bolt/deps/llvm-18.1.8/mlir/lib/Dialect/NVGPU/IR/NVGPUDialect.cpp

643 lines
25 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the NVGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Verifier.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::nvgpu;
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
void nvgpu::NVGPUDialect::initialize() {
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
>();
}
bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
if (!memorySpace)
return false;
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
return false;
}
bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
Attribute memorySpace = type.getMemorySpace();
return isSharedMemoryAddressSpace(memorySpace);
}
//===----------------------------------------------------------------------===//
// NVGPU_DeviceAsyncCopyOp
//===----------------------------------------------------------------------===//
LogicalResult DeviceAsyncCopyOp::verify() {
auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
if (!isLastMemrefDimUnitStride(srcMemref))
return emitError("source memref most minor dim must have unit stride");
if (!isLastMemrefDimUnitStride(dstMemref))
return emitError("destination memref most minor dim must have unit stride");
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
return emitError()
<< "destination memref must have a memory space attribute of "
"IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (dstMemref.getElementType() != srcMemref.getElementType())
return emitError("source and destination must have the same element type");
if (size_t(srcMemref.getRank()) != getSrcIndices().size())
return emitOpError() << "expected " << srcMemref.getRank()
<< " source indices, got " << getSrcIndices().size();
if (size_t(dstMemref.getRank()) != getDstIndices().size())
return emitOpError() << "expected " << dstMemref.getRank()
<< " destination indices, got "
<< getDstIndices().size();
int64_t dstElements = getDstElements().getZExtValue();
int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
unsigned dstWidth = dstMemref.getElementTypeBitWidth();
InFlightDiagnostic diag = emitError();
diag << "Requested copy elements is " << dstElements << " with width "
<< dstMemref.getElementTypeBitWidth()
<< ". But copy elements could be one of ";
if ((32 / dstWidth) > 0)
diag << (32 / dstWidth) << ", ";
if ((64 / dstWidth) > 0)
diag << (64 / dstWidth) << ", ";
if ((128 / dstWidth) > 0)
diag << (128 / dstWidth) << ".";
return diag;
}
if (getBypassL1().has_value()) {
int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
if (getBypassL1().value() && sizeInBytes != 16) {
return emitOpError() << "bypassL1 does not satify alignment for "
<< dstMemref << " with destination element "
<< dstElements
<< ". Unset bypassL1, or set "
"destination element to "
<< req;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSyncOp
//===----------------------------------------------------------------------===//
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayAttr mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
mmaShape, UnitAttr());
}
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
bool tf32Enabled) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
odsBuilder.getI64ArrayAttr(mmaShape),
tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
}
/// Performs verification for MmaSyncOp and MmaSparseSyncOp.
static LogicalResult verifyMmaSyncOp(Operation *op,
TypedValue<VectorType> matrixA,
TypedValue<VectorType> matrixB,
TypedValue<VectorType> matrixC,
const std::array<int64_t, 3> &mmaShape,
bool tf32Enabled, bool sparse = false) {
// The verification for mma.sync covering various shapes and data types is
// based on the fundamental tensor core shape.
// "Fundamental" tensor core shapes:
// - For F32 (TF32), F16, S8, and S4 data
// types the fundamental tensor core operation is of shape 8-by-8-by-128b.
// - F64 is an exception and is of shape 8-by-8-by-256b.
int64_t shapeM = 8;
int64_t shapeN = 8;
int64_t shapeK; // set based on data type (128b for all data types except F64)
// Number of elements A, B, and C per thread per fundamental tensor core tile
int64_t numElementA; // set based on data type (32b except F64)
int64_t numElementB; // set based on data type (32b except F64)
int64_t numElementC{2}; // two accumulator elements per fundamental tile
// nvgpu.mma.sync vector operands (per thread)
auto aVector = matrixA.getType();
auto bVector = matrixB.getType();
auto cVector = matrixC.getType();
// vector shapes
ArrayRef<int64_t> aShape = aVector.getShape();
ArrayRef<int64_t> bShape = bVector.getShape();
ArrayRef<int64_t> cShape = cVector.getShape();
// vector element type
Type aType = aVector.getElementType();
// Certain data types are not allowed in sparse mode.
