497 lines
20 KiB
C++
497 lines
20 KiB
C++
|
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
|
||
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
||
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
||
|
#include "mlir/Dialect/Bufferization/IR/UnstructuredControlFlow.h"
|
||
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
||
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
||
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
||
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||
|
#include "mlir/IR/Dialect.h"
|
||
|
#include "mlir/IR/Operation.h"
|
||
|
#include <optional>
|
||
|
|
||
|
namespace mlir {
|
||
|
namespace bufferization {
|
||
|
namespace func_ext {
|
||
|
|
||
|
void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) {
|
||
|
analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
|
||
|
auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
|
||
|
auto createdAliasingResults =
|
||
|
aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
|
||
|
auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
||
|
auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
|
||
|
(void)createdEquiv;
|
||
|
(void)createdAliasingResults;
|
||
|
(void)createdRead;
|
||
|
(void)createdWritten;
|
||
|
#ifndef NDEBUG
|
||
|
assert(createdEquiv.second && "equivalence info exists already");
|
||
|
assert(createdAliasingResults.second && "aliasing info exists already");
|
||
|
assert(createdRead.second && "bbarg access info exists already");
|
||
|
assert(createdWritten.second && "bbarg access info exists already");
|
||
|
#endif // NDEBUG
|
||
|
}
|
||
|
|
||
|
/// Return the unique ReturnOp that terminates `funcOp`.
|
||
|
/// Return nullptr if there is no such unique ReturnOp.
|
||
|
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
|
||
|
func::ReturnOp returnOp;
|
||
|
for (Block &b : funcOp.getBody()) {
|
||
|
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
|
||
|
if (returnOp)
|
||
|
return nullptr;
|
||
|
returnOp = candidateOp;
|
||
|
}
|
||
|
}
|
||
|
return returnOp;
|
||
|
}
|
||
|
|
||
|
/// Return the index-th bufferized function argument type. This assumes that the
|
||
|
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
|
||
|
/// specified by the user (as per `options.functionArgTypeConverterFn`).
|
||
|
static BaseMemRefType
|
||
|
getBufferizedFunctionArgType(FuncOp funcOp, int64_t index,
|
||
|
const BufferizationOptions &options) {
|
||
|
auto tensorType =
|
||
|
dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index));
|
||
|
assert(tensorType && "expected TensorType");
|
||
|
|
||
|
BaseMemRefType memrefType = options.functionArgTypeConverterFn(
|
||
|
tensorType, *options.defaultMemorySpace, funcOp, options);
|
||
|
|
||
|
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
|
||
|
index, BufferizationDialect::kBufferLayoutAttrName);
|
||
|
if (!layoutAttr)
|
||
|
return memrefType;
|
||
|
|
||
|
auto rankedMemrefType = dyn_cast<MemRefType>(memrefType);
|
||
|
assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
|
||
|
return MemRefType::get(
|
||
|
rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
|
||
|
layoutAttr.getValue(), rankedMemrefType.getMemorySpace());
|
||
|
}
|
||
|
|
||
|
/// Return the FuncOp called by `callOp`.
|
||
|
static FuncOp getCalledFunction(CallOpInterface callOp) {
|
||
|
SymbolRefAttr sym = llvm::dyn_cast_if_present<SymbolRefAttr>(callOp.getCallableForCallee());
|
||
|
if (!sym)
|
||
|
return nullptr;
|
||
|
return dyn_cast_or_null<FuncOp>(
|
||
|
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
|
||
|
}
|
||
|
|
||
|
/// Get FuncAnalysisState.
|
||
|
static const FuncAnalysisState &
|
||
|
getFuncAnalysisState(const AnalysisState &state) {
|
||
|
assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState");
|
||
|
auto *result = static_cast<const OneShotAnalysisState &>(state)
|
||
|
.getExtension<FuncAnalysisState>();
|
||
|
assert(result && "FuncAnalysisState does not exist");
|
||
|
return *result;
|
||
|
}
|
||
|
|
||
|
/// Return the state (phase) of analysis of the FuncOp.
