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This technical supplement to Kind Inference for Datatypes serves to expand upon the text in the
main paper. It contains detailed typing rules, proofs, and connections to the Glasgow Haskell Com-
piler (GHC). Sections in this document are meant to connect to sections in the main paper. There
are many hyperlinks throughout, especially those highlighting the connections to GHC; you may
wish to read on a computer instead of on paper.

A  OTHER LANGUAGE EXTENSIONS

This section accompanies Section 8 of the main paper, including discussion about more related
language extensions. These extensions affect kind inference, but not in a fundamental way.

A.1 Visible Dependent Quantification

Besides specified type variables for which users can optionally provide type arguments, Haskell
also incorporates visible dependent quantification (VDQ)', e.g., type T :: Y(k :: x) — k — *, with
which users are forced to provide type arguments to 7. That is, one would use T with, e.g., T % Int
and T (x — %) Maybe, never just T Int. Visible dependent quantification is Haskell’s equivalent
to routine dependent quantification in dependently typed languages.

To support VDQ, rule bT-TT needs to be extended, as VDQ brings variables into scope for later
reference. For example, given
type T :V(k:x) > k— %
data T k a= MkT
We should get a context k :: %, a:: kK when checking MkT.

VDQ opens an interesting design choice: should unannotated type variables be able to introduce
VDQ? For example, in the definition of P below, we use f and a as the arguments to T. To make it
type-check, we need to infer P :: V(f :: x) = f — *.

1In GHC 8.8, GHC infers kinds using VDQ, but users are not allowed to write VDQ explicitly. This has been rectified for
the GHC 8.10 release, as described in this proposal.
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data P f a= MkP (T f a)

However, the tricky part with inferring the kind of P is that we cannot have a fixed initial form of
the kind of P, i.e, & — E — xorV(f:a) — E — %, when type-checking the rec group of P,
until we type-check P’s body. In order to avoid this challenge, we support GHC’s current ruling
on the matter: dependent variables must be manifestly so. That is, the initial kind of a datatype
includes VDQ only for those variables that appear, lexically, in the kind of a variable; other type
parameters are reflected in a datatype’s initial kind with a regular (non-dependent) arrow. This
guideline rejects P as an example of non-manifest dependency.

A.2 Datatype Promotion

Haskellers can use datatypes as kinds and can write data constructors in types [Yorgey et al. 2012].
In the PolyKinds system, types and kinds are mixed (allowing datatypes to be used as kinds), but
there is no facility to use a data constructor in a type.

To support such usage, the kinding judgment must now use the term context to fetch the type of
data constructors. Moreover, dependency analysis needs to take dependencies on data constructors
into account.

Definition A.1 (Dependency Analysis with Type-Level Data). We extend Definition 6.1 with
(iii) The definition of T depends on the definition of T, if T1 uses data constructors of Ts.

While the appearance of data constructors in types enriches the type language considerably,
they do not pose a particular challenge for inference; the rest of our presentation would remain
unaffected.

A.3 Partial Type Signatures

For quite some time, GHC has supported kind signatures on a subset of a datatype’s parameters,
much like the partial type signatures described by ?. For example, App, below, does not have a
signature but still has a kind annotation for f.

data App (f ux > x)a=A(f a)

To deal with such a construct we first need to amend the syntax of a datatype declaration to support
kind annotations for variables.

datatypedecl. 7 = dataT¢ = Ejj

Kind annotations can also contain free variables, which need to be generalized in a similar way
as signatures. For example, 72 has kind V{k :: % }. V(f :: k). .
data T2 (f : k) = MkT2

Supporting these partial signatures adds complication to rule PGM-DT-TT (and its algorithmic
counterpart) to bring the kind variables into scope. However, and critically, a partial signature
will still go via rule PGM-DT-TT, never rule PGM-DT-TTS, used for full signatures only. This means
that a partial type signature does not unlock polymorphic recursion: the datatype will considered
monomorphic and ungeneralized within its own recursive group.

B TODAY’S GHC

This paper describes, in depth, how kind inference can work for datatype declarations. Here, we
review how our work relates to GHC. To make the claims concrete, this section contains references
to specific stretches of code within GHC.
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B.1 Constraint-Based Type Inference

Type inference in GHC is based on generating and solving constraints [Pottier and Rémy 2005;
Vytiniotis et al. 2011], distinct from our approach here, where we unify on the fly. Despite this
different architecture, our results carry over to the constraint-based style. Instead of using eager
unification, we can imagine accumulating constraints in output contexts ©, and then invoking a
solver to extend the context with solutions. This approach is taken by Eisenberg [2016].

