||
|
|
||
|
// TODO: Need to serialize kernarg preloads.
|
||
|
bool Any = false;
|
||
|
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
|
||
|
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
|
||
|
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
|
||
|
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
|
||
|
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
|
||
|
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
|
||
|
Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId);
|
||
|
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
|
||
|
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
|
||
|
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
|
||
|
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
|
||
|
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
|
||
|
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
|
||
|
ArgInfo.PrivateSegmentWaveByteOffset);
|
||
|
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
|
||
|
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
|
||
|
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
|
||
|
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
|
||
|
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
|
||
|
|
||
|
if (Any)
|
||
|
return AI;
|
||
|
|
||
|
return std::nullopt;
|
||
|
}
|
||
|
|
||
|
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
|
||
|
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
|
||
|
const llvm::MachineFunction &MF)
|
||
|
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
|
||
|
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
|
||
|
GDSSize(MFI.getGDSSize()),
|
||
|
DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()),
|
||
|
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
|
||
|
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
|
||
|
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
|
||
|
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
|
||
|
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
|
||
|
Occupancy(MFI.getOccupancy()),
|
||
|
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
|
||
|
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
|
||
|
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
|
||
|
BytesInStackArgArea(MFI.getBytesInStackArgArea()),
|
||
|
ReturnsVoid(MFI.returnsVoid()),
|
||
|
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)),
|
||
|
PSInputAddr(MFI.getPSInputAddr()),
|
||
|
PSInputEnable(MFI.getPSInputEnable()),
|
||
|
Mode(MFI.getMode()) {
|
||
|
for (Register Reg : MFI.getWWMReservedRegs())
|
||
|
WWMReservedRegs.push_back(regToString(Reg, TRI));
|
||
|
|
||
|
if (MFI.getLongBranchReservedReg())
|
||
|
LongBranchReservedReg = regToString(MFI.getLongBranchReservedReg(), TRI);
|
||
|
if (MFI.getVGPRForAGPRCopy())
|
||
|
VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI);
|
||
|
|
||
|
if (MFI.getSGPRForEXECCopy())
|
||
|
SGPRForEXECCopy = regToString(MFI.getSGPRForEXECCopy(), TRI);
|
||
|
|
||
|
auto SFI = MFI.getOptionalScavengeFI();
|
||
|
if (SFI)
|
||
|
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
|
||
|
}
|
||
|
|
||
|
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
|
||
|
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::initializeBaseYamlFields(
|
||
|
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
|
||
|
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
|
||
|
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
|
||
|
MaxKernArgAlign = YamlMFI.MaxKernArgAlign;
|
||
|
LDSSize = YamlMFI.LDSSize;
|
||
|
GDSSize = YamlMFI.GDSSize;
|
||
|
DynLDSAlign = YamlMFI.DynLDSAlign;
|
||
|
PSInputAddr = YamlMFI.PSInputAddr;
|
||
|
PSInputEnable = YamlMFI.PSInputEnable;
|
||
|
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
|
||
|
Occupancy = YamlMFI.Occupancy;
|
||
|
IsEntryFunction = YamlMFI.IsEntryFunction;
|
||
|
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
|
||
|
MemoryBound = YamlMFI.MemoryBound;
|
||
|
WaveLimiter = YamlMFI.WaveLimiter;
|
||
|
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
|
||
|
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
|
||
|
BytesInStackArgArea = YamlMFI.BytesInStackArgArea;
|
||
|
ReturnsVoid = YamlMFI.ReturnsVoid;
|
||
|
|
||
|
if (YamlMFI.ScavengeFI) {
|
||
|
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
|
||
|
if (!FIOrErr) {
|
||
|
// Create a diagnostic for a the frame index.
|
||
|
const MemoryBuffer &Buffer =
|
||
|
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
|
||
|
|
||
|
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
|
||
|
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
|
||
|
"", std::nullopt, std::nullopt);
|
||
|
SourceRange = YamlMFI.ScavengeFI->SourceRange;
|
||
|
return true;
|
||
|
}
|
||
|
ScavengeFI = *FIOrErr;
|
||
|
} else {
|
||
|
ScavengeFI = std::nullopt;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const {
|
||
|
for (const BasicBlock &BB : F) {
|
||
|
for (const Instruction &I : BB) {
|
||
|
const auto *CB = dyn_cast<CallBase>(&I);
|
||
|
if (!CB)
|
||
|
continue;
|
||
|
|
||
|
if (CB->isInlineAsm()) {
|
||
|
const InlineAsm *IA = dyn_cast<InlineAsm>(CB->getCalledOperand());
|
||
|
for (const auto &CI : IA->ParseConstraints()) {
|
||
|
for (StringRef Code : CI.Codes) {
|
||
|
Code.consume_front("{");
|
||
|
if (Code.starts_with("a"))
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
const Function *Callee =
|
||
|
dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
|
||
|
if (!Callee)
|
||
|
return true;
|
||
|
|
||
|
if (Callee->getIntrinsicID() == Intrinsic::not_intrinsic)
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const {
|
||
|
if (UsesAGPRs)
|
||
|
return *UsesAGPRs;
|
||
|
|
||
|
if (!mayNeedAGPRs()) {
|
||
|
UsesAGPRs = false;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) ||
|
||
|
MF.getFrameInfo().hasCalls()) {
|
||
|
UsesAGPRs = true;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
||
|
|
||
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
||
|
const Register Reg = Register::index2VirtReg(I);
|
||
|
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
|
||
|
if (RC && SIRegisterInfo::isAGPRClass(RC)) {
|
||
|
UsesAGPRs = true;
|
||
|
return true;
|
||
|
} else if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) {
|
||
|
// Defer caching UsesAGPRs, function might not yet been regbank selected.
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (MCRegister Reg : AMDGPU::AGPR_32RegClass) {
|
||
|
if (MRI.isPhysRegUsed(Reg)) {
|
||
|
UsesAGPRs = true;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
UsesAGPRs = false;
|
||
|
return false;
|
||
|
}
|