|
||
|
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
|
||
|
FuncOp funcOp) {
|
||
|
if (!isa<OneShotAnalysisState>(state))
|
||
|
return FuncOpAnalysisState::NotAnalyzed;
|
||
|
auto *funcState = static_cast<const OneShotAnalysisState &>(state)
|
||
|
.getExtension<FuncAnalysisState>();
|
||
|
if (!funcState)
|
||
|
return FuncOpAnalysisState::NotAnalyzed;
|
||
|
const auto &analyzedFuncOps = funcState->analyzedFuncOps;
|
||
|
auto it = analyzedFuncOps.find(funcOp);
|
||
|
if (it == analyzedFuncOps.end())
|
||
|
return FuncOpAnalysisState::NotAnalyzed;
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
/// Return the index of the bbArg in the given FuncOp that is equivalent to the
|
||
|
/// specified return value (if any).
|
||
|
static std::optional<int64_t>
|
||
|
getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state,
|
||
|
int64_t returnValIdx) {
|
||
|
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
|
||
|
if (funcOpIt == state.equivalentFuncArgs.end())
|
||
|
// No equivalence info stores for funcOp.
|
||
|
return std::nullopt;
|
||
|
|
||
|
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
|
||
|
if (retValIt == funcOpIt->getSecond().end())
|
||
|
// Return value has no equivalent bbArg.
|
||
|
return std::nullopt;
|
||
|
|
||
|
return retValIt->getSecond();
|
||
|
}
|
||
|
|
||
|
struct CallOpInterface
|
||
|
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
|
||
|
func::CallOp> {
|
||
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
func::CallOp callOp = cast<func::CallOp>(op);
|
||
|
FuncOp funcOp = getCalledFunction(callOp);
|
||
|
assert(funcOp && "expected CallOp to a FuncOp");
|
||
|
|
||
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
||
|
// FuncOp not analyzed yet. Assume that OpOperand is read.
|
||
|
return true;
|
||
|
|
||
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
||
|
return funcState.readBbArgs.lookup(funcOp).contains(
|
||
|
opOperand.getOperandNumber());
|
||
|
}
|
||
|
|
||
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
func::CallOp callOp = cast<func::CallOp>(op);
|
||
|
FuncOp funcOp = getCalledFunction(callOp);
|
||
|
assert(funcOp && "expected CallOp to a FuncOp");
|
||
|
|
||
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
||
|
// FuncOp not analyzed yet. Assume that OpOperand is written.
|
||
|
return true;
|
||
|
|
||
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
||
|
return funcState.writtenBbArgs.lookup(funcOp).contains(
|
||
|
opOperand.getOperandNumber());
|
||
|
}
|
||
|
|
||
|
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
func::CallOp callOp = cast<func::CallOp>(op);
|
||
|
FuncOp funcOp = getCalledFunction(callOp);
|
||
|
assert(funcOp && "expected CallOp to a FuncOp");
|
||
|
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
|
||
|
// FuncOp not analyzed yet. Any OpResult may be aliasing.
|
||
|
return detail::unknownGetAliasingValues(opOperand);
|
||
|
|
||
|
// Get aliasing results from state.
|
||
|
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
|
||
|
auto aliasingReturnVals =
|
||
|
funcState.aliasingReturnVals.lookup(funcOp).lookup(
|
||
|
opOperand.getOperandNumber());
|
||
|
|
||
|
// Check if the aliasing OpResult is equivalent to the OpOperand.
|
||
|
std::optional<int64_t> equivalent = {};
|
||
|
if (aliasingReturnVals.size() == 1) {
|
||
|
equivalent = getEquivalentFuncArgIdx(funcOp, funcState,
|
||
|
aliasingReturnVals.front());
|
||
|
assert((!equivalent.has_value() ||
|
||
|
*equivalent == opOperand.getOperandNumber()) &&
|
||
|
"inconsistent analysis state");
|
||
|
}
|
||
|
AliasingValueList result;
|
||
|
for (int64_t resultIdx : aliasingReturnVals)
|
||
|
result.addAlias({callOp->getOpResult(resultIdx),
|
||
|
equivalent.has_value() ? BufferRelation::Equivalent
|
||
|
: BufferRelation::Unknown,
|
||
|
/*isDefinite=*/equivalent.has_value()});
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
FailureOr<BaseMemRefType>
|
||
|
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
|
||
|
SmallVector<Value> &invocationStack) const {
|
||
|
auto callOp = cast<func::CallOp>(op);
|
||
|
FuncOp funcOp = getCalledFunction(callOp);
|
||
|
assert(funcOp && "expected CallOp to a FuncOp");
|
||
|
|
||
|
// The callee was already bufferized, so we can directly take the type from
|
||
|
// its signature.