In thinking about the change from eager unification to delayed constraints, one might worry
about information loss around any place where we apply a context as a substitution, as these
substitutions would be empty in a constraint-solving approach without eager unification. At top-
level (Figure 6), a constraint-solving approach would run the constraint solver, and the substitu-
tions would contain the same mappings as our approach provides. Conversely, the relations in
Figure 8 would become part of the constraint solver, so substituting here is safe, too. A poten-
tial problem arises in rule rule a-xtT-APP (Figure 7), where we substitute in the function’s kind
before running the kind-directed I2PP judgment. However, our system is predicative: it never uni-
fies a type variable with a polytype. Thus, the substitution in rule A-KTT-APP can never trigger
a new usage of rule A-xAPP-TT-FORALL. It can distinguish between rule A-xapp-TT-ARROW and
rule A-KAPP-TT-KUVAR, but we conjecture that the choice between these rules is irrelevant: both
will lead to equivalent substitutions in the end.

B.2 Contexts

A typing context is not maintained in much of GHC’s inference algorithm. Instead, a variable’s kind
is stored in the data structure representing the variable. This is very convenient, as it means that
looking up a variable’s type or kind is a pure, fast operation. One downside is that the compiler
must maintain an extra invariant that all occurrences of a variable store the same kind; this is
straightforward to maintain in practice.

Beyond just storing variables’ kinds, the typing context in this paper also critically stores vari-
ables’ ordering. Lacking contexts, GHC uses a different mechanism: level numbers, originally invented
to implement untouchability [Vytiniotis et al. 2011, Section 5.1]. Every type variable in GHC is as-
signed a level number during inference. Type variables contain a structure that includes level num-
bers. Roughly, the level number of a type variable a corresponds to the number of type variables
in scope before a. Accordingly, we can tell the relative order (in a hypothetical context, according
to the systems in this paper) of two variables simply by comparing their level numbers. One of
GHC’s invariants is that a unification variable at level n is never unified with a type that men-
tions a variable with a level number m > n; this is much like the extra checks in the unification
judgments in our paper.

The local scopes of this paper are also tracked by GHC. All the variables in the same local scope
are assigned the same level number, and they are flagged as reorderable. After inference is com-
plete, GHC does a topological sort to get the final order.

A final role that contexts play in our formalism is that they store solutions for unification vari-
ables; we apply contexts as a substitution. In GHC, unification variables store mutable cells that
get filled in. It has a process called zonking,” which is exactly analogous to our use of contexts as
substitutions. Zonking a unification variable replaces the variable with its solution, if any.

“There are actually two variants of zonking in GHC: we can zonk during type-checking or at the end. The difference
between the variants is chiefly what to do for an unfilled unification variable. The former leaves them alone, while the
latter has to default them somehow; details are beyond our scope here.
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B.3 Unification

The solver in GHC still has to carry out unification, much along the lines of the unification judg-
ment we present here. This algorithm has to deal with the heterogeneous unification problems
we consider, as well. Indeed, GHC’s unification algorithm recurs into the kinds of a unification
variable and the type it is unifying with, just as ours does. As implied by our focus on decidability
of unification, there have been a number of bugs in GHC’s implementation that led to loops in the
type checker; the most recent is #16902.

GHC actually uses several unification algorithms internally. It has an eager unifier, much like
the one we describe. When that unifier fails, it generates the constraint that is sent to the solver.
(The eager unifier is meant solely to be an optimization.) There is also a unifier meant to work
after type inference is complete; it checks for instance overlap, for example. All the unifiers recur
into kinds:

e The eager unifier recurs into kinds.

o The unifier in the solver recurs into kinds.

e The pure unifier uses an invariant that the kinds are related before looking at the types.
It must recur when decomposing applications.

In addition, GHC also has an overlap problem within unification, as exhibited in our paper
by the overlap between rules A-U-kvaRrL and A-U-kVARR in Figure 3. Both the eager unifier and
the constraint-solver unifier deal with this ambiguity by using heuristics to choose which variable
might be more suitable for unification. This particular issue—which variable to unify when there
is a choice—has been the subject of some amount of churn over the years.

