; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S | FileCheck %s declare void @use(i4) ; PR1510 ; (a | b) & ~(a & b) --> a ^ b define i32 @and_to_xor1(i32 %a, i32 %b) { ; CHECK-LABEL: @and_to_xor1( ; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[AND2]] ; %or = or i32 %a, %b %and = and i32 %a, %b %not = xor i32 %and, -1 %and2 = and i32 %or, %not ret i32 %and2 } ; ~(a & b) & (a | b) --> a ^ b define i32 @and_to_xor2(i32 %a, i32 %b) { ; CHECK-LABEL: @and_to_xor2( ; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[AND2]] ; %or = or i32 %a, %b %and = and i32 %a, %b %not = xor i32 %and, -1 %and2 = and i32 %not, %or ret i32 %and2 } ; (a | b) & ~(b & a) --> a ^ b define i32 @and_to_xor3(i32 %a, i32 %b) { ; CHECK-LABEL: @and_to_xor3( ; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[AND2]] ; %or = or i32 %a, %b %and = and i32 %b, %a %not = xor i32 %and, -1 %and2 = and i32 %or, %not ret i32 %and2 } ; ~(a & b) & (b | a) --> a ^ b define i32 @and_to_xor4(i32 %a, i32 %b) { ; CHECK-LABEL: @and_to_xor4( ; CHECK-NEXT: [[AND2:%.*]] = xor i32 [[B:%.*]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[AND2]] ; %or = or i32 %b, %a %and = and i32 %a, %b %not = xor i32 %and, -1 %and2 = and i32 %not, %or ret i32 %and2 } define <4 x i32> @and_to_xor1_vec(<4 x i32> %a, <4 x i32> %b) { ; CHECK-LABEL: @and_to_xor1_vec( ; CHECK-NEXT: [[AND2:%.*]] = xor <4 x i32> [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret <4 x i32> [[AND2]] ; %or = or <4 x i32> %a, %b %and = and <4 x i32> %a, %b %not = xor <4 x i32> %and, < i32 -1, i32 -1, i32 -1, i32 -1 > %and2 = and <4 x i32> %or, %not ret <4 x i32> %and2 } ; In the next 4 tests, cast instructions are used to thwart operand complexity ; canonicalizations, so we can test all of the commuted patterns. ; (a | ~b) & (~a | b) --> ~(a ^ b) define i32 @and_to_nxor1(float %fa, float %fb) { ; CHECK-LABEL: @and_to_nxor1( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[AND]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %notb %or2 = or i32 %nota, %b %and = and i32 %or1, %or2 ret i32 %and } ; (a | ~b) & (b | ~a) --> ~(a ^ b) define i32 @and_to_nxor2(float %fa, float %fb) { ; CHECK-LABEL: @and_to_nxor2( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[AND]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %notb %or2 = or i32 %b, %nota %and = and i32 %or1, %or2 ret i32 %and } ; (~a | b) & (a | ~b) --> ~(a ^ b) define i32 @and_to_nxor3(float %fa, float %fb) { ; CHECK-LABEL: @and_to_nxor3( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[AND]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %nota, %b %or2 = or i32 %a, %notb %and = and i32 %or1, %or2 ret i32 %and } ; (~a | b) & (~b | a) --> ~(a ^ b) define i32 @and_to_nxor4(float %fa, float %fb) { ; CHECK-LABEL: @and_to_nxor4( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: [[AND:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[AND]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %nota, %b %or2 = or i32 %notb, %a %and = and i32 %or1, %or2 ret i32 %and } ; (a & ~b) | (~a & b) --> a ^ b define i32 @or_to_xor1(float %fa, float %fb) { ; CHECK-LABEL: @or_to_xor1( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[OR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[OR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %a, %notb %and2 = and i32 %nota, %b %or = or i32 %and1, %and2 ret i32 %or } ; (a & ~b) | (b & ~a) --> a ^ b define i32 @or_to_xor2(float %fa, float %fb) { ; CHECK-LABEL: @or_to_xor2( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[OR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[OR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %a, %notb %and2 = and i32 %b, %nota %or = or i32 %and1, %and2 ret i32 %or } ; (~a & b) | (~b & a) --> a ^ b define i32 @or_to_xor3(float %fa, float %fb) { ; CHECK-LABEL: @or_to_xor3( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[OR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[OR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %nota, %b %and2 = and i32 %notb, %a %or = or i32 %and1, %and2 ret i32 %or } ; (~a & b) | (a & ~b) --> a ^ b define i32 @or_to_xor4(float %fa, float %fb) { ; CHECK-LABEL: @or_to_xor4( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[OR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[OR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %nota, %b %and2 = and i32 %a, %notb %or = or i32 %and1, %and2 ret i32 %or } ; (a & b) | ~(a | b) --> ~(a ^ b) define i32 @or_to_nxor1(i32 %a, i32 %b) { ; CHECK-LABEL: @or_to_nxor1( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[OR2]] ; %and = and i32 %a, %b %or = or i32 %a, %b %notor = xor i32 %or, -1 %or2 = or i32 %and, %notor ret i32 %or2 } ; (a & b) | ~(b | a) --> ~(a ^ b) define i32 @or_to_nxor2(i32 %a, i32 %b) { ; CHECK-LABEL: @or_to_nxor2( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[OR2]] ; %and = and i32 %a, %b %or = or i32 %b, %a %notor = xor i32 %or, -1 %or2 = or i32 %and, %notor ret i32 %or2 } ; ~(a | b) | (a & b) --> ~(a ^ b) define i32 @or_to_nxor3(i32 %a, i32 %b) { ; CHECK-LABEL: @or_to_nxor3( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[OR2]] ; %and = and i32 %a, %b %or = or i32 %a, %b %notor = xor i32 %or, -1 %or2 = or i32 %notor, %and ret i32 %or2 } ; ~(a | b) | (b & a) --> ~(a ^ b) define i32 @or_to_nxor4(i32 %a, i32 %b) { ; CHECK-LABEL: @or_to_nxor4( ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B:%.*]], [[A:%.*]] ; CHECK-NEXT: [[OR2:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[OR2]] ; %and = and i32 %b, %a %or = or i32 %a, %b %notor = xor i32 %or, -1 %or2 = or i32 %notor, %and ret i32 %or2 } ; (a & b) ^ (a | b) --> a ^ b define i32 @xor_to_xor1(i32 %a, i32 %b) { ; CHECK-LABEL: @xor_to_xor1( ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[XOR]] ; %and = and i32 %a, %b %or = or i32 %a, %b %xor = xor i32 %and, %or ret i32 %xor } ; (a & b) ^ (b | a) --> a ^ b define i32 @xor_to_xor2(i32 %a, i32 %b) { ; CHECK-LABEL: @xor_to_xor2( ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[XOR]] ; %and = and i32 %a, %b %or = or i32 %b, %a %xor = xor i32 %and, %or ret i32 %xor } ; (a | b) ^ (a & b) --> a ^ b define i32 @xor_to_xor3(i32 %a, i32 %b) { ; CHECK-LABEL: @xor_to_xor3( ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: ret i32 [[XOR]] ; %or = or i32 %a, %b %and = and i32 %a, %b %xor = xor i32 %or, %and ret i32 %xor } ; (a | b) ^ (b & a) --> a ^ b define i32 @xor_to_xor4(i32 %a, i32 %b) { ; CHECK-LABEL: @xor_to_xor4( ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B:%.*]], [[A:%.*]] ; CHECK-NEXT: ret i32 [[XOR]] ; %or = or i32 %a, %b %and = and i32 %b, %a %xor = xor i32 %or, %and ret i32 %xor } ; (a | ~b) ^ (~a | b) --> a ^ b ; In the next 8 tests, cast instructions are used to thwart operand complexity ; canonicalizations, so we can test all of the commuted patterns. define i32 @xor_to_xor5(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor5( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %notb %or2 = or i32 %nota, %b %xor = xor i32 %or1, %or2 ret i32 %xor } ; (a | ~b) ^ (b | ~a) --> a ^ b define i32 @xor_to_xor6(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor6( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %notb %or2 = or i32 %b, %nota %xor = xor i32 %or1, %or2 ret i32 %xor } ; (~a | b) ^ (a | ~b) --> a ^ b