323 lines
13 KiB
C++
323 lines
13 KiB
C++
|
//===- SubgroupReduceLowering.cpp - subgroup_reduce lowering patterns -----===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Implements gradual lowering of `gpu.subgroup_reduce` ops.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
||
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
||
|
#include "mlir/Dialect/GPU/Transforms/Passes.h"
|
||
|
#include "mlir/Dialect/GPU/Transforms/Utils.h"
|
||
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
||
|
#include "mlir/IR/BuiltinTypes.h"
|
||
|
#include "mlir/IR/Location.h"
|
||
|
#include "mlir/IR/PatternMatch.h"
|
||
|
#include "mlir/IR/TypeUtilities.h"
|
||
|
#include "mlir/Support/LogicalResult.h"
|
||
|
#include "llvm/Support/FormatVariadic.h"
|
||
|
#include "llvm/Support/MathExtras.h"
|
||
|
#include <cassert>
|
||
|
#include <cstdint>
|
||
|
|
||
|
using namespace mlir;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
/// Example, assumes `maxShuffleBitwidth` equal to 32:
|
||
|
/// ```
|
||
|
/// %a = gpu.subgroup_reduce add %x : (vector<3xf16>) -> vector<3xf16>
|
||
|
/// ==>
|
||
|
/// %v0 = arith.constant dense<0.0> : vector<3xf16>
|
||
|
/// %e0 = vector.extract_strided_slice %x
|
||
|
/// {offsets = [0], sizes = [2], strides = [1}: vector<3xf32> to vector<2xf32>
|
||
|
/// %r0 = gpu.subgroup_reduce add %e0 : (vector<2xf16>) -> vector<2xf16>
|
||
|
/// %v1 = vector.insert_strided_slice %r0, %v0
|
||
|
/// {offsets = [0], strides = [1}: vector<2xf32> into vector<3xf32>
|
||
|
/// %e1 = vector.extract %x[2] : f16 from vector<2xf16>
|
||
|
/// %r1 = gpu.subgroup_reduce add %e1 : (f16) -> f16
|
||
|
/// %a = vector.insert %r1, %v1[2] : f16 into vector<3xf16>
|
||
|
/// ```
|
||
|
struct BreakDownSubgroupReduce final : OpRewritePattern<gpu::SubgroupReduceOp> {
|
||
|
BreakDownSubgroupReduce(MLIRContext *ctx, unsigned maxShuffleBitwidth,
|
||
|
PatternBenefit benefit)
|
||
|
: OpRewritePattern(ctx, benefit), maxShuffleBitwidth(maxShuffleBitwidth) {
|
||
|
}
|
||
|
|
||
|
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto vecTy = dyn_cast<VectorType>(op.getType());
|
||
|
if (!vecTy || vecTy.getNumElements() < 2)
|
||
|
return rewriter.notifyMatchFailure(op, "not a multi-element reduction");
|
||
|
|
||
|
assert(vecTy.getRank() == 1 && "Unexpected vector type");
|
||
|
assert(!vecTy.isScalable() && "Unexpected vector type");
|
||
|
|
||
|
Type elemTy = vecTy.getElementType();
|
||
|
unsigned elemBitwidth = elemTy.getIntOrFloatBitWidth();
|
||
|
if (elemBitwidth >= maxShuffleBitwidth)
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op, llvm::formatv("element type too large ({0}), cannot break down "
|
||
|
"into vectors of bitwidth {1} or less",
|
||
|
elemBitwidth, maxShuffleBitwidth));
|
||
|
|
||
|
unsigned elementsPerShuffle = maxShuffleBitwidth / elemBitwidth;
|
||
|
assert(elementsPerShuffle >= 1);
|
||
|
|
||
|
unsigned numNewReductions =
|
||
|
llvm::divideCeil(vecTy.getNumElements(), elementsPerShuffle);
|
||
|
assert(numNewReductions >= 1);
|
||
|
if (numNewReductions == 1)
|
||
|
return rewriter.notifyMatchFailure(op, "nothing to break down");
|
||
|
|
||
|
Location loc = op.getLoc();
|
||
|
Value res =
|
||
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getZeroAttr(vecTy));
|
||
|
|
||
|