B.4 Promotion

The promotion operation, too, is present in GHC, though its form is quite different than what we
have presented. Instead of promoting during unification, GHC simply refuses to solve a unification
variable if any of the free variables of its supposed solution lives to the right of the variable in the
context. Because GHC is working with constraints, it just leaves the unification problem as an
unsolved constraint. If there remain unsolved constraints, GHC then promotes the variables it can:
some cannot be promoted because they depend on locally bound quantified (not unification) type
variables.

B.5 Complete User-Supplied Kinds

Along with stand-alone kind signatures, as described in this paper, GHC supports complete user-
supplied kinds, or CUSKs. A datatype has a CUSK when certain syntactic conditions are satisfied;
GHC detects these conditions before doing any kind inference. These CUSKs are a poor substitute
for proper kind signatures, as the syntactic cues are fragile and unexpected: users sometimes write
a CUSK without meaning to, and also sometimes leave out a necessary part of a CUSK when they
intend to specify the kind. Stand-alone kind signatures are a new feature; they begin with the
keyword type instead of data, as we have used in our paper.

Interestingly, it would be wrong to support CUSKs in a system without polymorphic kinds.
Consider this example:
data S7a= MkT152
data 52 = MkS2 (51 Maybe)

The types ST and S2 form a group. We put 52 (which has a CUSK) into the context with kind .
When we check 57, we find no constraints on a (in the constraint-generation pass; see the general
approach below). The kind of S7is then defaulted to x — %. Checking 52 fails. Instead, we wish to
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pretend that S2 does not have a CUSK. This would mean that constraint-generation happens for
all the constructors in both 57 and 52, and S7would get its correct kind (x — %) — *.

With kind-polymorphism, we have no problem because the kind of 77 will be generalized to
V(k %) k — *.

This was reported as bug #16609.

B.6 Dependency Analysis

The algorithm implemented in GHC for processing datatype declarations starts with dependency
analysis, as ours does. The dependency analysis is less fine-grained than what we have proposed
in this paper: signatures are ignored in the dependency analysis, and so datatypes with signatures
are processed alongside all the others. This means that the kinds in the example below have more
restrictive kinds in GHC than they do in our system:

data S7:Vk. k — %

data S7 a = MkST (52 Int)

data 52 a = MkS2 (53 Int)

data S3 a = MkS3 (S1 Int)

A naive dependency analysis would put all three definitions in the same group. The kind for 57

is given; it would indeed have that kind. The parameters of 52 and S3 would initially have an

unknown kind, but when occurrences of 52 and S3 are processed (in the definitions of S7and 52,

respectively), this unknown kind would become . Neither S2 nor 53 would be generalized.
There is a ticket to improve the dependency analysis: #9427.

B.7 Approach to Kind-Checking Datatypes

GHC’s approach is summarized in this comment. Overall kind-checking is orchestrated by this function.

After dependency analysis, so-called initial kinds are produced for all the datatypes in the group.
These either come from a datatype’s CUSK or from a simple analysis of the header of the datatype
(without looking at constructors). This step corresponds to our algorithm’s placing a binding
for the datatype in the context, either with the kind signature or with a unification variable
(rules A-pGM-DT-TTS and A-PGM-DT-TT).

If there is no CUSK, GHC then passes over all the datatype’s constructors, collecting constraints
on unification variables. After solving these constraints, GHC generalizes the datatype kind.

For all datatypes, now with generalized kinds, all data constructors are checked (again, for non-
CUSK types). Because the kinds of the types are now generalized, this pass infers any invisible
parameters to polykinded types. For non-CUSK types, this second pass using generalized kinds
replaces the T; > T; @¢ substitution in the context in the last premise to rule A-pGM-DT-TT. Per-
forming a substitution—instead of re-generating and solving constraints—may be an opportunity
for improvement in GHC.

B.8 Syntax for GADTs
Haskell’s syntax for GADT declarations is very troublesome. Consider these examples:
data R a where
MKR ::b— R b
data S a where
MKS::S b
data T a where

MKT :=:¥(k =2 %) (b:: k). T b
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In GHC’s implementation of GADTs, any variables declared in the header (between data and
where) do not scope. In all the examples above, the type variable a does not scope over the con-
structor declarations. This is why we have written the variable b in those types, to make it clear
that b is distinct from a. We could have written a—it would still be a distinct a from that in the
header—but it would be more confusing.

The question is: how do we determine the kind of the parameter to the datatype? One possibility
is to look only in the header. In all cases above, we would infer no constraints and would give each
type a kind of V(k :: x). k — *. This is unfortunate, as it would make R a kind-indexed GADT:
the MR constructor would carry a proof that the kind of its type parameter is x. This, in turn,
wreaks havoc with type inference, as it is hard to infer the result type of a pattern-match against
a GADT [Vytiniotis et al. 2011].