define i32 @xor_to_xor7(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor7( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %notb %or2 = or i32 %nota, %b %xor = xor i32 %or2, %or1 ret i32 %xor } ; (~a | b) ^ (~b | a) --> a ^ b define i32 @xor_to_xor8(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor8( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %notb, %a %or2 = or i32 %nota, %b %xor = xor i32 %or2, %or1 ret i32 %xor } ; (a & ~b) ^ (~a & b) --> a ^ b define i32 @xor_to_xor9(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor9( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %a, %notb %and2 = and i32 %nota, %b %xor = xor i32 %and1, %and2 ret i32 %xor } ; (a & ~b) ^ (b & ~a) --> a ^ b define i32 @xor_to_xor10(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor10( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %a, %notb %and2 = and i32 %b, %nota %xor = xor i32 %and1, %and2 ret i32 %xor } ; (~a & b) ^ (a & ~b) --> a ^ b define i32 @xor_to_xor11(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor11( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %a, %notb %and2 = and i32 %nota, %b %xor = xor i32 %and2, %and1 ret i32 %xor } ; (~a & b) ^ (~b & a) --> a ^ b define i32 @xor_to_xor12(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xor12( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %and1 = and i32 %notb, %a %and2 = and i32 %nota, %b %xor = xor i32 %and2, %and1 ret i32 %xor } ; https://bugs.llvm.org/show_bug.cgi?id=32830 ; Make sure we're matching operands correctly and not folding things wrongly. define i64 @PR32830(i64 %a, i64 %b, i64 %c) { ; CHECK-LABEL: @PR32830( ; CHECK-NEXT: [[NOTA:%.*]] = xor i64 [[A:%.*]], -1 ; CHECK-NEXT: [[NOTB:%.*]] = xor i64 [[B:%.*]], -1 ; CHECK-NEXT: [[OR1:%.*]] = or i64 [[NOTB]], [[A]] ; CHECK-NEXT: [[OR2:%.*]] = or i64 [[NOTA]], [[C:%.*]] ; CHECK-NEXT: [[AND:%.*]] = and i64 [[OR1]], [[OR2]] ; CHECK-NEXT: ret i64 [[AND]] ; %nota = xor i64 %a, -1 %notb = xor i64 %b, -1 %or1 = or i64 %notb, %a %or2 = or i64 %nota, %c %and = and i64 %or1, %or2 ret i64 %and } ; (~a | b) & (~b | a) --> ~(a ^ b) ; TODO: this increases instruction count if the pieces have additional users define i32 @and_to_nxor_multiuse(float %fa, float %fb) { ; CHECK-LABEL: @and_to_nxor_multiuse( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[NOTA:%.*]] = xor i32 [[A]], -1 ; CHECK-NEXT: [[NOTB:%.*]] = xor i32 [[B]], -1 ; CHECK-NEXT: [[OR1:%.*]] = or i32 [[NOTA]], [[B]] ; CHECK-NEXT: [[OR2:%.*]] = or i32 [[NOTB]], [[A]] ; CHECK-NEXT: [[AND:%.*]] = and i32 [[OR1]], [[OR2]] ; CHECK-NEXT: [[MUL1:%.*]] = mul i32 [[OR1]], [[OR2]] ; CHECK-NEXT: [[MUL2:%.*]] = mul i32 [[MUL1]], [[AND]] ; CHECK-NEXT: ret i32 [[MUL2]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %nota, %b %or2 = or i32 %notb, %a %and = and i32 %or1, %or2 %mul1 = mul i32 %or1, %or2 ; here to increase the use count of the inputs to the and %mul2 = mul i32 %mul1, %and ret i32 %mul2 } ; (a & b) | ~(a | b) --> ~(a ^ b) ; TODO: this increases instruction count if the pieces have additional users define i32 @or_to_nxor_multiuse(i32 noundef %a, i32 noundef %b) { ; CHECK-LABEL: @or_to_nxor_multiuse( ; CHECK-NEXT: [[AND:%.*]] = and i32 [[A:%.*]], [[B:%.*]] ; CHECK-NEXT: [[OR:%.*]] = or i32 [[A]], [[B]] ; CHECK-NEXT: [[NOTOR:%.*]] = xor i32 [[OR]], -1 ; CHECK-NEXT: [[OR2:%.*]] = or disjoint i32 [[AND]], [[NOTOR]] ; CHECK-NEXT: [[MUL1:%.*]] = mul i32 [[AND]], [[NOTOR]] ; CHECK-NEXT: [[MUL2:%.