for (unsigned i = 0; i != numNewReductions; ++i) {
|
||
|
int64_t startIdx = i * elementsPerShuffle;
|
||
|
int64_t endIdx =
|
||
|
std::min(startIdx + elementsPerShuffle, vecTy.getNumElements());
|
||
|
int64_t numElems = endIdx - startIdx;
|
||
|
|
||
|
Value extracted;
|
||
|
if (numElems == 1) {
|
||
|
extracted =
|
||
|
rewriter.create<vector::ExtractOp>(loc, op.getValue(), startIdx);
|
||
|
} else {
|
||
|
extracted = rewriter.create<vector::ExtractStridedSliceOp>(
|
||
|
loc, op.getValue(), /*offsets=*/startIdx, /*sizes=*/numElems,
|
||
|
/*strides=*/1);
|
||
|
}
|
||
|
|
||
|
Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
|
||
|
loc, extracted, op.getOp(), op.getUniform());
|
||
|
if (numElems == 1) {
|
||
|
res = rewriter.create<vector::InsertOp>(loc, reduce, res, startIdx);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
res = rewriter.create<vector::InsertStridedSliceOp>(
|
||
|
loc, reduce, res, /*offsets=*/startIdx, /*strides=*/1);
|
||
|
}
|
||
|
|
||
|
rewriter.replaceOp(op, res);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
unsigned maxShuffleBitwidth = 0;
|
||
|
};
|
||
|
|
||
|
/// Example:
|
||
|
/// ```
|
||
|
/// %a = gpu.subgroup_reduce add %x : (vector<1xf32>) -> vector<1xf32>
|
||
|
/// ==>
|
||
|
/// %e0 = vector.extract %x[0] : f32 from vector<1xf32>
|
||
|
/// %r0 = gpu.subgroup_reduce add %e0 : (f32) -> f32
|
||
|
/// %a = vector.broadcast %r0 : f32 to vector<1xf32>
|
||
|
/// ```
|
||
|
struct ScalarizeSingleElementReduce final
|
||
|
: OpRewritePattern<gpu::SubgroupReduceOp> {
|
||
|
using OpRewritePattern::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto vecTy = dyn_cast<VectorType>(op.getType());
|
||
|
if (!vecTy || vecTy.getNumElements() != 1)
|
||
|
return rewriter.notifyMatchFailure(op, "not a single-element reduction");
|
||
|
|
||
|
assert(vecTy.getRank() == 1 && "Unexpected vector type");
|
||
|
assert(!vecTy.isScalable() && "Unexpected vector type");
|
||
|
Location loc = op.getLoc();
|
||
|
Value extracted = rewriter.create<vector::ExtractOp>(loc, op.getValue(), 0);
|
||
|
Value reduce = rewriter.create<gpu::SubgroupReduceOp>(
|
||
|
loc, extracted, op.getOp(), op.getUniform());
|
||
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecTy, reduce);
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Emits a subgroup reduction using a sequence of shuffles. Uses the `packFn`
|
||
|
/// and `unpackFn` to convert to the native shuffle type and to the reduction
|
||
|
/// type, respectively. For example, with `input` of type `f16`, `packFn` could
|
||
|
/// build ops to cast the value to `i32` to perform shuffles, while `unpackFn`
|
||
|
/// would cast it back to `f16` to perform arithmetic reduction on. Assumes that
|
||
|
/// the subgroup is `subgroupSize` lanes wide and reduces across all of them.
|
||
|
static Value createSubgroupShuffleReduction(
|
||
|
OpBuilder &builder, Location loc, Value input, gpu::AllReduceOperation mode,
|
||
|
unsigned subgroupSize, function_ref<Value(Value)> packFn,
|
||
|
function_ref<Value(Value)> unpackFn) {
|
||
|
assert(llvm::isPowerOf2_32(subgroupSize));
|
||
|
// Lane value always stays in the original type. We use it to perform arith
|
||
|
// reductions.
|
||
|
Value laneVal = input;
|
||
|
// Parallel reduction using butterfly shuffles.