|
||
|
FunctionType funcType = funcOp.getFunctionType();
|
||
|
return cast<BaseMemRefType>(
|
||
|
funcType.getResult(cast<OpResult>(value).getResultNumber()));
|
||
|
}
|
||
|
|
||
|
/// All function arguments are writable. It is the responsibility of the
|
||
|
/// CallOp to insert buffer copies where necessary.
|
||
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
||
|
const BufferizationOptions &options) const {
|
||
|
func::CallOp callOp = cast<func::CallOp>(op);
|
||
|
|
||
|
// 1. Compute the result types of the new CallOp.
|
||
|
SmallVector<Type> resultTypes;
|
||
|
for (Value result : callOp.getResults()) {
|
||
|
Type returnType = result.getType();
|
||
|
if (!isa<TensorType>(returnType)) {
|
||
|
// Non-tensor values are returned.
|
||
|
resultTypes.push_back(returnType);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Returning a memref.
|
||
|
FailureOr<BaseMemRefType> resultType =
|
||
|
bufferization::getBufferType(result, options);
|
||
|
if (failed(resultType))
|
||
|
return failure();
|
||
|
resultTypes.push_back(*resultType);
|
||
|
}
|
||
|
|
||
|
// 2. Rewrite tensor operands as memrefs based on type of the already
|
||
|
// bufferized callee.
|
||
|
SmallVector<Value> newOperands;
|
||
|
FuncOp funcOp = getCalledFunction(callOp);
|
||
|
assert(funcOp && "expected CallOp to a FuncOp");
|
||
|
FunctionType funcType = funcOp.getFunctionType();
|
||
|
|
||
|
for (OpOperand &opOperand : callOp->getOpOperands()) {
|
||
|
// Non-tensor operands are just copied.
|
||
|
if (!isa<TensorType>(opOperand.get().getType())) {
|
||
|
newOperands.push_back(opOperand.get());
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Retrieve buffers for tensor operands.
|
||
|
FailureOr<Value> maybeBuffer =
|
||
|
getBuffer(rewriter, opOperand.get(), options);
|
||
|
if (failed(maybeBuffer))
|
||
|
return failure();
|
||
|
Value buffer = *maybeBuffer;
|
||
|
|
||
|
// Caller / callee type mismatch is handled with a CastOp.
|
||
|
auto memRefType = funcType.getInput(opOperand.getOperandNumber());
|
||
|
// Since we don't yet have a clear layout story, to_memref may
|
||
|
// conservatively turn tensors into more dynamic memref than necessary.
|
||
|
// If the memref type of the callee fails, introduce an extra memref.cast
|
||
|
// that will either canonicalize away or fail compilation until we can do
|
||
|
// something better.
|
||
|
if (buffer.getType() != memRefType) {
|
||
|
assert(
|
||
|
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
|
||
|
"CallOp::bufferize: cast incompatible");
|
||
|
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
|
||
|
memRefType, buffer);
|
||
|
buffer = castBuffer;
|
||
|
}
|
||
|
newOperands.push_back(buffer);
|
||
|
}
|
||
|
|
||
|
// 3. Create the new CallOp.
|
||
|
Operation *newCallOp = rewriter.create<func::CallOp>(
|
||
|
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
|
||
|
newCallOp->setAttrs(callOp->getAttrs());
|
||
|
|
||
|
// 4. Replace the old op with the new op.
