# RUN: %PYTHON %s 2>&1 | FileCheck %s from mlir.passmanager import PassManager from mlir.ir import Context, Location, Module, InsertionPoint, UnitAttr from mlir.dialects import scf, pdl, func, arith, linalg from mlir.dialects.transform import ( get_parent_op, apply_patterns_canonicalization, apply_cse, any_op_t, ) from mlir.dialects.transform.structured import structured_match from mlir.dialects.transform.loop import loop_unroll from mlir.dialects.transform.extras import named_sequence, apply_patterns from mlir.extras import types as T from mlir.dialects.builtin import module, ModuleOp def construct_and_print_in_module(f): print("\nTEST:", f.__name__) with Context(), Location.unknown(): module = Module.create() with InsertionPoint(module.body): module = f(module) if module is not None: print(module) return f # CHECK-LABEL: TEST: test_named_sequence @construct_and_print_in_module def test_named_sequence(module_): # CHECK-LABEL: func.func @loop_unroll_op() { # CHECK: %[[VAL_0:.*]] = arith.constant 0 : index # CHECK: %[[VAL_1:.*]] = arith.constant 42 : index # CHECK: %[[VAL_2:.*]] = arith.constant 5 : index # CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_1]] step %[[VAL_2]] { # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index # CHECK: } # CHECK: return # CHECK: } @func.func() def loop_unroll_op(): for i in scf.for_(0, 42, 5): v = arith.addi(i, i) scf.yield_([]) # CHECK-LABEL: module attributes {transform.with_named_sequence} { # CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) { # CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["arith.addi"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op # CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "scf.for"} : (!transform.any_op) -> !pdl.operation # CHECK: transform.loop.unroll %[[VAL_2]] {factor = 4 : i64} : !pdl.operation # CHECK: transform.yield # CHECK: } # CHECK: } @module(attrs={"transform.with_named_sequence": UnitAttr.get()}) def mod(): @named_sequence("__transform_main", [any_op_t()], []) def basic(target: any_op_t()): m = structured_match(any_op_t(), target, ops=["arith.addi"]) loop = get_parent_op(pdl.op_t(), m, op_name="scf.for") loop_unroll(loop, 4) # The identifier (name) of the function becomes the Operation assert isinstance(mod.opview, ModuleOp) print(module_) pm = PassManager.parse("builtin.module(transform-interpreter)") pm.run(module_.operation) # CHECK-LABEL: func.func @loop_unroll_op() { # CHECK: %[[VAL_0:.*]] = arith.constant 0 : index # CHECK: %[[VAL_1:.*]] = arith.constant 42 : index # CHECK: %[[VAL_2:.*]] = arith.constant 5 : index # CHECK: %[[VAL_6:.*]] = arith.constant 40 : index # CHECK: %[[VAL_7:.*]] = arith.constant 20 : index # CHECK: scf.for %[[VAL_3:.*]] = %[[VAL_0]] to %[[VAL_6]] step %[[VAL_7]] { # CHECK: %[[VAL_5:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : index # CHECK: %[[VAL_8:.*]] = arith.constant 1 : index # CHECK: %[[VAL_9:.*]] = arith.muli %[[VAL_2]], %[[VAL_8]] : index # CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_3]], %[[VAL_9]] : index # CHECK: %[[VAL_11:.*]] = arith.addi %[[VAL_10]], %[[VAL_10]] : index # CHECK: %[[VAL_12:.*]] = arith.constant 2 : index # CHECK: %[[VAL_13:.*]] = arith.muli %[[VAL_2]], %[[VAL_12]] : index # CHECK: %[[VAL_14:.*]] = arith.addi %[[VAL_3]], %[[VAL_13]] : index # CHECK: %[[VAL_15:.*]] = arith.addi %[[VAL_14]], %[[VAL_14]] : index # CHECK: %[[VAL_16:.*]] = arith.constant 3 : index # CHECK: %[[VAL_17:.*]] = arith.muli %[[VAL_2]], %[[VAL_16]] : index # CHECK: %[[VAL_18:.*]] = arith.addi %[[VAL_3]], %[[VAL_17]] : index # CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_18]] : index # CHECK: } # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_6]], %[[VAL_6]] : index # CHECK: return # CHECK: } print(module_) # CHECK-LABEL: TEST: test_apply_patterns @construct_and_print_in_module def test_apply_patterns(module_): M, N, K = 3, 5, 3 # CHECK-LABEL: func.func @matmul( # CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> { # CHECK: %[[VAL_3:.*]] = arith.constant 1 : i32 # CHECK: %[[VAL_4:.*]] = arith.addi %[[VAL_3]], %[[VAL_3]] : i32 # CHECK: %[[VAL_5:.*]] = linalg.matmul {cast = #linalg.type_fn} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32> # CHECK: return %[[VAL_5]] : tensor<3x3xf32> # CHECK: } @func.func( T.tensor(M, N, T.f32()), T.tensor(N, K, T.f32()), T.tensor(M, K, T.f32()) ) def matmul(A, B, C): i = arith.constant(T.i32(), 1) v = arith.addi(i, i) return linalg.matmul(A, B, outs=[C]) # CHECK-LABEL: module attributes {transform.with_named_sequence} { # CHECK: transform.named_sequence @__transform_main(%[[VAL_0:.*]]: !transform.any_op) { # CHECK: %[[VAL_1:.*]] = transform.structured.match ops{["linalg.matmul"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op # CHECK: %[[VAL_2:.*]] = transform.get_parent_op %[[VAL_1]] {op_name = "func.func"} : (!transform.any_op) -> !pdl.operation # CHECK: transform.apply_patterns to %[[VAL_2]] { # CHECK: transform.apply_patterns.canonicalization # CHECK: } : !pdl.operation # CHECK: %[[VAL_3:.*]] = transform.structured.match ops{["func.func"]} in %[[VAL_0]] : (!transform.any_op) -> !transform.any_op # CHECK: transform.apply_cse to %[[VAL_3]] : !transform.any_op # CHECK: transform.yield # CHECK: } # CHECK: } @module(attrs={"transform.with_named_sequence": UnitAttr.get()}) def mod(): @named_sequence("__transform_main", [any_op_t()], []) def basic(variant_op: any_op_t()): matmul = structured_match(any_op_t(), variant_op, ops=["linalg.matmul"]) top_func = get_parent_op(pdl.op_t(), matmul, op_name="func.func") @apply_patterns(top_func) def pats(): apply_patterns_canonicalization() top_func = structured_match(any_op_t(), variant_op, ops=["func.func"]) apply_cse(top_func) print(module_) pm = PassManager.parse("builtin.module(transform-interpreter)") pm.run(module_.operation) # CHECK-LABEL: func.func @matmul( # CHECK-SAME: %[[VAL_0:.*]]: tensor<3x5xf32>, %[[VAL_1:.*]]: tensor<5x3xf32>, %[[VAL_2:.*]]: tensor<3x3xf32>) -> tensor<3x3xf32> { # CHECK: %[[VAL_3:.*]] = linalg.matmul {cast = #linalg.type_fn} ins(%[[VAL_0]], %[[VAL_1]] : tensor<3x5xf32>, tensor<5x3xf32>) outs(%[[VAL_2]] : tensor<3x3xf32>) -> tensor<3x3xf32> # CHECK: return %[[VAL_3]] : tensor<3x3xf32> # CHECK: } print(module_)