; RUN: opt -passes=loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK ; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=4 -S < %s | FileCheck %s --check-prefix=CHECK ; RUN: opt -passes=loop-vectorize -force-vector-interleave=4 -force-vector-width=1 -S < %s | FileCheck %s --check-prefix=CHECK ; This test can theoretically be vectorized without a runtime-check, by ; pattern-matching on the constructs that are introduced by IndVarSimplify. ; We can check two things: ; %1 = trunc i64 %iv to i32 ; This indicates that the %iv is truncated to i32. We can then check the loop ; guard is a signed i32: ; %cmp.sgt = icmp sgt i32 %n, 0 ; and successfully vectorize the case without a runtime-check. define i32 @select_icmp_const_truncated_iv_widened_exit(ptr %a, i32 %n) { ; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_widened_exit ; CHECK-NOT: vector.body: ; entry: %cmp.sgt = icmp sgt i32 %n, 0 br i1 %cmp.sgt, label %for.body.preheader, label %exit for.body.preheader: ; preds = %entry %wide.trip.count = zext i32 %n to i64 br label %for.body for.body: ; preds = %for.body.preheader, %for.body %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] %rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv %0 = load i64, ptr %arrayidx, align 8 %cmp = icmp sgt i64 %0, 3 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, %wide.trip.count br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body, %entry %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] ret i32 %rdx.lcssa } ; This test can theoretically be vectorized without a runtime-check, by ; pattern-matching on the constructs that are introduced by IndVarSimplify. ; We can check two things: ; %1 = trunc i64 %iv to i32 ; This indicates that the %iv is truncated to i32. We can then check the loop ; exit condition, which compares to a constant that fits within i32: ; %exitcond.not = icmp eq i64 %inc, 20000 ; and successfully vectorize the case without a runtime-check. define i32 @select_icmp_const_truncated_iv_const_exit(ptr %a) { ; CHECK-LABEL: define i32 @select_icmp_const_truncated_iv_const_exit ; CHECK-NOT: vector.body: ; entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds i64, ptr %a, i64 %iv %0 = load i64, ptr %arrayidx, align 8 %cmp = icmp sgt i64 %0, 3 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, 20000 br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body ret i32 %spec.select } ; Without loop guard, the maximum constant trip count that can be vectorized is ; the signed maximum value of reduction type. define i32 @select_fcmp_max_valid_const_ub(ptr %a) { ; CHECK-LABEL: define i32 @select_fcmp_max_valid_const_ub ; CHECK-NOT: vector.body: ; entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds float, ptr %a, i64 %iv %0 = load float, ptr %arrayidx, align 4 %cmp = fcmp fast olt float %0, 0.000000e+00 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, 2147483648 br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body ret i32 %spec.select } ; Negative tests ; This test can theoretically be vectorized, but only with a runtime-check. ; The construct that are introduced by IndVarSimplify is: ; %1 = trunc i64 %iv to i32 ; However, the loop guard is an i64: ; %cmp.sgt = icmp sgt i64 %n, 0 ; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the ; sentinel value), and need a runtime-check to vectorize this case. define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit(ptr %a, i64 %n) { ; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unwidened_exit ; CHECK-NOT: vector.body: ; entry: %cmp.sgt = icmp sgt i64 %n, 0 br i1 %cmp.sgt, label %for.body, label %exit for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %cmp = icmp sgt i32 %0, 3 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, %n br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body, %entry %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] ret i32 %rdx.lcssa } ; This test can theoretically be vectorized, but only with a runtime-check. ; The construct that are introduced by IndVarSimplify is: ; %1 = trunc i64 %iv to i32 ; However, the loop guard is unsigned: ; %cmp.not = icmp eq i32 %n, 0 ; We cannot guarantee that %iv won't overflow an i32 value (and hence hit the ; sentinel value), and need a runtime-check to vectorize this case. define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard(ptr %a, i32 %n) { ; CHECK-LABEL: define i32 @not_vectorized_select_icmp_const_truncated_iv_unsigned_loop_guard ; CHECK-NOT: vector.body: ; entry: %cmp.not = icmp eq i32 %n, 0 br i1 %cmp.not, label %exit, label %for.body.preheader