bolt/deps/llvm-18.1.8/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCCodeEmitter.cpp

544 lines
20 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===-- PPCMCCodeEmitter.cpp - Convert PPC code to machine code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the PPCMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "PPCMCCodeEmitter.h"
#include "MCTargetDesc/PPCFixupKinds.h"
#include "PPCMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
MCCodeEmitter *llvm::createPPCMCCodeEmitter(const MCInstrInfo &MCII,
MCContext &Ctx) {
return new PPCMCCodeEmitter(MCII, Ctx);
}
unsigned PPCMCCodeEmitter::
getDirectBrEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm())
return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the branch target.
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(isNoTOCCallInstr(MI)
? (MCFixupKind)PPC::fixup_ppc_br24_notoc
: (MCFixupKind)PPC::fixup_ppc_br24)));
return 0;
}
/// Check if Opcode corresponds to a call instruction that should be marked
/// with the NOTOC relocation.
bool PPCMCCodeEmitter::isNoTOCCallInstr(const MCInst &MI) const {
unsigned Opcode = MI.getOpcode();
if (!MCII.get(Opcode).isCall())
return false;
switch (Opcode) {
default:
#ifndef NDEBUG
llvm_unreachable("Unknown call opcode");
#endif
return false;
case PPC::BL8_NOTOC:
case PPC::BL8_NOTOC_TLS:
case PPC::BL8_NOTOC_RM:
return true;
#ifndef NDEBUG
case PPC::BL8:
case PPC::BL:
case PPC::BL8_TLS:
case PPC::BL_TLS:
case PPC::BLA8:
case PPC::BLA:
case PPC::BCCL:
case PPC::BCCLA:
case PPC::BCL:
case PPC::BCLn:
case PPC::BL8_NOP:
case PPC::BL_NOP:
case PPC::BL8_NOP_TLS:
case PPC::BLA8_NOP:
case PPC::BCTRL8:
case PPC::BCTRL:
case PPC::BCCCTRL8:
case PPC::BCCCTRL:
case PPC::BCCTRL8:
case PPC::BCCTRL:
case PPC::BCCTRL8n:
case PPC::BCCTRLn:
case PPC::BL8_RM:
case PPC::BLA8_RM:
case PPC::BL8_NOP_RM:
case PPC::BLA8_NOP_RM:
case PPC::BCTRL8_RM:
case PPC::BCTRL8_LDinto_toc:
case PPC::BCTRL8_LDinto_toc_RM:
case PPC::BL8_TLS_:
case PPC::TCRETURNdi8:
case PPC::TCRETURNai8:
case PPC::TCRETURNri8:
case PPC::TAILBCTR8:
case PPC::TAILB8:
case PPC::TAILBA8:
case PPC::BCLalways:
case PPC::BLRL:
case PPC::BCCLRL:
case PPC::BCLRL:
case PPC::BCLRLn:
case PPC::BDZL:
case PPC::BDNZL:
case PPC::BDZLA:
case PPC::BDNZLA:
case PPC::BDZLp:
case PPC::BDNZLp:
case PPC::BDZLAp:
case PPC::BDNZLAp:
case PPC::BDZLm:
case PPC::BDNZLm:
case PPC::BDZLAm:
case PPC::BDNZLAm:
case PPC::BDZLRL:
case PPC::BDNZLRL:
case PPC::BDZLRLp:
case PPC::BDNZLRLp:
case PPC::BDZLRLm:
case PPC::BDNZLRLm:
case PPC::BL_RM:
case PPC::BLA_RM:
case PPC::BL_NOP_RM:
case PPC::BCTRL_RM:
case PPC::TCRETURNdi:
case PPC::TCRETURNai:
case PPC::TCRETURNri:
case PPC::BCTRL_LWZinto_toc:
case PPC::BCTRL_LWZinto_toc_RM:
case PPC::TAILBCTR:
case PPC::TAILB:
case PPC::TAILBA:
return false;
#endif
}
}
unsigned PPCMCCodeEmitter::getCondBrEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the branch target.