Furthermore, this approach might accept more programs than the user wants. Consider this
definition:
data P a where

MKkP1::b— P b

MkP2::f a— P f
Does the user want a kind-indexed GADT, noting that b and f have different kinds? Or would the
user want this rejected? If we make the fully general kind Vk. k — x for P, this would be accepted,
perhaps surprising users.

It thus seems we wish to look at the data constructors when inferring the kind of the datatype.
The challenge in looking at data constructors is that their variables are locally bound. In MkR and
MkS, we implicitly quantify over b. In MkR, we discover that b:: %, and thus that R must have kind
* — *.In MkS, we find no constraints on b’s kind, and thus no constraints on S’s argument’s kind,
and so we can generalize to get S :: V(k :: %). k — *. Let us now examine MkT: it explicitly brings
k and b into scope. Thus, the argument to T has local kind k. It would be impossible to unify the
kind of T’s argument—call it a—with k, because k would be bound to the right of @ in an inference
context. Thus it seems we would reject T.

This result is also dissatisfying. In practice, GHC implements an ad-hoc algorithm, described in
Section B.9.

Our conclusion here is that the design of GADTs in GHC/Haskell is flawed: the type variables
mentioned in the header should indeed scope over the constructors. This would mean we could
reject T: if the user wanted to explicitly make T polykinded, they could do so right in the header.
We recognize that it would be hard to make this change today, but one result of this work is the
interplay between scoping (order in the context) and unification; the current state of affairs will
always require ad-hoc support.

B.9 Polymorphic Recursion
One challenge in kind inference is in the handling of polymorphic recursion. Although non-CUSK
types are indeed monomorphic during the constraint-generation pass, some limited form of poly-
morphic recursion can get through. This is because all type variables are represented by a special
form of unification variable called a TyVarTv. TyVarTvs can unify only with other type variables.
This design is motivated by the following examples:
data T7(a: k) b= MkT1(T2 a b)
data T2 (c::j) d = MkT2 (T1 ¢ d)
data T3 a where

MKT3 :¥(k %) (b k). T3 b
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We want to accept all of these definitions. The first two, 77 and T2, form a mutually recursive
group. Neither has a CUSK. However, the recursive occurrences are not polymorphically recursive:
both recursive occurrences are at the same kind as the definition. Yet the first parameter to 77 is
declared to have kind k while the first parameter to 72 is declared to have kind j. The solution:
allow k to unify with j during the constraint-generation pass. We would not want to allow either
k or j to unify with a non-variable, as that would seem to go against the user’s wishes. But they
must be allowed to unify with each other to accept this example.
With T3 (identical to T from Section B.8), we have a different motivation. During inference, we
will guess the kind of g; call it @. When checking the MkT3 constructor, we will need to unify &
with the locally bound k. We cannot set & := k, as that will fill & with a k, bound to &’s right in
the context. Instead, we must set k := @. This is possible only if k is represented by a unification
variable.
There are two known problems with this approach:
(1) It sometimes accepts polymorphic recursion, even without a CUSK. Here is an example:
data T4 a=V(k:: %) (b:: k). MkT4 (T4 b)
The definition of 74 is polymorphically recursive: the occurrence 74 b is specialized to a kind
other than the kind of a. Yet this definition is accepted. The two kinds unify (as k becomes
a unification variable, set to the guessed kind of a) during the constraint-generation pass.
Then, T4 is generalized to get the kind Vk. k — %, at which point the last pass goes through
without a hitch.
The reason this acceptance is troublesome is not that 74 is somehow dangerous or unsafe.
It is that we know that polymorphic recursion cannot be inferred [Henglein 1993], and yet
GHC does it. Invariably, this must mean that GHC’s algorithm will be hard to specify beyond
its implementation.
This wrinkle is described on the GHC wiki.

(2) In rare cases, the constraint-generation pass will succeed, while the final pass—meant to be
redundant—will fail. Here is an example:
data SameKind :: k — k — Type
data Bad a where

MkBad :: Vky ks (a:: ki) (b:: k3). Bad (SameKind a b)

During the constraint-generation pass, the kinds k; and k; are allowed to unify, accepting
the definition of Bad. During the final pass, however, k; and k; are proper quantified type
variables, always distinct. Thus the SameKind a b type is ill-kinded and rejected.
The fact that this final pass can fail means that we cannot implement it via a simple sub-
stitution, as we do in rule A-pGM-DT-TT. One possible solution is our suggestion to change
the scoping of type parameters to GADT-syntax datatype declarations. With that change,
our second motivation above for TyVarTvs would disappear. GHC could then use TyVarTvs
only for kind variables in the head of a datatype declaration, using proper quantified type
variables in constructors. Of course, this change would break much code in the wild, and we
do not truly expect it to ever be adopted.
This problem is documented in this comment.

