# RUN: %PYTHON %s | FileCheck %s from mlir.ir import * import mlir.dialects.arith as arith import mlir.dialects.func as func import mlir.dialects.tensor as tensor from mlir.extras import types as T def run(f): print("\nTEST:", f.__name__) f() return f # CHECK-LABEL: TEST: testDimOp @run def testDimOp(): with Context() as ctx, Location.unknown(): module = Module.create() f32Type = F32Type.get() indexType = IndexType.get() with InsertionPoint(module.body): @func.FuncOp.from_py_func( RankedTensorType.get( (ShapedType.get_dynamic_size(), ShapedType.get_dynamic_size()), f32Type, ) ) # CHECK: func @tensor_static_dim # CHECK-SAME: %[[ARG0:.+]]: tensor # CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index # CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index # CHECK: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]] # CHECK: %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]] # CHECK: return %[[D0]], %[[D1]] def tensor_static_dim(t): c0 = arith.ConstantOp(indexType, 0) c1 = arith.ConstantOp(indexType, 1) d0 = tensor.DimOp(t, c0) d1 = tensor.DimOp(t, c1) return [d0.result, d1.result] print(module) # CHECK-LABEL: TEST: testEmptyOp @run def testEmptyOp(): with Context() as ctx, Location.unknown(): module = Module.create() f32 = F32Type.get() with InsertionPoint(module.body): # CHECK-LABEL: func @static_sizes # CHECK: %0 = tensor.empty() : tensor<3x4xf32> @func.FuncOp.from_py_func() def static_sizes(): return tensor.EmptyOp([3, 4], f32) # CHECK-LABEL: func @dynamic_sizes # CHECK: %0 = tensor.empty(%arg0, %arg1) : tensor @func.FuncOp.from_py_func(IndexType.get(), IndexType.get()) def dynamic_sizes(d0, d1): return tensor.EmptyOp([d0, d1], f32) # CHECK-LABEL: func @mixed_static_dynamic_sizes # CHECK: %0 = tensor.empty(%arg0) : tensor @func.FuncOp.from_py_func(IndexType.get()) def mixed_static_dynamic_sizes(d0): return tensor.EmptyOp([d0, 4], f32) # CHECK-LABEL: func @zero_d # CHECK: %0 = tensor.empty() : tensor @func.FuncOp.from_py_func() def zero_d(): return tensor.EmptyOp([], f32) print(module) # CHECK-LABEL: TEST: testInferTypesInsertSlice @run def testInferTypesInsertSlice(): with Context() as ctx, Location.unknown(): module = Module.create() f32Type = F32Type.get() with InsertionPoint(module.body): @func.FuncOp.from_py_func( RankedTensorType.get((1, 1), f32Type), RankedTensorType.get((1, 1), f32Type), ) # CHECK: func @f # CHECK: tensor.insert_slice %arg0 into %arg1[0, 0] [1, 1] [0, 0] : # CHECK-SAME: tensor<1x1xf32> into tensor<1x1xf32> def f(source, dest): d0 = tensor.InsertSliceOp( source, dest, [], [], [], DenseI64ArrayAttr.get([0, 0]), DenseI64ArrayAttr.get([1, 1]), DenseI64ArrayAttr.get([0, 0]), ) return [d0.result] print(module) # CHECK-LABEL: TEST: testFromElementsOp @run def testFromElementsOp(): with Context() as ctx, Location.unknown(): module = Module.create() f32 = F32Type.get() with InsertionPoint(module.body): @func.FuncOp.from_py_func() def default_builder(): c0 = arith.ConstantOp(f32, 0.0) # CHECK: %[[C0:.*]] = "arith.constant # CHECK-SAME: value = 0.000000e+00 : f32 print(c0) c1 = arith.ConstantOp(f32, 1.0) # CHECK: %[[C1:.*]] = "arith.constant # CHECK-SAME: value = 1.000000e+00 : f32 print(c1) t = tensor.FromElementsOp(RankedTensorType.get((2,), f32), [c0, c1]) # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2xf32> print(t) t = tensor.FromElementsOp(RankedTensorType.get((2, 1), f32), [c0, c1]) # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<2x1xf32> print(t) t = tensor.FromElementsOp(RankedTensorType.get((1, 2), f32), [c0, c1]) # CHECK: %{{.*}} = "tensor.from_elements"(%[[C0]], %[[C1]]) : (f32, f32) -> tensor<1x2xf32> print(t) # CHECK-LABEL: TEST: testGenerateRegionOp @run def testGenerateRegionOp(): S = ShapedType.get_dynamic_size() with Context(), Location.unknown(): module = Module.create() with InsertionPoint(module.body): # CHECK: %[[VAL_0:.*]] = arith.constant 1 : index # CHECK: %[[VAL_1:.*]] = arith.constant 2 : index one = arith.constant(T.index(), 1) two = arith.constant(T.index(), 2) @tensor.generate(T.tensor(S, 3, S, T.index()), dynamic_extents=[one, two]) def generate_one(i: T.index(), j: T.index(), k: T.index()): ij = arith.addi(i, j) ijk = arith.addi(ij, k) return ijk assert ( isinstance(generate_one, Value) and generate_one.owner.name == "tensor.generate" ) # CHECK: %[[GENERATED:.*]] = tensor.generate # CHECK-SAME: %[[VAL_0]], # CHECK-SAME: %[[VAL_1]] { # CHECK: ^bb0(%[[VAL_1:.*]]: index, %[[VAL_2:.*]]: index, %[[VAL_3:.*]]: index): # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_1]], %[[VAL_2]] : index # CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_4]], %[[VAL_3]] : index # CHECK: tensor.yield %[[VAL_5]] : index # CHECK: } : tensor print(module)