|
||
|
for (unsigned i = 1; i < subgroupSize; i <<= 1) {
|
||
|
Value shuffled = builder
|
||
|
.create<gpu::ShuffleOp>(loc, packFn(laneVal), i,
|
||
|
/*width=*/subgroupSize,
|
||
|
/*mode=*/gpu::ShuffleMode::XOR)
|
||
|
.getShuffleResult();
|
||
|
laneVal = vector::makeArithReduction(builder, loc,
|
||
|
gpu::convertReductionKind(mode),
|
||
|
laneVal, unpackFn(shuffled));
|
||
|
assert(laneVal.getType() == input.getType());
|
||
|
}
|
||
|
|
||
|
return laneVal;
|
||
|
}
|
||
|
|
||
|
/// Lowers scalar gpu subgroup reductions to a series of shuffles.
|
||
|
struct ScalarSubgroupReduceToShuffles final
|
||
|
: OpRewritePattern<gpu::SubgroupReduceOp> {
|
||
|
ScalarSubgroupReduceToShuffles(MLIRContext *ctx, unsigned subgroupSize,
|
||
|
unsigned shuffleBitwidth,
|
||
|
PatternBenefit benefit)
|
||
|
: OpRewritePattern(ctx, benefit), subgroupSize(subgroupSize),
|
||
|
shuffleBitwidth(shuffleBitwidth) {}
|
||
|
|
||
|
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
Type valueTy = op.getType();
|
||
|
unsigned elemBitwidth =
|
||
|
getElementTypeOrSelf(valueTy).getIntOrFloatBitWidth();
|
||
|
if (!valueTy.isIntOrFloat() || elemBitwidth > shuffleBitwidth)
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op, "value type is not a compatible scalar");
|
||
|
|
||
|
Location loc = op.getLoc();
|
||
|
// Since this is already a native shuffle scalar, no packing is necessary.
|
||
|
if (elemBitwidth == shuffleBitwidth) {
|
||
|
auto identityFn = [](Value v) { return v; };
|
||
|
rewriter.replaceOp(op, createSubgroupShuffleReduction(
|
||
|
rewriter, loc, op.getValue(), op.getOp(),
|
||
|
subgroupSize, identityFn, identityFn));
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
auto shuffleIntType = rewriter.getIntegerType(shuffleBitwidth);
|
||
|
auto equivIntType = rewriter.getIntegerType(elemBitwidth);
|
||
|
auto packFn = [loc, &rewriter, equivIntType,
|
||
|
shuffleIntType](Value unpackedVal) -> Value {
|
||
|
auto asInt =
|
||
|
rewriter.create<arith::BitcastOp>(loc, equivIntType, unpackedVal);
|
||
|
return rewriter.create<arith::ExtUIOp>(loc, shuffleIntType, asInt);
|
||
|
};
|
||
|
auto unpackFn = [loc, &rewriter, equivIntType,
|
||
|
valueTy](Value packedVal) -> Value {
|
||
|
auto asInt =
|
||
|
rewriter.create<arith::TruncIOp>(loc, equivIntType, packedVal);
|
||
|
return rewriter.create<arith::BitcastOp>(loc, valueTy, asInt);
|
||
|
};
|
||
|
|
||
|
rewriter.replaceOp(op, createSubgroupShuffleReduction(
|
||
|
rewriter, loc, op.getValue(), op.getOp(),
|
||
|
subgroupSize, packFn, unpackFn));
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
unsigned subgroupSize = 0;
|
||
|
unsigned shuffleBitwidth = 0;
|
||
|
};
|
||
|
|
||
|
/// Lowers vector gpu subgroup reductions to a series of shuffles.
|
||
|
struct VectorSubgroupReduceToShuffles final
|
||
|
: OpRewritePattern<gpu::SubgroupReduceOp> {
|
||
|
VectorSubgroupReduceToShuffles(MLIRContext *ctx, unsigned subgroupSize,
|
||
|
unsigned shuffleBitwidth,
|
||
|
PatternBenefit benefit)
|
||
|
: OpRewritePattern(ctx, benefit), subgroupSize(subgroupSize),
|
||
|
shuffleBitwidth(shuffleBitwidth) {}
|
||
|
|
||
|
LogicalResult matchAndRewrite(gpu::SubgroupReduceOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto vecTy = dyn_cast<VectorType>(op.getType());
|
||
|
if (!vecTy)
|
||
|
return rewriter.notifyMatchFailure(op, "value type is not a vector");
|
||
|
|
||
|
unsigned vecBitwidth =
|
||
|
vecTy.getNumElements() * vecTy.getElementTypeBitWidth();
|
||
|
if (vecBitwidth > shuffleBitwidth)
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op,
|
||
|
llvm::formatv("vector type bitwidth too large ({0}), cannot lower "
|
||
|
"to shuffles of size {1}",
|
||
|
vecBitwidth, shuffleBitwidth));
|
||
|
|
||
|
unsigned elementsPerShuffle =
|
||
|
shuffleBitwidth / vecTy.getElementTypeBitWidth();
|
||
|
if (elementsPerShuffle * vecTy.getElementTypeBitWidth() != shuffleBitwidth)
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op, "shuffle bitwidth is not a multiple of the element bitwidth");
|
||
|
|
||
|
Location loc = op.getLoc();
|
||
|
|
||
|
// If the reduced type is smaller than the native shuffle size, extend it,
|
||
|
// perform the shuffles, and extract at the end.