B.10 The Quantification Check

Our quantification check (Section 7.2) also has a parallel in GHC, but GHC’s solution to the prob-
lem differs from ours. Instead of rejecting programs that fail the quantification check, GHC accepts
them, replacing the variables that would be (but cannot be) quantified with its constant Any::Vk. k.
The Any type is uninhabited, but exists at all kinds. As such, it is an appropriate replacement
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for unquantifiable, unconstrained unification variables. Yet this decision in GHC has unfortunate
consequences: the Any type can appear in error messages, and its introduction induces hard-to-
understand type errors.

The GHC developers are questioning their approach to this problem. See this comment and
this ticket.

Another design alternative is to generalize the variable to the leftmost position where it is still
well-formed. Recall the example in Section 7.2:

data Proxy : Vk. k — %
data Relate :: Va (b:: a). a — Proxy b — %
data T ::V(a: %) (b:a)(c::a)d. Relate bd — %

We have d:: @, and @ = Proxy E, with E it a. As there are no further constraints on ,[,3\, the definition
of T is rejected by the quantification check.

Instead of rejecting the program, or solving E using Any, we can generalize over E as a fresh
variable f, which is put after a to make it well-kinded. Namely, we get
data T =V(a: %) {f:a} (b= a) (c:a)(d: Proxy f). Relate @a @f bd — *

However, this ordering of the variables violates our declarative specification. Moreover, this type
requires an inferred variable to be between specified variables. With higher-rank polymorphism,
due to the fact that GHC does not support first-class type-level abstraction (i.e., A in types), this
type cannot be instantiated to

V(a:x) (b:a) (c::a)(d: Proxy f). Relate @a @b b d — *
or
V(a:x) (b:a) (c::a)(d: Proxy f). Relate @a @c b d — *

which makes the generalization less useful.

B.11 ScopedSort

When GHC deals with a local scope—a set of variables that may be reordered—it does a topological
sort on the variables at the end. However, not any topological sort will do: it must use one that
preserves the left-to-right ordering of the variables as much as possible. This is because GHC con-
siders these implicitly bound variables to be specified: they are available for visible type application.
For example, recall the example from Section 2.2, modified slightly:

data Q (a:: (f b)) (c:: k) (x:=:f ¢

Inference will tell us that kK must come before f and b, but the order of f and b is immaterial. Our
approach here is to make f, b, and k inferred variables: users of Q will not be able to instantiate
these parameters with visible type application. However, GHC takes a different view: because the
user has written the names of f, b, and k, they will be specified. This choice means that the precise
sorting algorithm GHC uses to fix the order of local scopes becomes part of the specification of
the language. Indeed, GHC documents the precise algorithm in its manual. If we followed suit, the
algorithm would have to appear in our declarative specification, which goes against the philosophy
of a declarative system.

Some recent debate led to a conclusion that we would change the interpretation of the Q example
from the main paper, meaning that its kind variables would indeed become inferred. However, the
problem with ScopedSort still exists in type signatures, where type variables may be implicitly
bound.
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B.12 The “Forall-or-Nothing” Rule
GHC implements the so-called forall-or-nothing rule, which states that either all variables are quan-
tified by a user-written forall, or none are. These examples illustrate the effect:
exlta—b—a
ex2:Yab.a— b—a
ex3:VYa.a— b— a
ex4:: (Ya.a— b — a)
The signatures for both ex7 and ex2 are accepted: ex1 quantifies none, while ex2 quantifies all. The
signature for ex3 is rejected, as GHC rejects a mixed economy. However, and perhaps surprisingly,
ex4 is accepted. The only difference between ex3 and ex4 is the seemingly-redundant parentheses.
However, because the forall-or-nothing rule applies only at the top level of a signature, the rule is
not in effect for the V in ex4.

This rule interacts with the main paper only in that our formalism (and some of our examples)
does not respect it. This may be the cause of differing behavior between GHC and the examples
we present.

C COMPLETE SET OF RULES

In this section we include the complete set of rules. Some of the rules are repeated from those in
the paper.

