// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{mode=producer}))' -split-input-file | FileCheck %s --check-prefix=PRODUCER-CONSUMER // RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{fusion-maximal mode=sibling}))' -split-input-file | FileCheck %s --check-prefix=SIBLING-MAXIMAL // Part I of fusion tests in mlir/test/Transforms/loop-fusion.mlir. // Part II of fusion tests in mlir/test/Transforms/loop-fusion-2.mlir // Part III of fusion tests in mlir/test/Transforms/loop-fusion-3.mlir // Expects fusion of producer into consumer at depth 4 and subsequent removal of // source loop. // PRODUCER-CONSUMER-LABEL: func @unflatten4d func.func @unflatten4d(%arg1: memref<7x8x9x10xf32>) { %m = memref.alloc() : memref<5040xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 7 { affine.for %i1 = 0 to 8 { affine.for %i2 = 0 to 9 { affine.for %i3 = 0 to 10 { affine.store %cf7, %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32> } } } } affine.for %i0 = 0 to 7 { affine.for %i1 = 0 to 8 { affine.for %i2 = 0 to 9 { affine.for %i3 = 0 to 10 { %v0 = affine.load %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32> affine.store %v0, %arg1[%i0, %i1, %i2, %i3] : memref<7x8x9x10xf32> } } } } return } // PRODUCER-CONSUMER: affine.for // PRODUCER-CONSUMER-NEXT: affine.for // PRODUCER-CONSUMER-NEXT: affine.for // PRODUCER-CONSUMER-NEXT: affine.for // PRODUCER-CONSUMER-NOT: affine.for // PRODUCER-CONSUMER: return // ----- // Expects fusion of producer into consumer at depth 2 and subsequent removal of // source loop. // PRODUCER-CONSUMER-LABEL: func @unflatten2d_with_transpose func.func @unflatten2d_with_transpose(%arg1: memref<8x7xf32>) { %m = memref.alloc() : memref<56xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 7 { affine.for %i1 = 0 to 8 { affine.store %cf7, %m[8 * %i0 + %i1] : memref<56xf32> } } affine.for %i0 = 0 to 8 { affine.for %i1 = 0 to 7 { %v0 = affine.load %m[%i0 + 8 * %i1] : memref<56xf32> affine.store %v0, %arg1[%i0, %i1] : memref<8x7xf32> } } return } // PRODUCER-CONSUMER: affine.for // PRODUCER-CONSUMER-NEXT: affine.for // PRODUCER-CONSUMER-NOT: affine.for // PRODUCER-CONSUMER: return // ----- // Expects fusion of producer into consumer at depth 1 and source loop to not // be removed due to difference in loop steps. // PRODUCER-CONSUMER-LABEL: func @check_src_dst_step func.func @check_src_dst_step(%m : memref<100xf32>, %src: memref<100xf32>, %out: memref<100xf32>) { affine.for %i0 = 0 to 100 { %r1 = affine.load %src[%i0]: memref<100xf32> affine.store %r1, %m[%i0] : memref<100xf32> } affine.for %i2 = 0 to 100 step 2 { %r2 = affine.load %m[%i2] : memref<100xf32> affine.store %r2, %out[%i2] : memref<100xf32> } return } // Check if the fusion did take place as well as that the source loop was // not removed. To check if fusion took place, the read instruction from the // original source loop is checked to be in the fused loop. // // PRODUCER-CONSUMER: affine.for %[[idx_0:.*]] = 0 to 100 { // PRODUCER-CONSUMER-NEXT: %[[result_0:.*]] = affine.load %[[arr1:.*]][%[[idx_0]]] : memref<100xf32> // PRODUCER-CONSUMER-NEXT: affine.store %[[result_0]], %{{.*}}[%[[idx_0]]] : memref<100xf32> // PRODUCER-CONSUMER-NEXT: } // PRODUCER-CONSUMER: affine.for %[[idx_1:.