; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S | FileCheck %s target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64" @C.0.1248 = internal constant [128 x float] [ float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float -1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float -1.000000e+00, float 1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float -1.000000e+00, float 0.000000e+00, float 1.000000e+00, float 1.000000e+00, float 1.000000e+00 ], align 32 ; [#uses=1] define float @test1(i32 %hash, float %x, float %y, float %z, float %w) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP3:%.*]] = shl i32 [[HASH:%.*]], 2 ; CHECK-NEXT: [[TMP5:%.*]] = and i32 [[TMP3]], 124 ; CHECK-NEXT: [[TMP0:%.*]] = zext nneg i32 [[TMP5]] to i64 ; CHECK-NEXT: [[TMP753:%.*]] = getelementptr [128 x float], ptr @C.0.1248, i64 0, i64 [[TMP0]] ; CHECK-NEXT: [[TMP9:%.*]] = load float, ptr [[TMP753]], align 4 ; CHECK-NEXT: [[TMP11:%.*]] = fmul float [[TMP9]], [[X:%.*]] ; CHECK-NEXT: [[TMP13:%.*]] = fadd float [[TMP11]], 0.000000e+00 ; CHECK-NEXT: [[TMP17_SUM52:%.*]] = or disjoint i32 [[TMP5]], 1 ; CHECK-NEXT: [[TMP1:%.*]] = zext nneg i32 [[TMP17_SUM52]] to i64 ; CHECK-NEXT: [[TMP1851:%.*]] = getelementptr [128 x float], ptr @C.0.1248, i64 0, i64 [[TMP1]] ; CHECK-NEXT: [[TMP19:%.*]] = load float, ptr [[TMP1851]], align 4 ; CHECK-NEXT: [[TMP21:%.*]] = fmul float [[TMP19]], [[Y:%.*]] ; CHECK-NEXT: [[TMP23:%.*]] = fadd float [[TMP21]], [[TMP13]] ; CHECK-NEXT: [[TMP27_SUM50:%.*]] = or disjoint i32 [[TMP5]], 2 ; CHECK-NEXT: [[TMP2:%.*]] = zext nneg i32 [[TMP27_SUM50]] to i64 ; CHECK-NEXT: [[TMP2849:%.*]] = getelementptr [128 x float], ptr @C.0.1248, i64 0, i64 [[TMP2]] ; CHECK-NEXT: [[TMP29:%.*]] = load float, ptr [[TMP2849]], align 4 ; CHECK-NEXT: [[TMP31:%.*]] = fmul float [[TMP29]], [[Z:%.*]] ; CHECK-NEXT: [[TMP33:%.*]] = fadd float [[TMP31]], [[TMP23]] ; CHECK-NEXT: [[TMP37_SUM48:%.*]] = or disjoint i32 [[TMP5]], 3 ; CHECK-NEXT: [[TMP3:%.*]] = zext nneg i32 [[TMP37_SUM48]] to i64 ; CHECK-NEXT: [[TMP3847:%.*]] = getelementptr [128 x float], ptr @C.0.1248, i64 0, i64 [[TMP3]] ; CHECK-NEXT: [[TMP39:%.*]] = load float, ptr [[TMP3847]], align 4 ; CHECK-NEXT: [[TMP41:%.*]] = fmul float [[TMP39]], [[W:%.*]] ; CHECK-NEXT: [[TMP43:%.*]] = fadd float [[TMP41]], [[TMP33]] ; CHECK-NEXT: ret float [[TMP43]] ; entry: %lookupTable = alloca [128 x float], align 16 ; [#uses=5] call void @llvm.memcpy.p0.p0.i64(ptr align 16 %lookupTable, ptr align 16 @C.0.1248, i64 512, i1 false) %tmp3 = shl i32 %hash, 2 ; [#uses=1] %tmp5 = and i32 %tmp3, 124 ; [#uses=4] %tmp753 = getelementptr [128 x float], ptr %lookupTable, i32 0, i32 %tmp5 ; [#uses=1] %tmp9 = load float, ptr %tmp753 ; [#uses=1] %tmp11 = fmul float %tmp9, %x ; [#uses=1] %tmp13 = fadd float %tmp11, 0.000000e+00 ; [#uses=1] %tmp17.sum52 = or i32 %tmp5, 1 ; [#uses=1] %tmp1851 = getelementptr [128 x float], ptr %lookupTable, i32 0, i32 %tmp17.sum52 ; [#uses=1] %tmp19 = load float, ptr %tmp1851 ; [#uses=1] %tmp21 = fmul float %tmp19, %y ; [#uses=1] %tmp23 = fadd float %tmp21, %tmp13 ; [#uses=1] %tmp27.sum50 = or i32 %tmp5, 2 ; [#uses=1] %tmp2849 = getelementptr [128 x float], ptr %lookupTable, i32 0, i32 %tmp27.sum50 ; [#uses=1] %tmp29 = load float, ptr %tmp2849 ; [#uses=1] %tmp31 = fmul float %tmp29, %z ; [#uses=1] %tmp33 = fadd float %tmp31, %tmp23 ; [#uses=1] %tmp37.sum48 = or i32 %tmp5, 3 ; [#uses=1] %tmp3847 = getelementptr [128 x float], ptr %lookupTable, i32 0, i32 %tmp37.sum48 ; [#uses=1] %tmp39 = load float, ptr %tmp3847 ; [#uses=1] %tmp41 = fmul float %tmp39, %w ; [#uses=1] %tmp43 = fadd float %tmp41, %tmp33 ; [#uses=1] ret float %tmp43 } declare void @llvm.memcpy.p0.p0.i64(ptr nocapture, ptr nocapture, i64, i1) nounwind declare void @llvm.memcpy.p1.p0.i64(ptr addrspace(1) nocapture, ptr nocapture, i64, i1) nounwind declare void @llvm.memcpy.p0.p1.i64(ptr nocapture, ptr addrspace(1) nocapture, i64, i1) nounwind declare void @llvm.memcpy.p1.p1.i64(ptr addrspace(1) nocapture, ptr addrspace(1) nocapture, i64, i1) nounwind %T = type { i8, [123 x i8] } %U = type { i32, i32, i32, i32, i32 } @G = constant %T {i8 1, [123 x i8] zeroinitializer } @H = constant [2 x %U] zeroinitializer, align 16 @I = internal addrspace(1) constant [4 x float] zeroinitializer , align 4 define void @test2() { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[B:%.*]] = alloca [[T:%.*]], align 8 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 8 dereferenceable(124) [[B]], ptr noundef nonnull align 16 dereferenceable(124) @G, i64 124, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull [[B]]) ; CHECK-NEXT: ret void ; %A = alloca %T %B = alloca %T ; %A alloca is deleted ; use @G instead of %A call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @G, i64 124, i1 false) call void @llvm.memcpy.p0.p0.i64(ptr align 4 %B, ptr align 4 %A, i64 124, i1 false) call void @bar(ptr %B) ret void } define void @test2_no_null_opt() #0 { ; CHECK-LABEL: @test2_no_null_opt( ; CHECK-NEXT: [[B:%.*]] = alloca [[T:%.*]], align 8 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 8 dereferenceable(124) [[B]], ptr noundef nonnull align 16 dereferenceable(124) @G, i64 124, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull [[B]]) ; CHECK-NEXT: ret void ; %A = alloca %T %B = alloca %T ; %A alloca is deleted ; use @G instead of %A call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @G, i64 124, i1 false) call void @llvm.memcpy.p0.p0.i64(ptr align 4 %B, ptr align 4 %A, i64 124, i1 false) call void @bar(ptr %B) ret void } define void @test2_addrspacecast() { ; CHECK-LABEL: @test2_addrspacecast( ; CHECK-NEXT: [[B:%.*]] = alloca [[T:%.*]], align 8 ; CHECK-NEXT: [[B_CAST:%.*]] = addrspacecast ptr [[B]] to ptr addrspace(1) ; CHECK-NEXT: call void @llvm.memcpy.p1.p1.i64(ptr addrspace(1) noundef align 4 dereferenceable(124) [[B_CAST]], ptr addrspace(1) noundef align 4 dereferenceable(124) addrspacecast (ptr @G to ptr addrspace(1)), i64 124, i1 false) ; CHECK-NEXT: call void @bar_as1(ptr addrspace(1) [[B_CAST]]) ; CHECK-NEXT: ret void ; %A = alloca %T %B = alloca %T %a.cast = addrspacecast ptr %A to ptr addrspace(1) %b.cast = addrspacecast ptr %B to ptr addrspace(1) ; %A alloca is deleted ; This doesn't exactly match what test2 does, because folding the type ; cast into the alloca doesn't work for the addrspacecast yet. ; use @G instead of %A call void @llvm.memcpy.p1.p0.i64(ptr addrspace(1) align 4 %a.cast, ptr align 4 @G, i64 124, i1 false) call void @llvm.memcpy.p1.p1.i64(ptr addrspace(1) align 4 %b.cast, ptr addrspace(1) align 4 %a.cast, i64 124, i1 false) call void @bar_as1(ptr addrspace(1) %b.cast) ret void } declare void @bar(ptr) declare void @bar_as1(ptr addrspace(1)) ;; Should be able to eliminate the alloca. define void @test3() { ; CHECK-LABEL: @test3( ; CHECK-NEXT: call void @bar(ptr nonnull @G) #[[ATTR3:[0-9]+]] ; CHECK-NEXT: ret void ; %A = alloca %T call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @G, i64 124, i1 false) call void @bar(ptr %A) readonly ret void } define void @test3_addrspacecast() { ; CHECK-LABEL: @test3_addrspacecast( ; CHECK-NEXT: call void @bar(ptr nonnull @G) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %T call void @llvm.memcpy.p0.p1.i64(ptr align 4 %A, ptr addrspace(1) align 4 addrspacecast (ptr @G to ptr addrspace(1)), i64 124, i1 false) call void @bar(ptr %A) readonly ret void } define void @test4() { ; CHECK-LABEL: @test4( ; CHECK-NEXT: call void @baz(ptr nonnull byval(i8) @G) ; CHECK-NEXT: ret void ; %A = alloca %T call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @G, i64 124, i1 false) call void @baz(ptr byval(i8) %A) ret void } declare void @llvm.lifetime.start.p0(i64, ptr) define void @test5() { ; CHECK-LABEL: @test5( ; CHECK-NEXT: call void @baz(ptr nonnull byval(i8) @G) ; CHECK-NEXT: ret void ; %A = alloca %T call void @llvm.lifetime.start.p0(i64 -1, ptr %A) call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @G, i64 124, i1 false) call void @baz(ptr byval(i8) %A) ret void } declare void @baz(ptr byval(i8)) define void @test6() { ; CHECK-LABEL: @test6( ; CHECK-NEXT: call void @bar(ptr nonnull @H) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 16 %A, ptr align 16 @H, i64 20, i1 false) call void @bar(ptr %A) readonly ret void } define void @test7() { ; CHECK-LABEL: @test7( ; CHECK-NEXT: call void @bar(ptr nonnull @H) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @H, i64 20, i1 false) call void @bar(ptr %A) readonly ret void } define void @test8() { ; CHECK-LABEL: @test8( ; CHECK-NEXT: [[AL:%.*]] = alloca [[U:%.*]], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(20) [[AL]], ptr noundef nonnull align 4 dereferenceable(20) getelementptr inbounds ([2 x %U], ptr @H, i64 0, i64 1), i64 20, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull [[AL]]) #[[ATTR3]] ; CHECK-NEXT: ret void ; %al = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %al, ptr align 4 getelementptr ([2 x %U], ptr @H, i64 0, i32 1), i64 20, i1 false) call void @bar(ptr %al) readonly ret void } define void @test8_addrspacecast() { ; CHECK-LABEL: @test8_addrspacecast( ; CHECK-NEXT: [[AL:%.*]] = alloca [[U:%.*]], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p1.i64(ptr noundef nonnull align 16 dereferenceable(20) [[AL]], ptr addrspace(1) noundef align 4 dereferenceable(20) addrspacecast (ptr getelementptr inbounds ([2 x %U], ptr @H, i64 0, i64 1) to ptr addrspace(1)), i64 20, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull [[AL]]) #[[ATTR3]] ; CHECK-NEXT: ret void ; %Al = alloca %U, align 16 call void @llvm.memcpy.p0.p1.i64(ptr align 4 %Al, ptr addrspace(1) align 4 addrspacecast (ptr getelementptr ([2 x %U], ptr @H, i64 0, i32 1) to ptr addrspace(1)), i64 20, i1 false) call void @bar(ptr %Al) readonly ret void } define void @test9() { ; CHECK-LABEL: @test9( ; CHECK-NEXT: call void @bar(ptr nonnull getelementptr inbounds ([2 x %U], ptr @H, i64 0, i64 1)) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %U, align 4 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 getelementptr ([2 x %U], ptr @H, i64 0, i32 1), i64 20, i1 false) call void @bar(ptr %A) readonly ret void } define void @test9_addrspacecast() { ; CHECK-LABEL: @test9_addrspacecast( ; CHECK-NEXT: call void @bar(ptr nonnull getelementptr inbounds ([2 x %U], ptr @H, i64 0, i64 1)) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %U, align 4 call void @llvm.memcpy.p0.p1.i64(ptr align 4 %A, ptr addrspace(1) align 4 addrspacecast (ptr getelementptr ([2 x %U], ptr @H, i64 0, i32 1) to ptr addrspace(1)), i64 20, i1 false) call void @bar(ptr %A) readonly ret void } @bbb = local_unnamed_addr global [1000000 x i8] zeroinitializer, align 16 @_ZL3KKK = internal unnamed_addr constant [3 x i8] c"\01\01\02", align 1 ; Should not replace alloca with global because of size mismatch. define void @test9_small_global() { ; CHECK-LABEL: @test9_small_global( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[CC:%.*]] = alloca [1000000 x i8], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(3) [[CC]], ptr noundef nonnull align 16 dereferenceable(3) @_ZL3KKK, i64 3, i1 false) ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(1000000) @bbb, ptr noundef nonnull align 16 dereferenceable(1000000) [[CC]], i64 1000000, i1 false) ; CHECK-NEXT: ret void ; entry: %cc = alloca [1000000 x i8], align 16 call void @llvm.memcpy.p0.p0.i64(ptr %cc, ptr @_ZL3KKK, i64 3, i1 false) call void @llvm.memcpy.p0.p0.i64(ptr align 16 @bbb, ptr align 16 %cc, i64 1000000, i1 false) ret void } ; Should replace alloca with global as they have exactly the same size. define void @test10_same_global() { ; CHECK-LABEL: @test10_same_global( ; CHECK-NEXT: entry: ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(3) @bbb, ptr noundef nonnull align 16 dereferenceable(3) @_ZL3KKK, i64 3, i1 false) ; CHECK-NEXT: ret void ; entry: %cc = alloca [3 x i8], align 1 call void @llvm.memcpy.p0.p0.i64(ptr %cc, ptr @_ZL3KKK, i64 3, i1 false) call void @llvm.memcpy.p0.p0.i64(ptr @bbb, ptr %cc, i64 3, i1 false) ret void } ; Should replace alloca with global even when the global is in a different address space define float @test11(i64 %i) { ; CHECK-LABEL: @test11( ; CHECK-NEXT: entry: ; CHECK-NEXT: ret float 0.000000e+00 ; entry: %a = alloca [4 x float], align 4 call void @llvm.lifetime.start.p0(i64 16, ptr %a) call void @llvm.memcpy.p0.p1.i64(ptr align 4 %a, ptr addrspace(1) align 4 @I, i64 16, i1 false) %g = getelementptr inbounds [4 x float], ptr %a, i64 0, i64 %i %r = load float, ptr %g, align 4 ret float %r } ; If the memcpy is volatile, it should not be removed define float @test11_volatile(i64 %i) { ; CHECK-LABEL: @test11_volatile( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A:%.*]] = alloca [4 x float], align 4 ; CHECK-NEXT: call void @llvm.lifetime.start.p0(i64 16, ptr nonnull [[A]]) ; CHECK-NEXT: call void @llvm.memcpy.p0.p1.i64(ptr align 4 [[A]], ptr addrspace(1) align 4 @I, i64 16, i1 true) ; CHECK-NEXT: [[G:%.*]] = getelementptr inbounds [4 x float], ptr [[A]], i64 0, i64 [[I:%.*]] ; CHECK-NEXT: [[R:%.*]] = load float, ptr [[G]], align 4 ; CHECK-NEXT: ret float [[R]] ; entry: %a = alloca [4 x float], align 4 call void @llvm.lifetime.start.p0(i64 16, ptr %a) call void @llvm.memcpy.p0.p1.i64(ptr align 4 %a, ptr addrspace(1) align 4 @I, i64 16, i1 true) %g = getelementptr inbounds [4 x float], ptr %a, i64 0, i64 %i %r = load float, ptr %g, align 4 ret float %r } ; Tests that we can eliminate allocas copied from readonly noalias pointers. define void @memcpy_from_readonly_noalias(ptr readonly noalias align 8 dereferenceable(124) %arg) { ; CHECK-LABEL: @memcpy_from_readonly_noalias( ; CHECK-NEXT: call void @bar(ptr nonnull [[ARG:%.