// RUN: mlir-opt -test-linalg-elementwise-fusion-patterns=fuse-multiuse-producer -split-input-file %s | FileCheck %s #map = affine_map<(d0, d1) -> (d0, d1)> func.func @multi_use_producer(%arg0 : tensor, %arg1 : tensor, %arg2 : tensor, %arg3 : tensor, %arg4 : tensor) -> (tensor, tensor, tensor) { %0:2 = linalg.generic { indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor) outs(%arg1, %arg2 : tensor, tensor) { ^bb0(%b0: f32, %b1 : f32, %b2 : f32): %1 = arith.addf %b0, %b1 : f32 linalg.yield %1, %1 : f32, f32 } -> (tensor, tensor) %2 = linalg.generic { indexing_maps = [#map, #map, #map], iterator_types = ["parallel", "parallel"]} ins(%0#1, %arg3 : tensor, tensor) outs(%arg4 : tensor) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %3 = arith.mulf %b0, %b1 : f32 linalg.yield %3 : f32 } -> tensor return %0#0, %0#1, %2 : tensor, tensor, tensor } // CHECK: func @multi_use_producer( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG4:[a-zA-Z0-9]+]]: tensor) // CHECK: %[[RESULT:.+]]:3 = linalg.generic // CHECK: return %[[RESULT]]#0, %[[RESULT]]#1, %[[RESULT]]#2