|
||
|
replaceOpWithBufferizedValues(rewriter, callOp, newCallOp->getResults());
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct ReturnOpInterface
|
||
|
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
|
||
|
func::ReturnOp> {
|
||
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
|
||
|
const AnalysisState &state) const {
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
||
|
const BufferizationOptions &options) const {
|
||
|
#ifndef NDEBUG
|
||
|
auto returnOp = cast<func::ReturnOp>(op);
|
||
|
assert(isa<FuncOp>(returnOp->getParentOp()) &&
|
||
|
"only support FuncOp parent for ReturnOp");
|
||
|
#endif // NDEBUG
|
||
|
|
||
|
// ReturnOps are bufferized as part of FuncOps.
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct FuncOpInterface
|
||
|
: public OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel<
|
||
|
FuncOpInterface, FuncOp> {
|
||
|
|
||
|
static bool supportsUnstructuredControlFlow() { return true; }
|
||
|
|
||
|
bool hasTensorSemantics(Operation *op) const {
|
||
|
auto isaTensor = [](Type type) { return isa<TensorType>(type); };
|
||
|
|
||
|
// A function has tensor semantics if it has tensor arguments/results.
|
||
|
auto funcOp = cast<FuncOp>(op);
|
||
|
bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
|
||
|
bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
|
||
|
if (hasTensorArg || hasTensorResult)
|
||
|
return true;
|
||
|
|
||
|
// It also has tensor semantics if it has tensor block arguments.
|
||
|
// TODO: Decouple bufferization of unstructured control flow from
|
||
|
// BufferizableOpInterface implementations. We should only care about
|
||
|
// region entry block arguments here (which are already covered by the
|
||
|
// argument types of the function).
|
||
|
for (Block &block : funcOp.getBody())
|
||
|
if (any_of(block.getArgumentTypes(), isaTensor))
|
||
|
return true;
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
AliasingOpOperandList
|
||
|
getAliasingOpOperands(Operation *op, Value value,
|
||
|
const AnalysisState &state) const {
|
||
|
return getAliasingBranchOpOperands(op, cast<BlockArgument>(value), state);
|
||
|
}
|
||
|
|
||
|
FailureOr<BaseMemRefType>
|
||
|
getBufferType(Operation *op, Value value, const BufferizationOptions &options,
|
||
|
SmallVector<Value> &invocationStack) const {
|
||
|
auto funcOp = cast<FuncOp>(op);
|
||
|
auto bbArg = cast<BlockArgument>(value);
|
||
|
|
||
|
// Function arguments are special.
|
||
|
if (bbArg.getOwner() == &funcOp.getBody().front())
|
||
|
return getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(),
|
||
|
options);
|
||
|
|
||
|
return OpWithUnstructuredControlFlowBufferizableOpInterfaceExternalModel::
|
||
|
getBufferType(op, value, options, invocationStack);
|
||
|
}
|
||
|
|
||
|
LogicalResult verifyAnalysis(Operation *op,
|
||
|
const AnalysisState &state) const {
|
||
|
auto funcOp = cast<func::FuncOp>(op);
|
||
|
// TODO: func.func with multiple returns are not supported.
|
||
|
if (!getAssumedUniqueReturnOp(funcOp) && !funcOp.isExternal())
|
||
|
return op->emitOpError("op without unique func.return is not supported");
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// Rewrite function bbArgs and return values into buffer form. This function
|
||
|
/// bufferizes the function signature and the ReturnOp. When the entire
|
||
|
/// function body has been bufferized, function return types can be switched
|
||
|
/// to more concise memref types as part of `foldMemRefCasts`.
|
||
|
///
|
||
|
/// All function bbArgs are writable unless they are explicitly marked as
|
||
|
/// read-only. Callers must insert copies when needed.
|
||
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
||
|
const BufferizationOptions &options) const {
|
||
|
auto funcOp = cast<FuncOp>(op);
|
||
|
FunctionType funcType = funcOp.getFunctionType();
|
||
|
|
||
|
// Construct the bufferized function type.