if (sparse && aType.isF64())
return op->emitError() << "f64 is not supported for sparse mode";
if (aType.isF64()) {
// exception to 8-by-8-128b fundamental tensor core tile size
shapeK = 4;
numElementA = 1;
numElementB = 1;
} else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
aType.isInteger(8) || aType.isInteger(4)) {
// 8-by-8-128b fundamental tensor core tile size
int operandBitwidth = aType.getIntOrFloatBitWidth();
shapeK = 128 / operandBitwidth; // 128b wide shapeK
numElementA = 32 / operandBitwidth; // 32b wide operand A
numElementB = 32 / operandBitwidth; // 32b wide operand B
} else {
return op->emitError()
<< "expected input data type (i4,i8,f16,bf16,tf32,f64) "
"supported by "
<< op->getName();
}
//
// Basic verification
//
auto [m, n, k] = mmaShape;
// verify warp-wide size for vector a
int64_t sparseFactor = sparse ? 2 : 1;
if (aShape[0] * aShape[1] * kWarpSize != m * k / sparseFactor)
return op->emitOpError()
<< "expected " << m * k << " warp-wide matrix A elements";
// verify warp-wide size for vector b
if (bShape[0] * bShape[1] * kWarpSize != k * n)
return op->emitOpError()
<< "expected " << k * n << " warp-wide matrix B elements";
// verify warp-wide size for vector c
if (cShape[0] * cShape[1] * kWarpSize != m * n)
return op->emitOpError()
<< "expected " << m * n << " warp-wide matrix C elements";
// verify tf32 tensor cores are enabled for only F32 datatype
if (tf32Enabled && !(aType.isF32()))
return op->emitOpError()
<< "expected tf32 tensor cores only for F32 operands";
//
// Extended verification
//
// tiles of fundamental tensor core operations
int64_t mTile = m / shapeM;
int64_t nTile = n / shapeN;
int64_t kTile = k / shapeK;
// verify shape of aVector
if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
(aShape[1] != numElementA))
return op->emitOpError() << "expected matrix A to be shaped ("
<< mTile * kTile << " x " << numElementA << ")";
// verify shape of bVector
if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
return op->emitOpError() << "expected matrix B to be shaped ("
<< kTile * nTile << " x " << numElementB << ")";
// verify shape of cVector
if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
return op->emitOpError() << "expected matrix C to be shaped ("
<< mTile * nTile << " x " << numElementC << ")";
return success();
}
LogicalResult MmaSyncOp::verify() {
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()));
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSparseSyncOp
//===----------------------------------------------------------------------===//
void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, Value sparseMetadata,
ArrayRef<int64_t> mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
}
LogicalResult MmaSparseSyncOp::verify() {
unsigned sparsitySelector = getSparsitySelector();
if (sparsitySelector > 1)
return emitOpError() << "sparsity selector should be 0 or 1";
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()),
true);
}
//===----------------------------------------------------------------------===//
// NVGPU_LdMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult LdMatrixOp::verify() {
// ldmatrix reads data from source in shared memory
auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
// ldmatrix writes data to result/destination in vector registers
auto resVector = llvm::cast<VectorType>(getRes().getType());
// vector register shape, element type, and bitwidth
ArrayRef<int64_t> resShape = resVector.getShape();
Type resType = resVector.getElementType();
int64_t elementBitWidth = resType.getIntOrFloatBitWidth();
// ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
int64_t numElementsPer32b = 32 / elementBitWidth;
// number of 8-by-8 tiles
int64_t numTiles = getNumTiles();
// transpose elements in vector registers at 16b granularity when true
bool isTranspose = getTranspose();
//
// verification
//
if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
return emitError()
<< "expected nvgpu.ldmatrix srcMemref must have a memory space "
"attribute of IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (elementBitWidth > 32)
return emitError() << "nvgpu.ldmatrix works for 32b or lower";
if (isTranspose && !(elementBitWidth == 16))
return emitError()
<< "nvgpu.ldmatrix transpose works only at 16b granularity";
if (resShape.size() != 2) {
return emitError() << "results must be 2 dimensional vector";
}
if (!(resShape[1] == numElementsPer32b))
return emitError() << "expected vector register shape[1] = "
<< numElementsPer32b;
if (!(resShape[0] == numTiles))
return emitError()
<< "expected vector register shape[0] and numTiles to match";
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncLoadOp
//===----------------------------------------------------------------------===//
std::optional<InFlightDiagnostic> verifyTmaDescriptorWithMemref(