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_brcond14));
return 0;
}
unsigned PPCMCCodeEmitter::
getAbsDirectBrEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the branch target.
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_br24abs));
return 0;
}
unsigned PPCMCCodeEmitter::
getAbsCondBrEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the branch target.
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_brcond14abs));
return 0;
}
unsigned
PPCMCCodeEmitter::getVSRpEvenEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
assert(MI.getOperand(OpNo).isReg() && "Operand should be a register");
unsigned RegBits = getMachineOpValue(MI, MI.getOperand(OpNo), Fixups, STI)
<< 1;
return RegBits;
}
unsigned PPCMCCodeEmitter::getImm16Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg() || MO.isImm()) return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the immediate field.
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_half16));
return 0;
}
uint64_t PPCMCCodeEmitter::getImm34Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI,
MCFixupKind Fixup) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert(!MO.isReg() && "Not expecting a register for this operand.");
if (MO.isImm())
return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the immediate field.
Fixups.push_back(MCFixup::create(0, MO.getExpr(), Fixup));
return 0;
}
uint64_t
PPCMCCodeEmitter::getImm34EncodingNoPCRel(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getImm34Encoding(MI, OpNo, Fixups, STI,
(MCFixupKind)PPC::fixup_ppc_imm34);
}
uint64_t
PPCMCCodeEmitter::getImm34EncodingPCRel(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
return getImm34Encoding(MI, OpNo, Fixups, STI,
(MCFixupKind)PPC::fixup_ppc_pcrel34);
}
unsigned PPCMCCodeEmitter::getDispRIEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm())
return getMachineOpValue(MI, MO, Fixups, STI) & 0xFFFF;
// Add a fixup for the displacement field.
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_half16));
return 0;
}
unsigned
PPCMCCodeEmitter::getDispRIXEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm())
return ((getMachineOpValue(MI, MO, Fixups, STI) >> 2) & 0x3FFF);
// Add a fixup for the displacement field.
Fixups.push_back(MCFixup::create(IsLittleEndian? 0 : 2, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_half16ds));
return 0;
}
unsigned
PPCMCCodeEmitter::getDispRIX16Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isImm()) {
assert(!(MO.getImm() % 16) &&
"Expecting an immediate that is a multiple of 16");
return ((getMachineOpValue(MI, MO, Fixups, STI) >> 4) & 0xFFF);
}
// Otherwise add a fixup for the displacement field.
Fixups.push_back(MCFixup::create(IsLittleEndian ? 0 : 2, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_half16dq));
return 0;
}
unsigned
PPCMCCodeEmitter::getDispRIHashEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode imm for the hash load/store to stack for the ROP Protection
// instructions.
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm() && "Expecting an immediate operand.");
assert(!(MO.getImm() % 8) && "Expecting offset to be 8 byte aligned.");
unsigned DX = (MO.getImm() >> 3) & 0x3F;
return DX;
}
uint64_t
PPCMCCodeEmitter::getDispRI34PCRelEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode the displacement part of pc-relative memri34, which is an imm34.
// The 34 bit immediate can fall into one of three cases:
// 1) It is a relocation to be filled in by the linker represented as:
// (MCExpr::SymbolRef)
// 2) It is a relocation + SignedOffset represented as:
// (MCExpr::Binary(MCExpr::SymbolRef + MCExpr::Constant))
// 3) It is a known value at compile time.
// If this is not a MCExpr then we are in case 3) and we are dealing with
// a value known at compile time, not a relocation.
const MCOperand &MO = MI.getOperand(OpNo);
if (!MO.isExpr())
return (getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL;
// At this point in the function it is known that MO is of type MCExpr.
