35 lines
1.4 KiB
MLIR
35 lines
1.4 KiB
MLIR
|
// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification -cse | FileCheck %s
|
||
|
|
||
|
#Dense = #sparse_tensor.encoding<{
|
||
|
map = (d0, d1) -> (d0 : dense, d1 : dense)
|
||
|
}>
|
||
|
|
||
|
#trait_scale = {
|
||
|
indexing_maps = [
|
||
|
affine_map<(i,j) -> (i,j)> // X (out)
|
||
|
],
|
||
|
iterator_types = ["parallel", "parallel"],
|
||
|
doc = "X(i,j) = X(i,j) * 2.0"
|
||
|
}
|
||
|
|
||
|
// CHECK-LABEL: func.func @sparse_scale(
|
||
|
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1xf32, #sparse{{[0-9]*}}>)
|
||
|
// CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index
|
||
|
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f32
|
||
|
// CHECK: %[[VAL_3:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<1x1xf32, #sparse{{[0-9]*}}> to memref<?xf32>
|
||
|
// CHECK: %[[VAL_4:.*]] = memref.load %[[VAL_3]]{{\[}}%[[VAL_1]]] : memref<?xf32>
|
||
|
// CHECK: %[[VAL_5:.*]] = arith.mulf %[[VAL_4]], %[[VAL_2]] : f32
|
||
|
// CHECK: memref.store %[[VAL_5]], %[[VAL_3]]{{\[}}%[[VAL_1]]] : memref<?xf32>
|
||
|
// CHECK: %[[VAL_6:.*]] = sparse_tensor.load %[[VAL_0]] : tensor<1x1xf32, #sparse{{[0-9]*}}>
|
||
|
// CHECK: return %[[VAL_6]] : tensor<1x1xf32, #sparse{{[0-9]*}}>
|
||
|
func.func @sparse_scale(%argx: tensor<1x1xf32, #Dense>) -> tensor<1x1xf32, #Dense> {
|
||
|
%c = arith.constant 2.0 : f32
|
||
|
%0 = linalg.generic #trait_scale
|
||
|
outs(%argx: tensor<1x1xf32, #Dense>) {
|
||
|
^bb(%x: f32):
|
||
|
%1 = arith.mulf %x, %c : f32
|
||
|
linalg.yield %1 : f32
|
||
|
} -> tensor<1x1xf32, #Dense>
|
||
|
return %0 : tensor<1x1xf32, #Dense>
|
||
|
}
|