*]] = mul i32 [[MUL1]], [[OR2]] ; CHECK-NEXT: ret i32 [[MUL2]] ; %and = and i32 %a, %b %or = or i32 %a, %b %notor = xor i32 %or, -1 %or2 = or i32 %and, %notor %mul1 = mul i32 %and, %notor ; here to increase the use count of the inputs to the or %mul2 = mul i32 %mul1, %or2 ret i32 %mul2 } ; (a | b) ^ (~a | ~b) --> ~(a ^ b) define i32 @xor_to_xnor1(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xnor1( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %b %or2 = or i32 %nota, %notb %xor = xor i32 %or1, %or2 ret i32 %xor } ; (a | b) ^ (~b | ~a) --> ~(a ^ b) define i32 @xor_to_xnor2(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xnor2( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %a, %b %or2 = or i32 %notb, %nota %xor = xor i32 %or1, %or2 ret i32 %xor } ; (~a | ~b) ^ (a | b) --> ~(a ^ b) define i32 @xor_to_xnor3(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xnor3( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[A]], [[B]] ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %nota, %notb %or2 = or i32 %a, %b %xor = xor i32 %or1, %or2 ret i32 %xor } ; (~a | ~b) ^ (b | a) --> ~(a ^ b) define i32 @xor_to_xnor4(float %fa, float %fb) { ; CHECK-LABEL: @xor_to_xnor4( ; CHECK-NEXT: [[A:%.*]] = fptosi float [[FA:%.*]] to i32 ; CHECK-NEXT: [[B:%.*]] = fptosi float [[FB:%.*]] to i32 ; CHECK-NEXT: [[TMP1:%.*]] = xor i32 [[B]], [[A]] ; CHECK-NEXT: [[XOR:%.*]] = xor i32 [[TMP1]], -1 ; CHECK-NEXT: ret i32 [[XOR]] ; %a = fptosi float %fa to i32 %b = fptosi float %fb to i32 %nota = xor i32 %a, -1 %notb = xor i32 %b, -1 %or1 = or i32 %nota, %notb %or2 = or i32 %b, %a %xor = xor i32 %or1, %or2 ret i32 %xor } define i4 @simplify_or_common_op_commute0(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_or_common_op_commute0( ; CHECK-NEXT: ret i4 -1 ; %xy = and i4 %x, %y %xyz = and i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = or i4 %not_xyz, %x ret i4 %r } define i4 @simplify_or_common_op_commute1(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_or_common_op_commute1( ; CHECK-NEXT: ret i4 -1 ; %xy = and i4 %y, %x %xyz = and i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = or i4 %not_xyz, %x ret i4 %r } ; The common operand may bubble through multiple instructions. define i4 @simplify_or_common_op_commute2(i4 %x, i4 %y, i4 %p, i4 %q) { ; CHECK-LABEL: @simplify_or_common_op_commute2( ; CHECK-NEXT: ret i4 -1 ; %z = mul i4 %p, %p ; thwart complexity-based canonicalization %xy = and i4 %x, %y %xyz = and i4 %z, %xy %xyzq = and i4 %xyz, %q %not_xyzq = xor i4 %xyzq, -1 %r = or i4 %not_xyzq, %x ret i4 %r } define <2 x i4> @simplify_or_common_op_commute3(<2 x i4> %x, <2 x i4> %y, <2 x i4> %p) { ; CHECK-LABEL: @simplify_or_common_op_commute3( ; CHECK-NEXT: ret <2 x i4> ; %z = mul <2 x i4> %p, %p ; thwart complexity-based canonicalization %xy = and <2 x i4> %y, %x %xyz = and <2 x i4> %z, %xy %not_xyz = xor <2 x i4> %xyz, %r = or <2 x i4> %x, %not_xyz ret <2 x i4> %r } define i4 @simplify_and_common_op_commute0(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_and_common_op_commute0( ; CHECK-NEXT: call void @use(i4 [[X:%.*]]) ; CHECK-NEXT: ret i4 0 ; %xy = or i4 %x, %y call void @use(i4 %x) %xyz = or i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = and i4 %not_xyz, %x ret i4 %r } define i4 @simplify_and_common_op_commute1(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_and_common_op_commute1( ; CHECK-NEXT: ret i4 0 ; %xy = or i4 %y, %x %xyz = or i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = and i4 %not_xyz, %x ret i4 %r } ; The common operand may bubble through multiple instructions. define i4 @simplify_and_common_op_commute2(i4 %x, i4 %y, i4 %p, i4 %q) { ; CHECK-LABEL: @simplify_and_common_op_commute2( ; CHECK-NEXT: ret i4 0 ; %z = mul i4 %p, %p ; thwart complexity-based canonicalization %xy = or i4 %x, %y %xyz = or i4 %z, %xy %xyzq = or i4 %xyz, %q %not_xyzq = xor i4 %xyzq, -1 %r = and i4 %not_xyzq, %x ret i4 %r } define <2 x i4> @simplify_and_common_op_commute3(<2 x i4> %x, <2 x i4> %y, <2 x i4> %p) { ; CHECK-LABEL: @simplify_and_common_op_commute3( ; CHECK-NEXT: ret <2 x i4> zeroinitializer ; %z = mul <2 x i4> %p, %p ; thwart complexity-based canonicalization %xy = or <2 x i4> %y, %x %xyz = or <2 x i4> %z, %xy %not_xyz = xor <2 x i4> %xyz, %r = and <2 x i4> %x, %not_xyz ret <2 x i4> %r } define i4 @simplify_and_common_op_use1(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_and_common_op_use1( ; CHECK-NEXT: call void @use(i4 [[Y:%.*]]) ; CHECK-NEXT: ret i4 0 ; %xy = or i4 %x, %y call void @use(i4 %y) %xyz = or i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = and i4 %not_xyz, %x ret i4 %r } ; TODO: This should simplify. define i4 @simplify_and_common_op_use2(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_and_common_op_use2( ; CHECK-NEXT: call void @use(i4 [[Y:%.*]]) ; CHECK-NEXT: [[TMP1:%.*]] = or i4 [[X:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[XYZ:%.*]] = or i4 [[TMP1]], [[Y]] ; CHECK-NEXT: [[NOT_XYZ:%.*]] = xor i4 [[XYZ]], -1 ; CHECK-NEXT: [[R:%.*]] = and i4 [[NOT_XYZ]], [[X]] ; CHECK-NEXT: ret i4 [[R]] ; %xy = or i4 %y, %x call void @use(i4 %y) %xyz = or i4 %xy, %z %not_xyz = xor i4 %xyz, -1 %r = and i4 %not_xyz, %x ret i4 %r } ; TODO: This should simplify. define i4 @simplify_and_common_op_use3(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @simplify_and_common_op_use3( ; CHECK-NEXT: [[XY:%.*]] = or i4 [[X:%.*]], [[Y:%.*]] ; CHECK-NEXT: [[XYZ:%.*]] = or i4 [[XY]], [[Z:%.*]] ; CHECK-NEXT: call void @use(i4 [[Z]]) ; CHECK-NEXT: [[NOT_XYZ:%.*]] = xor i4 [[XYZ]], -1 ; CHECK-NEXT: [[R:%.*]] = and i4 [[NOT_XYZ]], [[X]] ; CHECK-NEXT: ret i4 [[R]] ; %xy = or i4 %x, %y %xyz = or i4 %xy, %z call void @use(i4 %z) %not_xyz = xor i4 %xyz, -1 %r = and i4 %not_xyz, %x ret i4 %r } define i4 @reduce_xor_common_op_commute0(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @reduce_xor_common_op_commute0( ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Y:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[R:%.*]] = or i4 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: ret i4 [[R]] ; %xy = xor i4 %x, %y %xyz = xor i4 %xy, %z %r = or i4 %xyz, %x ret i4 %r } define i4 @reduce_xor_common_op_commute1(i4 %x, i4 %y, i4 %z) { ; CHECK-LABEL: @reduce_xor_common_op_commute1( ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Y:%.*]], [[Z:%.*]] ; CHECK-NEXT: [[R:%.*]] = or i4 [[TMP1]], [[X:%.*]] ; CHECK-NEXT: ret i4 [[R]] ; %xy = xor i4 %y, %x %xyz = xor i4 %xy, %z %r = or i4 %xyz, %x ret i4 %r } define i4 @annihilate_xor_common_op_commute2(i4 %x, i4 %y, i4 %p, i4 %q) { ; CHECK-LABEL: @annihilate_xor_common_op_commute2( ; CHECK-NEXT: [[Z:%.*]] = mul i4 [[P:%.*]], [[P]] ; CHECK-NEXT: [[TMP1:%.*]] = xor i4 [[Z]], [[Y:%.*]] ; CHECK-NEXT: [[TMP2:%.*]] = xor i4 [[TMP1]], [[Q:%.*]] ; CHECK-NEXT: ret i4 [[TMP2]] ; %z = mul i4 %p, %p ; thwart complexity-based canonicalization %xy = xor i4 %x, %y %xyz = xor i4 %z, %xy %xyzq = xor i4 %xyz, %q %r = xor i4 %xyzq, %x ret i4 %r } define <2 x i4> @reduce_xor_common_op_commute3(<2 x i4> %x, <2 x i4> %y, <2 x i4> %p) { ; CHECK-LABEL: @reduce_xor_common_op_commute3( ; CHECK-NEXT: [[Z:%.*]] = mul <2 x i4> [[P:%.*]], [[P]] ; CHECK-NEXT: [[TMP1:%.*]] = xor <2 x i4> [[Z]], [[Y:%.*]] ; CHECK-NEXT: [[R:%.*]] = or <2 x i4> [[TMP1]], [[X:%.*]] ; CHECK-NEXT: ret <2 x i4> [[R]] ; %z = mul <2 x i4> %p, %p ; thwart complexity-based canonicalization %xy = xor <2 x i4> %y, %x %xyz = xor <2 x i4> %z, %xy %r = or <2 x i4> %x, %xyz ret <2 x i4> %r }