Operation *op, nvgpu::TensorMapDescriptorType descType,
std::optional<MemRefType> memrefType = std::nullopt) {
MemRefType descMemref = descType.getTensor();
// Limitation
if (descType.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
return op->emitError() << "Interleave options are not supported yet.";
// Address space check for shared memory check
if (!NVGPUDialect::hasSharedMemoryAddressSpace(descMemref)) {
return op->emitError() << "the tensor map descriptor has incorrect address "
"space, it must be shared memory address space.";
}
// Support only static shape for the time being
if (!descMemref.hasStaticShape())
return op->emitError() << "the tensor map descriptor must be static shaped";
// No verification if memref type is not provided
if (!memrefType.has_value())
return std::nullopt;
MemRefType dstMemref = memrefType.value();
// Check element type
if (descMemref.getElementType() != dstMemref.getElementType()) {
return op->emitError() << "the element type of tensor map descriptor and "
"memref must be same";
}
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
return op->emitError() << "the destination memref has incorrect address "
"space, it must be shared memory address space.";
}
if (!dstMemref.hasStaticShape())
return op->emitError() << "the destination memref must be static shaped";
if (dstMemref.getRank() != descMemref.getRank()) {
return op->emitError() << "the shape of tensor map descriptor and "
"memref must have same rank";
}
if (!descMemref.getShape().equals(dstMemref.getShape())) {
return op->emitError() << "memref and tensor map shapes mismatch "
<< descMemref << " != " << dstMemref;
}
return std::nullopt;
}
LogicalResult TmaAsyncLoadOp::verify() {
std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
*this, getTensorMapDescriptor().getType(), getDst().getType());
if (error.has_value())
return error.value();
if (getCoordinates().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
if (getCoordinates().size() !=
size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
return emitError() << "number of coordinates do not match with the rank of "
"tensor descriptor map.";
}
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncStoreOp
//===----------------------------------------------------------------------===//
LogicalResult TmaAsyncStoreOp::verify() {
std::optional<InFlightDiagnostic> error = verifyTmaDescriptorWithMemref(
*this, getTensorMapDescriptor().getType(), getSrc().getType());
if (error.has_value())
return error.value();
if (getCoordinates().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
if (getCoordinates().size() !=
size_t(getTensorMapDescriptor().getType().getTensor().getRank())) {
return emitError() << "number of coordinates do not match with the rank of "
"tensor descriptor map.";
}
return success();
}
LogicalResult TmaCreateDescriptorOp::verify() {
if (getBoxDimensions().size() > kMaxTMATensorDimension) {
return emitError() << "Maximum " << kMaxTMATensorDimension
<< " coordinates are supported.";
}
std::optional<InFlightDiagnostic> error =
verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
if (error.has_value())
return error.value();
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_WarpgroupGenerateDescriptorOp
//===----------------------------------------------------------------------===//
LogicalResult WarpgroupGenerateDescriptorOp::verify() {
std::optional<InFlightDiagnostic> error =
verifyTmaDescriptorWithMemref(*this, getTensorMap().getType());
if (error.has_value())
return error.value();
if (getTensorMap().getType().getSwizzle() !=
TensorMapSwizzleKind::SWIZZLE_128B) {
return emitError() << "supports only "
<< stringifyTensorMapSwizzleKind(
TensorMapSwizzleKind::SWIZZLE_128B)
<< " is supported for the time being";
}
if (getTensorMap().getType().getInterleave() !=
TensorMapInterleaveKind::INTERLEAVE_NONE) {
return emitError() << "supports only "
<< stringifyTensorMapInterleaveKind(
TensorMapInterleaveKind::INTERLEAVE_NONE)
<< " is supported for the time being";
}
return success();
}
//===----------------------------------------------------------------------===//
// WarpgroupMmaOp
//===----------------------------------------------------------------------===//
LogicalResult isAllowedWGMMADataType(Type typeD, Type typeA, Type typeB) {
// F32 += F16 + F16
// F16 += F16 + F16
if (typeA.isF16() && typeB.isF16() && (typeD.isF32() || typeD.isF16()))
return success();
// F32 += TF32 + TF32
if (typeA.isTF32() && typeD.isF32() && typeB.isTF32())
return success();
// s32 += i8 + i8
if (typeA.isInteger(16) && typeB.isInteger(16) && typeD.isInteger(32))
return success();
// s32 += i1 + i1
if (typeA.isInteger(1) && typeB.isInteger(1) && typeD.isInteger(32))
return success();
// F32 += BF16 + BF16
// F16 += BF16 + BF16