|
||
|
auto extendedVecTy = VectorType::get(
|
||
|
static_cast<int64_t>(elementsPerShuffle), vecTy.getElementType());
|
||
|
Value extendedInput = op.getValue();
|
||
|
if (vecBitwidth < shuffleBitwidth) {
|
||
|
auto zero = rewriter.create<arith::ConstantOp>(
|
||
|
loc, rewriter.getZeroAttr(extendedVecTy));
|
||
|
extendedInput = rewriter.create<vector::InsertStridedSliceOp>(
|
||
|
loc, extendedInput, zero, /*offsets=*/0, /*strides=*/1);
|
||
|
}
|
||
|
|
||
|
auto shuffleIntType = rewriter.getIntegerType(shuffleBitwidth);
|
||
|
auto shuffleVecType = VectorType::get(1, shuffleIntType);
|
||
|
|
||
|
auto packFn = [loc, &rewriter, shuffleVecType](Value unpackedVal) -> Value {
|
||
|
auto asIntVec =
|
||
|
rewriter.create<vector::BitCastOp>(loc, shuffleVecType, unpackedVal);
|
||
|
return rewriter.create<vector::ExtractOp>(loc, asIntVec, 0);
|
||
|
};
|
||
|
auto unpackFn = [loc, &rewriter, shuffleVecType,
|
||
|
extendedVecTy](Value packedVal) -> Value {
|
||
|
auto asIntVec =
|
||
|
rewriter.create<vector::BroadcastOp>(loc, shuffleVecType, packedVal);
|
||
|
return rewriter.create<vector::BitCastOp>(loc, extendedVecTy, asIntVec);
|
||
|
};
|
||
|
|
||
|
Value res =
|
||
|
createSubgroupShuffleReduction(rewriter, loc, extendedInput, op.getOp(),
|
||
|
subgroupSize, packFn, unpackFn);
|
||
|
|
||
|
if (vecBitwidth < shuffleBitwidth) {
|
||
|
res = rewriter.create<vector::ExtractStridedSliceOp>(
|
||
|
loc, res, /*offsets=*/0, /*sizes=*/vecTy.getNumElements(),
|
||
|
/*strides=*/1);
|
||
|
}
|
||
|
|
||
|
rewriter.replaceOp(op, res);
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
unsigned subgroupSize = 0;
|
||
|
unsigned shuffleBitwidth = 0;
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
void mlir::populateGpuBreakDownSubgrupReducePatterns(
|
||
|
RewritePatternSet &patterns, unsigned maxShuffleBitwidth,
|
||
|
PatternBenefit benefit) {
|
||
|
patterns.add<BreakDownSubgroupReduce>(patterns.getContext(),
|
||
|
maxShuffleBitwidth, benefit);
|
||
|
patterns.add<ScalarizeSingleElementReduce>(patterns.getContext(), benefit);
|
||
|
}
|
||
|
|
||
|
void mlir::populateGpuLowerSubgroupReduceToShufflePattenrs(
|
||
|
RewritePatternSet &patterns, unsigned subgroupSize,
|
||
|
unsigned shuffleBitwidth, PatternBenefit benefit) {
|
||
|
patterns.add<ScalarSubgroupReduceToShuffles, VectorSubgroupReduceToShuffles>(
|
||
|
patterns.getContext(), subgroupSize, shuffleBitwidth, benefit);
|
||
|
}
|