|
||
|
SmallVector<Type> argTypes;
|
||
|
for (const auto &it : llvm::enumerate(funcType.getInputs())) {
|
||
|
Type argType = it.value();
|
||
|
if (dyn_cast<TensorType>(argType)) {
|
||
|
argTypes.push_back(
|
||
|
getBufferizedFunctionArgType(funcOp, it.index(), options));
|
||
|
continue;
|
||
|
}
|
||
|
argTypes.push_back(argType);
|
||
|
}
|
||
|
|
||
|
// Bodiless functions are assumed opaque and we cannot know the
|
||
|
// bufferization contract they want to enforce. As a consequence, only
|
||
|
// support functions that don't return any tensors atm.
|
||
|
if (funcOp.isExternal()) {
|
||
|
SmallVector<Type> retTypes;
|
||
|
for (Type resultType : funcType.getResults()) {
|
||
|
if (isa<TensorType>(resultType))
|
||
|
return funcOp->emitError() << "cannot bufferize bodiless function "
|
||
|
<< "that returns a tensor";
|
||
|
retTypes.push_back(resultType);
|
||
|
}
|
||
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
// TODO: Support functions with multiple returns.
|
||
|
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
|
||
|
assert(returnOp && "expected func with single return op");
|
||
|
Location loc = returnOp.getLoc();
|
||
|
|
||
|
// 1. Bufferize every block.
|
||
|
for (Block &block : funcOp.getBody())
|
||
|
if (failed(bufferization::bufferizeBlockSignature(&block, rewriter,
|
||
|
options)))
|
||
|
return failure();
|
||
|
|
||
|
// 2. For each result, keep track of which inplace argument it reuses.
|
||
|
SmallVector<Value> returnValues;
|
||
|
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
|
||
|
Value returnVal = returnOperand.get();
|
||
|
auto tensorType = dyn_cast<TensorType>(returnVal.getType());
|
||
|
rewriter.setInsertionPoint(returnOp);
|
||
|
|
||
|
// If not a tensor type just forward it.
|
||
|
if (!tensorType) {
|
||
|
returnValues.push_back(returnVal);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Note: If `inferFunctionResultLayout = true`, cast are later folded
|
||
|
// away.
|
||
|
BaseMemRefType resultType = options.functionArgTypeConverterFn(
|
||
|
tensorType, *options.defaultMemorySpace, funcOp, options);
|
||
|
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
|
||
|
loc, resultType, returnVal);
|
||
|
returnValues.push_back(toMemrefOp);
|
||
|
}
|
||
|
|
||
|
// 3. Rewrite the terminator without the in-place bufferizable values.
|
||
|
returnOp.getOperandsMutable().assign(returnValues);
|
||
|
|
||
|
// 4. Rewrite the FuncOp type to buffer form.
|
||
|
funcOp.setType(FunctionType::get(op->getContext(), argTypes,
|
||
|
ValueRange(returnValues).getTypes()));
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
/// Return `true` if the given function argument is writable.
|
||
|
bool isWritable(Operation *op, Value value,
|
||
|
const AnalysisState &state) const {
|
||
|
auto funcOp = cast<FuncOp>(op);
|
||
|
BlockArgument bbArg = dyn_cast<BlockArgument>(value);
|
||
|
assert(bbArg && "expected BlockArgument");
|
||
|
|
||
|
// Non-entry block arguments are always writable. (They may alias with
|
||
|
// values that are not writable, which will turn them into read-only.)
|
||
|
if (bbArg.getOwner() != &funcOp.getBody().front())
|
||
|
return true;
|
||
|
|
||
|
// "bufferization.writable" overrides other writability decisions. This is
|
||
|
// currently used for testing only.
|
||
|
if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>(
|
||
|
bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName))
|
||
|
return writable.getValue();
|
||
|
|
||
|
// All function arguments are writable by default.
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace func_ext
|
||
|
} // namespace bufferization
|
||
|
} // namespace mlir
|
||
|
|
||
|
void mlir::bufferization::func_ext::
|
||
|
registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) {
|
||
|
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
|
||
|
func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx);
|
||
|
func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx);
|
||
|
func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx);
|
||
|
});
|
||
|
}
|