// BUILD-PACKING-LOOP-NEST only checks the creation of packing code but does not connect it. // Do not run canonicalization as it would be DCE'd away. // RUN: mlir-opt --transform-interpreter -split-input-file --verify-diagnostics %s | FileCheck %s --check-prefix=BUILD-PACKING-LOOP-NEST func.func @pad_and_hoist_rhs( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) // In this case, the pad op is actually empty: we only tile the first dimension // and it does not have an impact on the RHS operand. %pad = transform.get_producer_of_operand %matmul_padded[1] : (!transform.any_op) -> !transform.any_op // expected-error @below {{requires exactly 2 non-null handles}} transform.structured.hoist_pad.build_packing_loop_nest %pad above %loops_l1 : (!transform.any_op, !transform.any_op) -> !transform.any_op transform.yield } } // ----- func.func @pad_and_hoist_init( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[2] : (!transform.any_op) -> !transform.any_op // We do not know yet how to hoist the init. // expected-error @below {{could not build packing loop nest}} transform.structured.hoist_pad.build_packing_loop_nest %pad above %loops_l1 : (!transform.any_op, !transform.any_op) -> !transform.any_op transform.yield } } // ----- // BUILD-PACKING-LOOP-NEST-LABEL: pad_and_hoist_lhs func.func @pad_and_hoist_lhs( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // BUILD-PACKING-LOOP-NEST: %[[PACKED:.*]] = scf.for %{{.*}} -> (tensor) { // BUILD-PACKING-LOOP-NEST: tensor.pad %{{.*}} // BUILD-PACKING-LOOP-NEST: : tensor to tensor<5x12xf32> // BUILD-PACKING-LOOP-NEST: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, 0, 0] [1, 5, 12] [1, 1, 1] // BUILD-PACKING-LOOP-NEST-SAME: : tensor<5x12xf32> into tensor // BUILD-PACKING-LOOP-NEST: scf.for %{{.*}} -> (tensor<24x25xf32>) %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[0] : (!transform.any_op) -> !transform.any_op transform.structured.hoist_pad.build_packing_loop_nest %pad above %loops_l1 : (!transform.any_op, !transform.any_op) -> !transform.any_op transform.yield } } // ----- // BUILD-PACKING-LOOP-NEST-LABEL: pad_and_hoist_lhs_transpose func.func @pad_and_hoist_lhs_transpose( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // BUILD-PACKING-LOOP-NEST: %[[PACKED:.*]] = scf.for %{{.*}} -> (tensor) { // BUILD-PACKING-LOOP-NEST: tensor.pad %{{.*}} // BUILD-PACKING-LOOP-NEST: : tensor to tensor<5x12xf32> // BUILD-PACKING-LOOP-NEST: linalg.generic // BUILD-PACKING-LOOP-NEST: -> tensor<12x5xf32> // BUILD-PACKING-LOOP-NEST: tensor.insert_slice %{{.*}} into %{{.*}}[%{{.*}}, 0, 0] [1, 12, 5] [1, 1, 1] // BUILD-PACKING-LOOP-NEST-SAME: : tensor<12x5xf32> into tensor // BUILD-PACKING-LOOP-NEST: scf.for %{{.*}} -> (tensor<24x25xf32>) %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1 = transform.structured.tile_using_for %matmul [5] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[0] : (!transform.any_op) -> !transform.any_op transform.structured.hoist_pad.build_packing_loop_nest %pad above %loops_l1, transpose by [1, 0] : (!transform.any_op, !transform.any_op) -> !transform.any_op transform.yield } } // ----- // BUILD-PACKING-LOOP-NEST-LABEL: pad_and_hoist_init func.func @pad_and_hoist_init( %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>, %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> { // BUILD-PACKING-LOOP-NEST: scf.for %{{.*}} -> (tensor<24x25xf32>) { // BUILD-PACKING-LOOP-NEST: %[[EXTRACTED_SLICE:.*]] = tensor.extract_slice // BUILD-PACKING-LOOP-NEST: %[[PADDED:.*]] = tensor.pad %[[EXTRACTED_SLICE]] // BUILD-PACKING-LOOP-NEST: : tensor to tensor<5x25xf32> // BUILD-PACKING-LOOP-NEST: scf.for %{{.*}} iter_args({{.*}} = %[[EXTRACTED_SLICE]]) -> (tensor<24x25xf32>, tensor) { %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32> func.return %0 : tensor<24x25xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %matmul_l1, %loops_l1:2 = transform.structured.tile_using_for %matmul [5, 0, 7] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %matmul_padded, %0, %copy_back = transform.structured.pad %matmul_l1 { padding_values=[0.0: f32, 0.0 : f32, 0.0 : f32], padding_dimensions=[0, 1, 2] } : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %pad = transform.get_producer_of_operand %matmul_padded[2] : (!transform.any_op) -> !transform.any_op transform.structured.hoist_pad.build_packing_loop_nest %pad above %loops_l1#1 : (!transform.any_op, !transform.any_op) -> !transform.any_op transform.yield } }