for.body.preheader: ; preds = %entry %wide.trip.count = zext i32 %n to i64 br label %for.body for.body: ; preds = %for.body.preheader, %for.body %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] %rdx = phi i32 [ 331, %for.body.preheader ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %cmp1 = icmp sgt i32 %0, 3 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp1, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, %wide.trip.count br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body, %entry %rdx.lcssa = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] ret i32 %rdx.lcssa } ; This test cannot be vectorized, even with a runtime check. ; The construct that are introduced by IndVarSimplify is: ; %1 = trunc i64 %iv to i32 ; However, the loop exit condition is a constant that overflows i32: ; %exitcond.not = icmp eq i64 %inc, 4294967294 ; Hence, the i32 will most certainly wrap and hit the sentinel value, and we ; cannot vectorize this case. define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound(ptr %a) { ; CHECK-LABEL: define i32 @not_vectorized_select_icmp_truncated_iv_out_of_bound ; CHECK-NOT: vector.body: ; entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 2147483646, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ 331, %entry ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %cmp = icmp sgt i32 %0, 3 %conv = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %conv, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, 4294967294 br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body ret i32 %spec.select } ; Forbidding vectorization of the FindLastIV pattern involving a truncated ; induction variable in the absence of any loop guard. define i32 @not_vectorized_select_iv_icmp_no_guard(ptr %a, ptr %b, i32 %start, i32 %n) { ; CHECK-LABEL: define i32 @not_vectorized_select_iv_icmp_no_guard ; CHECK-NOT: vector.body: ; entry: %wide.trip.count = zext i32 %n to i64 br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ %start, %entry ], [ %cond, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv %1 = load i32, ptr %arrayidx2, align 4 %cmp = icmp sgt i32 %0, %1 %2 = trunc i64 %iv to i32 %cond = select i1 %cmp, i32 %2, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, %wide.trip.count br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body ret i32 %cond } ; Without loop guard, when the constant trip count exceeds the maximum signed ; value of the reduction type, truncation may cause overflow. Therefore, ; vectorizer is unable to guarantee that the induction variable is monotonic ; increasing. define i32 @not_vectorized_select_fcmp_invalid_const_ub(ptr %a) { ; CHECK-LABEL: define i32 @not_vectorized_select_fcmp_invalid_const_ub ; CHECK-NOT: vector.body: ; entry: br label %for.body for.body: ; preds = %entry, %for.body %iv = phi i64 [ 0, %entry ], [ %inc, %for.body ] %rdx = phi i32 [ -1, %entry ], [ %spec.select, %for.body ] %arrayidx = getelementptr inbounds float, ptr %a, i64 %iv %0 = load float, ptr %arrayidx, align 4 %cmp = fcmp fast olt float %0, 0.000000e+00 %1 = trunc i64 %iv to i32 %spec.select = select i1 %cmp, i32 %1, i32 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, 2147483649 br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body ret i32 %spec.select } ; Even with loop guard protection, if the destination type of the truncation ; instruction is smaller than the trip count type before extension, overflow ; could still occur. define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount(ptr %a, ptr %b, i16 %start, i32 %n) { ; CHECK-LABEL: define i16 @not_vectorized_select_iv_icmp_overflow_unwidened_tripcount ; CHECK-NOT: vector.body: ; entry: %cmp9 = icmp sgt i32 %n, 0 br i1 %cmp9, label %for.body.preheader, label %exit for.body.preheader: ; preds = %entry %wide.trip.count = zext i32 %n to i64 br label %for.body for.body: ; preds = %for.body.preheader, %for.body %iv = phi i64 [ 0, %for.body.preheader ], [ %inc, %for.body ] %rdx = phi i16 [ %start, %for.body.preheader ], [ %cond, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %a, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %arrayidx2 = getelementptr inbounds i32, ptr %b, i64 %iv %1 = load i32, ptr %arrayidx2, align 4 %cmp3 = icmp sgt i32 %0, %1 %2 = trunc i64 %iv to i16 %cond = select i1 %cmp3, i16 %2, i16 %rdx %inc = add nuw nsw i64 %iv, 1 %exitcond.not = icmp eq i64 %inc, %wide.trip.count br i1 %exitcond.not, label %exit, label %for.body exit: ; preds = %for.body, %entry %rdx.0.lcssa = phi i16 [ %start, %entry ], [ %cond, %for.body ] ret i16 %rdx.0.lcssa }