C.1 Declarative Haskell98
LIRS (Kinding for Polymorphic Types)

K-FORALL
2,4 K Ko x

S Va:ko:k

SrHVY (Well-formed Term Contexts)
ECTX-DCON
ECTX-EMPTY YL P LI
Stke SFY¥Y,D:o

C.2 Algorithmic Haskell98
AKo: k40 (Kinding for Polymorphic Types)

A-K-FORALL
AR x Aa:xlHo:k,40,a:k [O]ky = %

A Va:ko: %40

Al o =« (Checking)
A-KC-EQ
AMEo:iki4A  [Alx = [Alxe

A€ o =k

A Kk (Well-formed Kinds)
A-KV-ARROW -KV-
AKV-STAR AR AR K Gen
AT % A 1 — K, A &
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(Well-formed Type Contexts)

A-TCTX-TVAR A-TCTX-TCON

A-TCTX-KUVAR

ATTCTX-EMPTY Aok  AIFk Aok  AIFk A ok
e ok A, a:x ok AT : x ok A, @ ok
A-TCTX-KUVARSOLVED
A ok A x
A, @ =k ok
AT (Well-formed Term Contexts)
A-ECTX-DCON
A-ECTX-EMPTY A chtx T A |ch o= %
Al o AIF*T,D: o
(Defaulting)
A-CTXDE-TVAR A-CTXDE-TCON A-CTXDE-KUVARSOLVED
A-CTXDE-EMPTY A QO A —»Q A Q

o —>»eo Aa:xk—»Q,a:k AT :k—» QT:k
A-CTXDE-SOLVE

A—»Q

ANa—» Qa=x%

C.3 Context Application in Haskell98

ANoa=kx —» Q,a=k

[A]x applies A as a substitution to «.
[A]x = %
[Alki = k2 = [Alx1 — [Alxe
[Ala]]a = a
[Ala =x]la = [Ala=«]]kx
[A]T applies A as a substitution to T'.
[Ale -
[AIT,D:0) = [AIl,D:[A]lo
[Q]A applies Q as a substitution to A.
[e]e = e
[Q,a:k](A,a: k) = [Q]A,a: [Q]x
[Q,T:x](A,T: k) = [Q]AT: [Q]x
[Q,a = k](A, &) = [Q]A
[Qa=x]A,a=x") = [QA if[Q]k=[Q]x’
[Q,a =«]A = [Q]A ifa¢A
C.4 Context Extension in Haskell98
A— © (Context Extension)
A-CTXE-TVAR A-CTXE-TCON A-CTXE-KUVAR
A-CTXE-EMPTY A— 0 A— O A— O
e —e ANa:k—0,a:k AT :xk—0,T:k ANa— 0O,a
A-CTXE-KUVARSOLVED A-CTXE-SOLVE A-CTXE-ADD A-CTXE-ADDSOLVED
A—©  [O]k =[Ok, A—©O Ok A—© A—©O Ok
ANad=Kxg — 0,0 =Ky Aa— 0O,a=«k A— 0O,a A— 0O, a=«
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C.5 Declarative PolyKinds

1o (Kind results in %)
SR-ARROW SR-FORALL
SR-STAR T2 Tol
I Tk1 = K2 V¢. ol
‘Z St E w o iy (Instantiation)
INST-FORALL A
INST-REFL 5 ela P T @pipla p] C wp ~ pp

THES i w o~ p TES Va0 B wy ~ pip
INST-FORALL-INFER

SER p o St @p i pla— p] T wp ~

SV a: w1}y B wy ~

‘ T = p ‘ (Kind Checking)
KC-SUB
SEoip~ SES i w s

S o = wno

g

KTT-VAR
KTT-STAR KTT-NAT (a:w0) € KTT-ARROW
Tk k o % 3 Int : % ~ Int SHa:w~a TESix > ok > koo
KTT-TCON KTT-APP .
(T:pex Zkkﬁ:m'\»pl TS oo E (01 — wp) ~ po Zl—kcl’2<=a)1’\/>p3
ZkkT:nMT Zl—krlrzzwz'\»png

KTT-KAPP

ZI-kKI:Va:Lo.ry«»pl Zl—kckzcw«»pz

3k @k plas pa] ~ pr @pa
KTT-KAPP-INFER

3K K V{a: wi'YVa: g~ p)