*]]) #[[ATTR3]] ; CHECK-NEXT: ret void ; %alloca = alloca %T, align 8 call void @llvm.memcpy.p0.p0.i64(ptr %alloca, ptr %arg, i64 124, i1 false) call void @bar(ptr %alloca) readonly ret void } ; Tests that we don't eliminate allocas copied from readonly pointers without noalias. define void @memcpy_from_just_readonly(ptr readonly align 8 dereferenceable(124) %arg) { ; CHECK-LABEL: @memcpy_from_just_readonly( ; CHECK-NEXT: [[ALLOCA:%.*]] = alloca [[T:%.*]], align 8 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 8 dereferenceable(124) [[ALLOCA]], ptr noundef nonnull align 8 dereferenceable(124) [[ARG:%.*]], i64 124, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull [[ALLOCA]]) #[[ATTR3]] ; CHECK-NEXT: ret void ; %alloca = alloca %T, align 8 call void @llvm.memcpy.p0.p0.i64(ptr %alloca, ptr %arg, i64 124, i1 false) call void @bar(ptr %alloca) readonly ret void } ; Test that we don't elide a volatile memcpy. define void @volatile_memcpy() { ; CHECK-LABEL: @volatile_memcpy( ; CHECK-NEXT: [[A:%.*]] = alloca [[U:%.*]], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr align 4 [[A]], ptr align 4 @H, i64 20, i1 true) ; CHECK-NEXT: call void @bar(ptr nonnull [[A]]) #[[ATTR3]] ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @H, i64 20, i1 true) call void @bar(ptr %A) readonly ret void } ; Test that we can elide a memcpy when copying a constant value onto the stack ; and then forwarding it by readonly nocapture reference. define void @memcpy_to_nocapture_readonly() { ; CHECK-LABEL: @memcpy_to_nocapture_readonly( ; CHECK-NEXT: call void @bar(ptr nocapture nonnull readonly @H) ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @H, i64 20, i1 false) call void @bar(ptr nocapture readonly %A) ret void } ; Test that we don't elide the memcpy when copying a constant value onto the ; stack and then forwarding it by readonly, but capturing, reference. define void @memcpy_to_capturing_readonly() { ; CHECK-LABEL: @memcpy_to_capturing_readonly( ; CHECK-NEXT: [[A:%.*]] = alloca [[U:%.*]], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(20) [[A]], ptr noundef nonnull align 16 dereferenceable(20) @H, i64 20, i1 false) ; CHECK-NEXT: call void @bar(ptr nonnull readonly [[A]]) ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @H, i64 20, i1 false) call void @bar(ptr readonly %A) ret void } ; Test that we don't elide the memcpy when copying a constant value onto the ; stack and then forwarding it by read-write, nocapture reference, even if it's ; also forwarded by readonly nocapture reference to the same function. define void @memcpy_to_aliased_nocapture_readonly() { ; CHECK-LABEL: @memcpy_to_aliased_nocapture_readonly( ; CHECK-NEXT: [[A:%.*]] = alloca [[U:%.*]], align 16 ; CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr noundef nonnull align 16 dereferenceable(20) [[A]], ptr noundef nonnull align 16 dereferenceable(20) @H, i64 20, i1 false) ; CHECK-NEXT: call void @two_params(ptr nocapture nonnull readonly [[A]], ptr nocapture nonnull [[A]]) ; CHECK-NEXT: ret void ; %A = alloca %U, align 16 call void @llvm.memcpy.p0.p0.i64(ptr align 4 %A, ptr align 4 @H, i64 20, i1 false) call void @two_params(ptr nocapture readonly %A, ptr nocapture %A) ret void } declare void @two_params(ptr nocapture readonly, ptr nocapture) attributes #0 = { null_pointer_is_valid }