if (typeA.isBF16() && typeB.isBF16() && (typeD.isF32() || typeD.isF16()))
return success();
// F16 += f8 + f8
// F32 += f8 + f8
if ((typeA.isFloat8E5M2() || typeA.isFloat8E4M3FN()) &&
(typeB.isFloat8E5M2() || typeB.isFloat8E4M3FN()) &&
(typeD.isF32() || typeD.isF16()))
return success();
return failure();
}
LogicalResult isAllowedSizeM(int sizeM) {
if (sizeM % kWgmmaSizeM)
return failure();
return success();
}
LogicalResult isAllowedSizeN(int sizeN, Type typeA) {
SmallVector<int> allowedN = {8, 16, 24, 32, 40, 48, 56, 64,
72, 80, 88, 96, 104, 112, 120, 128,
136, 144, 152, 160, 168, 176, 184, 192,
200, 208, 216, 224, 232, 240, 248, 256};
SmallVector<int> allowedNshort = {8, 16, 24, 32, 48, 64,
80, 96, 112, 128, 144, 160,
176, 192, 208, 224, 240, 256};
if (typeA.isBF16() || typeA.isF16() || typeA.isF32() || typeA.isTF32() ||
typeA.isFloat8E4M3FN() || typeA.isFloat8E5M2())
if (llvm::is_contained(allowedN, sizeN))
return success();
if (typeA.isInteger(8) || typeA.isInteger(1))
if (llvm::is_contained(allowedNshort, sizeN))
return success();
return failure();
}
LogicalResult WarpgroupMmaOp::verify() {
if (getTransposeA() && !getTransposeB())
return emitOpError()
<< "supports non-transpose A (Row Major) "
"and transpose B (Column Major) for the time being ";
MemRefType matrixA = getDescriptorA().getType().getTensor();
MemRefType matrixB = getDescriptorB().getType().getTensor();
VectorType matrixC = getMatrixC().getType().getFragmented();
VectorType matrixD = getMatrixD().getType().getFragmented();
if (matrixC != matrixD)
return emitOpError() << "type of matrix C and matrix D must be the same";
if (matrixA.getRank() != 2 || matrixB.getRank() != 2 ||
matrixC.getRank() != 2 || matrixD.getRank() != 2) {
return emitOpError()
<< "has matrices A, B, C and D, they must be 2 dimensional";
}
if (matrixA.getShape()[1] != matrixB.getShape()[0])
return emitOpError() << "2nd dim matrix-A (" << matrixA.getShape()[1]
<< ")!= 1st dim matrix-B (" << matrixB.getShape()[0]
<< " )";
if (matrixA.getShape()[0] != matrixC.getShape()[0])
return emitOpError() << "1st dim matrix-A ( " << matrixA.getShape()[0]
<< " )!= 1st dim matrix-C ( " << matrixC.getShape()[0]
<< " )";
if (matrixB.getShape()[1] != matrixC.getShape()[1])
return emitOpError() << "2nd dim matrix-B ( " << matrixB.getShape()[1]
<< " ) != 2nd dim matrix-C ( " << matrixC.getShape()[1]
<< " )";
if (failed(isAllowedWGMMADataType(matrixC.getElementType(),
matrixA.getElementType(),
matrixB.getElementType())))
return emitOpError() << matrixC.getElementType()
<< " += " << matrixA.getElementType() << " * "
<< matrixB.getElementType()
<< ", it is not supported.";
// Check N
if (failed(isAllowedSizeN(matrixB.getDimSize(1), matrixA.getElementType()))) {
return emitOpError() << "has input type " << matrixB << " n is set to "
<< matrixB.getDimSize(1) << ", it is not supported";
}
// Currently, f16/bf16 supported
if (!matrixC.getElementType().isF32() && !matrixA.getElementType().isF16() &&
!matrixA.getElementType().isBF16()) {
return emitOpError() << "hit a limitation: " << matrixC.getElementType()
<< " += " << matrixA.getElementType() << " * "
<< matrixB.getElementType()
<< ", it is not supported yet";
}
return success();
}
LogicalResult WarpgroupMmaStoreOp::verify() {
MemRefType dstMemrefType = getDstMemref().getType();
VectorType vtype = getMatrixD().getType().getFragmented();
// Limitation
if (!vtype.getElementType().isF32()) {
return emitOpError()
<< "hit a limitation: only f32 results for the time being";
}
if (vtype.getDimSize(0) != dstMemrefType.getDimSize(0) ||
vtype.getDimSize(1) != dstMemrefType.getDimSize(1)) {
return emitOpError() << "results [" << vtype << "][" << vtype.getDimSize(1)
<< "] values. However, destination memref["
<< dstMemrefType.getDimSize(0) << "]["
<< dstMemrefType.getDimSize(1)
<< "] does not have same size as results";
}
return success();
}
//===----------------------------------------------------------------------===//
// WarpgroupMmaInitAccumulatorOp
//===----------------------------------------------------------------------===//
LogicalResult WarpgroupMmaInitAccumulatorOp::verify() {
nvgpu::WarpgroupAccumulatorType accType = getMatrixC().getType();
int64_t sizeM = accType.getFragmented().getDimSize(0);
int64_t sizeN = accType.getFragmented().getDimSize(1);
Type elemType = accType.getFragmented().getElementType();
if (failed(isAllowedSizeM(sizeM)) ||
failed(isAllowedSizeN(sizeN, elemType))) {
return emitOpError() << "has type " << accType.getFragmented()
<< ". It does not fit into warp-group "
"level (wgmma) matrix multiplication instruction "
"(or not supported yet)";
}
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd dialect, type, and op definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
#include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"