— 1 .
Selpalae ] S el e~ p)
S @il @ pilla po] ~ pl @i’ @p;
KTT-FORALL KTT-FORALLI
THC k= ko 0 Z,a:wl—kca:*'\»p R G Z,a:a)l—kcoc*«»y
Zl—kVa:K.a:*m»Va:a).,u Zl—kVa.a:*'\»Va:a).,u
Ry (Elaborated Kinding)
ELA-VAR ELA-TCON
ELA-STAR ELA-NAT (a:0) € (T:pex ELA-ARROW
3R 3 ER nt ;% sER G SERT g TER i o o o o
ELA-APP ELA-KAPP
Zﬁlaplzwlﬁwz Zl—e'apgzwl ZI—EIapl:Va:w.ry ZI-EIapZ:a)
3R pypy 3 ¥R b @ps : pla ps)
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ELA-KAPP-INFER

ela

SER b V{a: o)y SEpy i w

ELA-FORALL

3R Soa:w o x

ela

S p1 @ps i nla— pa]

3 ERVa ok

ELA-FORALL-INFER

SER G %

Soa:o

TCTX-TVAR-TT
TCTX-EMPTY Y ok

SER Y a0l x

(Well-formed Type Contexts)
TCTX-TCON-TT

Dl ok > ok 3R g

e ok

ECTX-EMPTY

Sthe

C.6 Algorithmic PolyKinds

NS 1 i nE @~ pp 40

A-INST-REFL
A o = wy 40

AIP"St,u:a)lEa)g«»y-|®

3,a: pok

>, T :nok

(Well-formed Term Contexts)
ECTX-DCON-TT

SEY SR
SHY,D:p

(Instantiation)
A-INST-FORALL
A@: o Py @ :glar @) Cwy~> pip 40

AIP"St,ul:Va:a)l.ryEa)g«»yz—l(B

A-INST-FORALL-INFER
A@: o By @a:glar @) Cwy~> pip 40O

A |Hnst g1 :V{a: w01} n Cwy~ pp 40

‘Alkkcow:ry«»,u—l(a‘

AMEo:np~>p40
| |

A-KTT-STAR

(Kind Checking)
A-KC-SUB ‘
N N~ 4 A Ay I g [A R E [Af]w ~> pig 4 Ay
AIFkCO'ca)'\»yz-!Az
(Kinding)
A-KTT-VAR
A-KTT-NAT (a . w) cA

Al %k~ x4 A
A-KTT-TCON

(T:npeA

AT :p~>THA
A-KTT-FORALL

Ak = x> 0H4A

Al Int: %~ Int 4 A

Al,a:a)ll—kco<=*w>y4A2,a:a),A3

Al a:w~adA

A-KTT-ARROW

AlES % = % — koo A

A3 —> a

A Va:k.o:x~ Ya: @.[As]p 4 Az, unsolved(As)

A-KTT-APP

A||‘kT1:}]1’\/>p1-|A1

Ay IFPP (py : [Ag]p) @ T2 i 0~ p 4O

All—krlrzza)f\»p—|®

A-KTT-FORALLI

AT :xa: 0K 0 &, 47y a:a 0

A3‘—>a

A Va.o : %~ Ya:@[As]p 4 Az, unsolved(As)
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A-KTT-KAPP
AIFle:ry«»pl—|A1 [Alp =Va: wn A1|FkCT2¢a)’\/>p2-|A2

A “‘k T1 @Tz : 172[(1 = pz] ~ p1 @pz 4 Az

A-KTT-KAPP-INFER
A|Fk1'1:r7'\/>p1-|A1

(Al =V{a @ '}.Va: wn, AL, @ wif ai > 5?,-[] K 7, < o a; c’fil] ~ py 4 A,

—_— 1 —i
A @n:palai— @ lla p2l ~ p1 @ @p2 - A

AIHEPP (py:p)er:w~s py 40O (Application Kinding)
A-KAPP-TT-ARROW
All—kcrcwlvp2—|®

A |Hkapp (p1:w; > wy)eT:wy~> prp; 410
A-KAPP-TT-FORALL

AT KPP (p @T:pla> T))er:w~> p40O

A KPP (1 :Va: i) er:w~>p40

A-KAPP-TT-FORALL-INFER
AT :w KPP (p @T:pla> T))er:w~> pH40O
AP (o :V{a:w}.p)eT:w~> p40O
A-KAPP-TT-KUVAR
Al,(’l\l Z*,EZ : *,Zf: w = (Efl - 5?2),A2 ”‘kc T & &1 ~> P2 A (€]

