// RUN: mlir-opt %s -pass-pipeline="builtin.module(func.func(tosa-to-linalg-named,tosa-to-linalg,tosa-to-arith))" | \ // RUN: mlir-opt -one-shot-bufferize -func-bufferize -test-lower-to-llvm | \ // RUN: mlir-cpu-runner -O3 -e main -entry-point-result=void \ // RUN: -shared-libs=%mlir_runner_utils \ // RUN: | FileCheck %s func.func private @printMemrefF32(tensor<*xf32>) func.func @main() { %A = arith.constant dense<[ [8.0, 1.0, 6.0], [3.0, 5.0, 7.0], [4.0, 9.0, 2.0] ]> : tensor<3x3xf32> %B = arith.constant dense<[ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0] ]> : tensor<3x3xf32> %C = arith.constant dense<[0.0, 1.0, 2.0]> : tensor<3xf32> %result = tosa.fully_connected %A, %B, %C : (tensor<3x3xf32>, tensor<3x3xf32>, tensor<3xf32>) -> tensor<3x3xf32> %result_unranked = tensor.cast %result : tensor<3x3xf32> to tensor<*xf32> call @printMemrefF32(%result_unranked) : (tensor<*xf32>) -> () return } // CHECK: Unranked Memref base@ = {{.*}} rank = 2 offset = 0 sizes = [3, 3] strides = [3, 1] data = // CHECK-NEXT: [ // CHECK-SAME: [15, 16, 17] // CHECK-NEXT: [15, 16, 17] // CHECK-NEXT: [15, 16, 17] // CHECK-SAME: ]