// Therefore we are dealing with either case 1) a symbol ref or
// case 2) a symbol ref plus a constant.
const MCExpr *Expr = MO.getExpr();
switch (Expr->getKind()) {
default:
llvm_unreachable("Unsupported MCExpr for getMemRI34PCRelEncoding.");
case MCExpr::SymbolRef: {
// Relocation alone.
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr);
(void)SRE;
// Currently these are the only valid PCRelative Relocations.
assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL ||
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL ||
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSGD_PCREL ||
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TLSLD_PCREL ||
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_TPREL_PCREL) &&
"VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL or "
"VK_PPC_GOT_TLSGD_PCREL or VK_PPC_GOT_TLSLD_PCREL or "
"VK_PPC_GOT_TPREL_PCREL.");
// Generate the fixup for the relocation.
Fixups.push_back(
MCFixup::create(0, Expr,
static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34)));
// Put zero in the location of the immediate. The linker will fill in the
// correct value based on the relocation.
return 0;
}
case MCExpr::Binary: {
// Relocation plus some offset.
const MCBinaryExpr *BE = cast<MCBinaryExpr>(Expr);
assert(BE->getOpcode() == MCBinaryExpr::Add &&
"Binary expression opcode must be an add.");
const MCExpr *LHS = BE->getLHS();
const MCExpr *RHS = BE->getRHS();
// Need to check in both directions. Reloc+Offset and Offset+Reloc.
if (LHS->getKind() != MCExpr::SymbolRef)
std::swap(LHS, RHS);
if (LHS->getKind() != MCExpr::SymbolRef ||
RHS->getKind() != MCExpr::Constant)
llvm_unreachable("Expecting to have one constant and one relocation.");
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(LHS);
(void)SRE;
assert(isInt<34>(cast<MCConstantExpr>(RHS)->getValue()) &&
"Value must fit in 34 bits.");
// Currently these are the only valid PCRelative Relocations.
assert((SRE->getKind() == MCSymbolRefExpr::VK_PCREL ||
SRE->getKind() == MCSymbolRefExpr::VK_PPC_GOT_PCREL) &&
"VariantKind must be VK_PCREL or VK_PPC_GOT_PCREL");
// Generate the fixup for the relocation.
Fixups.push_back(
MCFixup::create(0, Expr,
static_cast<MCFixupKind>(PPC::fixup_ppc_pcrel34)));
// Put zero in the location of the immediate. The linker will fill in the
// correct value based on the relocation.
return 0;
}
}
}
uint64_t
PPCMCCodeEmitter::getDispRI34Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode the displacement part of a memri34.
const MCOperand &MO = MI.getOperand(OpNo);
return (getMachineOpValue(MI, MO, Fixups, STI)) & 0x3FFFFFFFFUL;
}
unsigned
PPCMCCodeEmitter::getDispSPE8Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode imm as a dispSPE8, which has the low 5-bits of (imm / 8).
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm());
return getMachineOpValue(MI, MO, Fixups, STI) >> 3;
}
unsigned
PPCMCCodeEmitter::getDispSPE4Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode imm as a dispSPE8, which has the low 5-bits of (imm / 4).
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm());
return getMachineOpValue(MI, MO, Fixups, STI) >> 2;
}
unsigned
PPCMCCodeEmitter::getDispSPE2Encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// Encode imm as a dispSPE8, which has the low 5-bits of (imm / 2).
const MCOperand &MO = MI.getOperand(OpNo);
assert(MO.isImm());
return getMachineOpValue(MI, MO, Fixups, STI) >> 1;
}
unsigned PPCMCCodeEmitter::getTLSRegEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
if (MO.isReg()) return getMachineOpValue(MI, MO, Fixups, STI);
// Add a fixup for the TLS register, which simply provides a relocation
// hint to the linker that this statement is part of a relocation sequence.
