bolt/deps/llvm-18.1.8/mlir/lib/Analysis/Presburger/QuasiPolynomial.cpp

175 lines
6.1 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===- QuasiPolynomial.cpp - Quasipolynomial Class --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/QuasiPolynomial.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/PresburgerSpace.h"
#include "mlir/Analysis/Presburger/Utils.h"
using namespace mlir;
using namespace presburger;
QuasiPolynomial::QuasiPolynomial(
unsigned numVars, SmallVector<Fraction> coeffs,
std::vector<std::vector<SmallVector<Fraction>>> aff)
: PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
/*numLocals=*/0),
coefficients(coeffs), affine(aff) {
#ifndef NDEBUG
// For each term which involves at least one affine function,
for (const std::vector<SmallVector<Fraction>> &term : affine) {
if (term.empty())
continue;
// the number of elements in each affine function is
// one more than the number of symbols.
for (const SmallVector<Fraction> &aff : term) {
assert(aff.size() == getNumInputs() + 1 &&
"dimensionality of affine functions does not match number of "
"symbols!");
}
}
#endif // NDEBUG
}
/// Define a quasipolynomial which is a single constant.
QuasiPolynomial::QuasiPolynomial(unsigned numVars, Fraction constant)
: PresburgerSpace(/*numDomain=*/numVars, /*numRange=*/1, /*numSymbols=*/0,
/*numLocals=*/0),
coefficients({constant}), affine({{}}) {}
QuasiPolynomial QuasiPolynomial::operator+(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of symbols cannot "
"be added!");
SmallVector<Fraction> sumCoeffs = coefficients;
sumCoeffs.append(x.coefficients);
std::vector<std::vector<SmallVector<Fraction>>> sumAff = affine;
sumAff.insert(sumAff.end(), x.affine.begin(), x.affine.end());
return QuasiPolynomial(getNumInputs(), sumCoeffs, sumAff);
}
QuasiPolynomial QuasiPolynomial::operator-(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of symbols cannot "
"be subtracted!");
QuasiPolynomial qp(getNumInputs(), x.coefficients, x.affine);
for (Fraction &coeff : qp.coefficients)
coeff = -coeff;
return *this + qp;
}
QuasiPolynomial QuasiPolynomial::operator*(const QuasiPolynomial &x) const {
assert(getNumInputs() == x.getNumInputs() &&
"two quasi-polynomials with different numbers of "
"symbols cannot be multiplied!");
SmallVector<Fraction> coeffs;
coeffs.reserve(coefficients.size() * x.coefficients.size());
for (const Fraction &coeff : coefficients)
for (const Fraction &xcoeff : x.coefficients)
coeffs.push_back(coeff * xcoeff);
std::vector<SmallVector<Fraction>> product;
std::vector<std::vector<SmallVector<Fraction>>> aff;
aff.reserve(affine.size() * x.affine.size());
for (const std::vector<SmallVector<Fraction>> &term : affine) {
for (const std::vector<SmallVector<Fraction>> &xterm : x.affine) {
product.clear();
product.insert(product.end(), term.begin(), term.end());
product.insert(product.end(), xterm.begin(), xterm.end());
aff.push_back(product);
}
}
return QuasiPolynomial(getNumInputs(), coeffs, aff);
}
QuasiPolynomial QuasiPolynomial::operator/(const Fraction x) const {
assert(x != 0 && "division by zero!");
QuasiPolynomial qp(*this);
for (Fraction &coeff : qp.coefficients)
coeff /= x;
return qp;
}
// Removes terms which evaluate to zero from the expression and
// integrate affine functions which are constants into the
// coefficients.
QuasiPolynomial QuasiPolynomial::simplify() {
Fraction newCoeff = 0;
SmallVector<Fraction> newCoeffs({});
std::vector<SmallVector<Fraction>> newAffineTerm({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
unsigned numParam = getNumInputs();
for (unsigned i = 0, e = coefficients.size(); i < e; i++) {
// A term is zero if its coefficient is zero, or
if (coefficients[i] == Fraction(0, 1))
continue;
bool product_is_zero =
// if any of the affine functions in the product
llvm::any_of(affine[i], [](const SmallVector<Fraction> &affine_ij) {
// has all its coefficients as zero.
return llvm::all_of(affine_ij,
[](const Fraction &f) { return f == 0; });
});
if (product_is_zero)
continue;
// Now, we know the term is nonzero.
// We now eliminate the affine functions which are constant
// by merging them into the coefficients.
newAffineTerm = {};
newCoeff = coefficients[i];
for (ArrayRef<Fraction> term : affine[i]) {
bool allCoeffsZero = llvm::all_of(
term.slice(0, numParam), [](const Fraction c) { return c == 0; });
if (allCoeffsZero)
newCoeff *= term[numParam];
else
newAffineTerm.push_back(SmallVector<Fraction>(term));
}
newCoeffs.push_back(newCoeff);
newAffine.push_back(newAffineTerm);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}
QuasiPolynomial QuasiPolynomial::collectTerms() {
SmallVector<Fraction> newCoeffs({});
std::vector<std::vector<SmallVector<Fraction>>> newAffine({});
for (unsigned i = 0, e = affine.size(); i < e; i++) {
bool alreadyPresent = false;
for (unsigned j = 0, f = newAffine.size(); j < f; j++) {
if (affine[i] == newAffine[j]) {
newCoeffs[j] += coefficients[i];
alreadyPresent = true;
}
}
if (alreadyPresent)
continue;
newCoeffs.push_back(coefficients[i]);
newAffine.push_back(affine[i]);
}
return QuasiPolynomial(getNumInputs(), newCoeffs, newAffine);
}
Fraction QuasiPolynomial::getConstantTerm() {
Fraction constTerm = 0;
for (unsigned i = 0, e = coefficients.size(); i < e; ++i)
if (affine[i].size() == 0)
constTerm += coefficients[i];
return constTerm;
}