*]] = 0 to 100 step 2 { // PRODUCER-CONSUMER: affine.load %[[arr1]][%[[idx_1]]] : memref<100xf32> // PRODUCER-CONSUMER: } // PRODUCER-CONSUMER: return // ----- // SIBLING-MAXIMAL-LABEL: func @reduce_add_non_maximal_f32_f32( func.func @reduce_add_non_maximal_f32_f32(%arg0: memref<64x64xf32, 1>, %arg1 : memref<1x64xf32, 1>, %arg2 : memref<1x64xf32, 1>) { %cst_0 = arith.constant 0.000000e+00 : f32 %cst_1 = arith.constant 1.000000e+00 : f32 affine.for %arg3 = 0 to 1 { affine.for %arg4 = 0 to 64 { %accum = affine.for %arg5 = 0 to 64 iter_args (%prevAccum = %cst_0) -> f32 { %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1> %5 = arith.addf %prevAccum, %4 : f32 affine.yield %5 : f32 } %accum_dbl = arith.addf %accum, %accum : f32 affine.store %accum_dbl, %arg1[%arg3, %arg4] : memref<1x64xf32, 1> } } affine.for %arg3 = 0 to 1 { affine.for %arg4 = 0 to 64 { // Following loop trip count does not match the corresponding source trip count. %accum = affine.for %arg5 = 0 to 32 iter_args (%prevAccum = %cst_1) -> f32 { %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1> %5 = arith.mulf %prevAccum, %4 : f32 affine.yield %5 : f32 } %accum_sqr = arith.mulf %accum, %accum : f32 affine.store %accum_sqr, %arg2[%arg3, %arg4] : memref<1x64xf32, 1> } } return } // Test checks the loop structure is preserved after sibling fusion // since the destination loop and source loop trip counts do not // match. // SIBLING-MAXIMAL: %[[cst_0:.*]] = arith.constant 0.000000e+00 : f32 // SIBLING-MAXIMAL-NEXT: %[[cst_1:.*]] = arith.constant 1.000000e+00 : f32 // SIBLING-MAXIMAL-NEXT: affine.for %[[idx_0:.*]]= 0 to 1 { // SIBLING-MAXIMAL-NEXT: affine.for %[[idx_1:.*]] = 0 to 64 { // SIBLING-MAXIMAL-NEXT: %[[result_1:.*]] = affine.for %[[idx_2:.*]] = 0 to 32 iter_args(%[[iter_0:.*]] = %[[cst_1]]) -> (f32) { // SIBLING-MAXIMAL-NEXT: %[[result_0:.*]] = affine.for %[[idx_3:.*]] = 0 to 64 iter_args(%[[iter_1:.*]] = %[[cst_0]]) -> (f32) { // ----- // SIBLING-MAXIMAL-LABEL: func @sibling_load_only func.func @sibling_load_only(%arg0: memref<10xf32>) { affine.for %arg1 = 0 to 10 { %0 = affine.load %arg0[%arg1] : memref<10xf32> } affine.for %arg1 = 0 to 10 { %0 = affine.load %arg0[%arg1] : memref<10xf32> } // SIBLING-MAXIMAL-NEXT: affine.for // SIBLING-MAXIMAL-NEXT: affine.load // SIBLING-MAXIMAL-NEXT: affine.load return } // ----- // PRODUCER-CONSUMER-LABEL: func @fusion_for_multiple_blocks() { func.func @fusion_for_multiple_blocks() { ^bb0: %m = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v0 = affine.load %m[%i1] : memref<10xf32> } // PRODUCER-CONSUMER: affine.for %{{.*}} = 0 to 10 { // PRODUCER-CONSUMER-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // PRODUCER-CONSUMER-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // PRODUCER-CONSUMER-NEXT: } cf.br ^bb1 ^bb1: affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v0 = affine.load %m[%i1] : memref<10xf32> } // PRODUCER-CONSUMER: affine.for %{{.*}} = 0 to 10 { // PRODUCER-CONSUMER-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // PRODUCER-CONSUMER-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // PRODUCER-CONSUMER-NEXT: } return } // ----- // PRODUCER-CONSUMER-LABEL: @fuse_higher_dim_nest_into_lower_dim_nest func.func @fuse_higher_dim_nest_into_lower_dim_nest() { %A = memref.alloc() : memref<8x12x128x64xf32> %B = memref.alloc() : memref<8x128x12x64xf32> affine.for %arg205 = 0 to 8 { affine.for %arg206 = 0 to 128 { affine.for %arg207 = 0 to 12 { affine.for %arg208 = 0 to 64 { %a = affine.load %A[%arg205, %arg207, %arg206, %arg208] : memref<8x12x128x64xf32> affine.store %a, %B[%arg205, %arg206, %arg207, %arg208] : memref<8x128x12x64xf32> } } } } %C = memref.alloc() : memref<8x128x768xf16> affine.for %arg205 = 0 to 8 { affine.for %arg206 = 0 to 128 { affine.for %arg207 = 0 to 768 { %b = affine.load %B[%arg205, %arg206, %arg207 floordiv 64, %arg207 mod 64] : memref<8x128x12x64xf32> %c = arith.truncf %b : f32 to f16 affine.store %c, %C[%arg205, %arg206, %arg207] : memref<8x128x768xf16> } } } // Check that fusion happens into the innermost loop of the consumer. // PRODUCER-CONSUMER: affine.for // PRODUCER-CONSUMER-NEXT: affine.for %{{.*}} = 0 to 128 // PRODUCER-CONSUMER-NEXT: affine.for %{{.*}} = 0 to 768 // PRODUCER-CONSUMER-NOT: affine.for // PRODUCER-CONSUMER: return return }