// Return the thread-pointer register's encoding. Add a one byte displacement
// if using PC relative memops.
const MCExpr *Expr = MO.getExpr();
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(Expr);
bool IsPCRel = SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL;
Fixups.push_back(MCFixup::create(IsPCRel ? 1 : 0, Expr,
(MCFixupKind)PPC::fixup_ppc_nofixup));
const Triple &TT = STI.getTargetTriple();
bool isPPC64 = TT.isPPC64();
return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2);
}
unsigned PPCMCCodeEmitter::getTLSCallEncoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
// For special TLS calls, we need two fixups; one for the branch target
// (__tls_get_addr), which we create via getDirectBrEncoding as usual,
// and one for the TLSGD or TLSLD symbol, which is emitted here.
const MCOperand &MO = MI.getOperand(OpNo+1);
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_nofixup));
return getDirectBrEncoding(MI, OpNo, Fixups, STI);
}
unsigned PPCMCCodeEmitter::
get_crbitm_encoding(const MCInst &MI, unsigned OpNo,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
const MCOperand &MO = MI.getOperand(OpNo);
assert((MI.getOpcode() == PPC::MTOCRF || MI.getOpcode() == PPC::MTOCRF8 ||
MI.getOpcode() == PPC::MFOCRF || MI.getOpcode() == PPC::MFOCRF8) &&
(MO.getReg() >= PPC::CR0 && MO.getReg() <= PPC::CR7));
return 0x80 >> CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
}
// Get the index for this operand in this instruction. This is needed for
// computing the register number in PPC::getRegNumForOperand() for
// any instructions that use a different numbering scheme for registers in
// different operands.
static unsigned getOpIdxForMO(const MCInst &MI, const MCOperand &MO) {
for (unsigned i = 0; i < MI.getNumOperands(); i++) {
const MCOperand &Op = MI.getOperand(i);
if (&Op == &MO)
return i;
}
llvm_unreachable("This operand is not part of this instruction");
return ~0U; // Silence any warnings about no return.
}
uint64_t PPCMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
if (MO.isReg()) {
// MTOCRF/MFOCRF should go through get_crbitm_encoding for the CR operand.
// The GPR operand should come through here though.
assert((MI.getOpcode() != PPC::MTOCRF && MI.getOpcode() != PPC::MTOCRF8 &&
MI.getOpcode() != PPC::MFOCRF && MI.getOpcode() != PPC::MFOCRF8) ||
MO.getReg() < PPC::CR0 || MO.getReg() > PPC::CR7);
unsigned OpNo = getOpIdxForMO(MI, MO);
unsigned Reg =
PPC::getRegNumForOperand(MCII.get(MI.getOpcode()), MO.getReg(), OpNo);
return CTX.getRegisterInfo()->getEncodingValue(Reg);
}
assert(MO.isImm() &&
"Relocation required in an instruction that we cannot encode!");
return MO.getImm();
}
void PPCMCCodeEmitter::encodeInstruction(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
uint64_t Bits = getBinaryCodeForInstr(MI, Fixups, STI);
// Output the constant in big/little endian byte order.
unsigned Size = getInstSizeInBytes(MI);
llvm::endianness E =
IsLittleEndian ? llvm::endianness::little : llvm::endianness::big;
switch (Size) {
case 0:
break;
case 4:
support::endian::write<uint32_t>(CB, Bits, E);
break;
case 8:
// If we emit a pair of instructions, the first one is
// always in the top 32 bits, even on little-endian.
support::endian::write<uint32_t>(CB, Bits >> 32, E);
support::endian::write<uint32_t>(CB, Bits, E);
break;
default:
llvm_unreachable("Invalid instruction size");
}
++MCNumEmitted; // Keep track of the # of mi's emitted.
}
// Get the number of bytes used to encode the given MCInst.
unsigned PPCMCCodeEmitter::getInstSizeInBytes(const MCInst &MI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
return Desc.getSize();
}
bool PPCMCCodeEmitter::isPrefixedInstruction(const MCInst &MI) const {
return MCII.get(MI.getOpcode()).TSFlags & PPCII::Prefixed;
}
#include "PPCGenMCCodeEmitter.inc"