164 lines
6.7 KiB
C++
164 lines
6.7 KiB
C++
|
//===- TosaDecomposeConv2D.cpp --------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Decompose TOSA Conv2D operation to a series of TOSA Ops specifically
|
||
|
// (1) Convert a 1x1 Convolution to a Reshape->FC->Reshape
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
||
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
||
|
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::tosa;
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
SmallVector<int64_t> convertFromMlirShape(ArrayRef<int64_t> shape) {
|
||
|
return to_vector(llvm::map_range(shape, [](int64_t dim) {
|
||
|
return ShapedType::isDynamic(dim) ? -1 : dim;
|
||
|
}));
|
||
|
}
|
||
|
|
||
|
struct Conv2DIsFullyConnected : public OpRewritePattern<tosa::Conv2DOp> {
|
||
|
explicit Conv2DIsFullyConnected(MLIRContext *context)
|
||
|
: OpRewritePattern(context) {}
|
||
|
|
||
|
LogicalResult matchAndRewrite(tosa::Conv2DOp op,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
Value input = op.getInput();
|
||
|
Value weight = op.getWeight();
|
||
|
ShapedType inputType = cast<ShapedType>(input.getType());
|
||
|
ShapedType weightType = cast<ShapedType>(weight.getType());
|
||
|
ShapedType resultType = cast<ShapedType>(op.getType());
|
||
|
|
||
|
auto numDynamic =
|
||
|
llvm::count_if(inputType.getShape(), ShapedType::isDynamic);
|
||
|
if (numDynamic > 1)
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op, "at most one dim in input may be dynamic");
|
||
|
if (!weightType.hasRank())
|
||
|
return rewriter.notifyMatchFailure(op, "unranked weight input");
|
||
|
|
||
|
if (!llvm::all_of(op.getStride(), [](int64_t v) { return v == 1; }))
|
||
|
return failure();
|
||
|
|
||
|
// Only works for a 1x1 kernel.
|
||
|
ArrayRef<int64_t> weightShape = weightType.getShape();
|
||
|
if (weightShape[1] != 1 || weightShape[2] != 1)
|
||
|
return failure();
|
||
|
|
||
|
llvm::ArrayRef<int64_t> padAttr = op.getPad();
|
||
|
llvm::SmallVector<int64_t> pad(8, 0);
|
||
|
for (const auto &it : llvm::enumerate(padAttr))
|
||
|
pad[it.index() + 2] = it.value();
|
||
|
|
||
|
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
|
||
|
Type inputETy = inputType.getElementType();
|
||
|
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
|
||
|
if (op.getQuantizationInfo()) {
|
||
|
auto quantizationInfo = op.getQuantizationInfo();
|
||
|
int64_t iZp = quantizationInfo->getInputZp();
|
||
|
|
||
|
if (!validIntegerRange(cast<IntegerType>(inputETy), iZp))
|
||
|
return rewriter.notifyMatchFailure(
|
||
|
op, "tosa.conv op quantization has zp outside of input range");
|
||
|
|
||
|
zeroAttr = rewriter.getIntegerAttr(inputETy, iZp);
|
||
|
}
|
||
|
|
||
|
llvm::SmallVector<int64_t> newShape(inputType.getShape());
|
||
|
|
||
|
for (int i = 0, s = newShape.size(); i < s; ++i) {
|
||
|
if (newShape[i] != ShapedType::kDynamic) {
|
||
|
newShape[i] += pad[i * 2] + pad[i * 2 + 1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
auto padSizeTy = RankedTensorType::get({4, 2}, rewriter.getI64Type());
|
||
|
auto padSize =
|
||
|
DenseIntElementsAttr::get(padSizeTy, ArrayRef<int64_t>(pad));
|
||
|
Value padSizeVal =
|
||
|
rewriter.create<tosa::ConstOp>(op->getLoc(), padSizeTy, padSize);
|
||
|
|
||
|
auto padTy = RankedTensorType::get({}, inputETy);
|
||
|
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
|
||
|
Value padVal =
|
||
|
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
|
||
|
inputType = RankedTensorType::get(newShape, inputETy);
|
||
|
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
|
||
|
padSizeVal, padVal);
|
||
|
}
|
||
|
|
||
|
// Reshape input to [N,IH,IW,IC] -> [N * IH * IW, IC].
|
||
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
||
|
int64_t combined = ShapedType::kDynamic;
|
||
|
if (numDynamic == 0)
|
||
|
combined = inputShape[0] * inputShape[1] * inputShape[2];
|
||
|
llvm::SmallVector<int64_t, 2> revisedInputShape{combined, inputShape[3]};
|
||
|
auto revisedInputShapeType =
|
||
|
RankedTensorType::get(revisedInputShape, inputType.getElementType());
|
||
|
auto reshapedInput = rewriter
|
||
|
.create<tosa::ReshapeOp>(
|
||
|
op.getLoc(), revisedInputShapeType, input,
|
||
|
rewriter.getDenseI64ArrayAttr(
|
||
|
convertFromMlirShape(revisedInputShape)))
|
||
|
.getResult();
|
||
|
|
||
|
// Reshape kernel to [OC,KH,KW,IC] -> [OC, IC].
|
||
|
llvm::SmallVector<int64_t, 2> revisedWeightShape{weightShape[0],
|
||
|
weightShape[3]};
|
||
|
auto revisedWeightShapeType = RankedTensorType::get(
|
||
|
revisedWeightShape,
|
||
|
dyn_cast<RankedTensorType>(weight.getType()).getElementType());
|
||
|
auto reshapedWeight = rewriter
|
||
|
.create<tosa::ReshapeOp>(
|
||
|
op.getLoc(), revisedWeightShapeType, weight,
|
||
|
rewriter.getDenseI64ArrayAttr(
|
||
|
convertFromMlirShape(revisedWeightShape)))
|
||
|
.getResult();
|
||
|
|
||
|
// Perform a fully connected network over the reshaped input and weight.
|
||
|
llvm::SmallVector<int64_t, 2> fullyConnectedShape{combined, weightShape[0]};
|
||
|
auto fullyConnectedShapeType =
|
||
|
RankedTensorType::get(fullyConnectedShape, resultType.getElementType());
|
||
|
|
||
|
Value fullyConnectedValue;
|
||
|
if (op.getQuantizationInfo()) {
|
||
|
fullyConnectedValue =
|
||
|
rewriter
|
||
|
.create<tosa::FullyConnectedOp>(
|
||
|
op.getLoc(), fullyConnectedShapeType, reshapedInput,
|
||
|
reshapedWeight, op.getBias(), *op.getQuantizationInfo())
|
||
|
.getResult();
|
||
|
} else {
|
||
|
fullyConnectedValue = rewriter
|
||
|
.create<tosa::FullyConnectedOp>(
|
||
|
op.getLoc(), fullyConnectedShapeType,
|
||
|
reshapedInput, reshapedWeight, op.getBias())
|
||
|
.getResult();
|
||
|
}
|
||
|
|
||
|
// Reshape output to [N, IH, IW, OC].
|
||
|
llvm::SmallVector<int64_t, 4> outputShape{inputShape[0], inputShape[1],
|
||
|
inputShape[2], weightShape[0]};
|
||
|
rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
|
||
|
op, resultType, fullyConnectedValue,
|
||
|
rewriter.getDenseI64ArrayAttr(convertFromMlirShape(outputShape)));
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void mlir::tosa::populateTosaDecomposeConv2D(MLIRContext *ctx,
|
||
|
RewritePatternSet &patterns) {
|
||
|
patterns.add<Conv2DIsFullyConnected>(ctx);
|
||
|
}
|