Al,fi:a),Az ”_kapp (pl Z(/?(\).Ti&\z“/)plpz 10

Al g (Elaborated Kinding)
A-ELA-KUVAR A-ELA-VAR A-ELA-TCON
A-ELA-STAR ((’X\ &)) cA A-ELA-NAT (a . w) c A (T . ’7) cA
AR s AFER 7 [Alw AR Int ;% AR g [Alw AIFR T [Alp
A-ELA-FORALL
A-ELA-ARROW AR o x Aa:owlF?p:x
AR % — % — % AR Va:op:*
A-ELA-FORALL-INFER A-ELA-APP
AR (s % A,a:wIFEIa,u:* AIFEIapl:a)l—>w2 Alljlapzzcol
A IR V{a: w}.pu:* A It p1P2t W2
A-ELA-KAPP A-ELA-KAPP-INFER
AIFR by :Va:wy AIFR by AIFR oy V{a: w}y AR oy 0
N p1 @p2 : pla— [Alp:] NG p1 @p2 : pla— [A]p:]

A II-E;Cn I~1 (Generalization)

A-GEN

i

q/S\f = unsolved(y;)

AT D~ DY) VIGE Gl o 451)
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(Well-formed Type Contexts)
A-TCTX-TVAR-TT A-TCTX-TCON-TT A-TCTX-KUVAR-TT
A-TCTX-EMPTY A ok AR o % A ok Al RS A ok AR o x
e ok A, a: ook A,T :nok A, o : w ok
A-TCTX-KUVARSOLVED-TT A-TCTX-LO A-TCTX-MARKER
Aok AIF®R gy : [Alwy A, A ok A ok
A & w = wy ok A, {A"} ok A, »p 0k
Al T (Well-formed Term Contexts)
A-ECTX-DCON-TT
A-ECTX-EMPTY A chtx r A H@Ia o
Al o AT, D:p
A w; = w40 (Unification)
A-U-APP
A-U-REFL-TT

A IH p1 =~ p3 - A A [ [A]]pz ~ [Al]p4 10
A oxw4A

A”‘uplpz zp3p4—|®
A-U-KAPP
Al pr = ps 4 A

A1 IF [Arlp2 = [Ai]lps 4 ©
AH p1 @pz = p3 @ps 4O

A-U-KVARL-TT

A py~ pp 4 01,@ : 01,0

0, I P2t w2 0, IM [01]w; = wy 4 O3

AM &~ p1405,a: w1 = p2,0;
A-U-KVARR-TT
r —~
A”J:; p1~ p2 10,0 w1,0;

0, ”_ela P2t W2 0, [H [@1]0)1 ~ Wy 4 03
A P1 ~aH @3,(’7(\2(4)1 =p2,®2

A-U-KVARL-LO-TT
A, Ay #+™ @~ O Al{8}] ”J; p1~= p2401,{02,@ : w1,03},04
@1, {@2} ”_ela P2t W2 @1, {@2} [ [@1,@2](01 x wy @5, {®6}
A[{Al,?f: a)l,Az}] Mo~ p1 A @5,{@6,5(\2 w1 = pz,@g},®4

A-U-KVARR-LO-TT
A, Ay #+™ @ w0~ O Al{8}] ”J; p1~= p2401,{02,@ : w1,03},04
@1, {@2} ”_ela P2t W2 @1, {@2} [ [@1,@2](01 x wy @5, {®6}
A[{Al,?f: a)l,Az}] [ p1 = (/f 4 @5,{@6,5(\2 w1 = pz,@g},®4

All%rwlww24®

A-PR-STAR

(Promotion)
A-PR-ARR A-PR-TCON
A % s x4 A A —wm—sq A A[T][@] B T ~ T 4 A[T][a]
A-PR-APP
A-PR-NAT

A”i;';wlwpl'|Al

Ay I [Ar]wz ~ pp 4 ©
AHJ(;r Int ~ Int4 A

A|I€;O)1wzwp1p2-|®
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A-PR-KAPP
A ”{; w1~ pp A Aq Aq ”{; [Al]a)z ~ P A Q) A-PR-TVAR
A II%r w1 @wz ~> p1 @p2 10 Ala][a] II%r a~ a4 Aal[a]
A-PR-KUVARR-TT R
Aormovarl AW [Alp - py 4 €[ p)

ALBI@) ' B~ B+ AlBl[E] AR : pl 2 B~ B4 ©B1 - p1.@lIB - p = Bi]

‘Al H-mv Az ~ @‘ (Movmg)
A-MV-KUVAR
A-MV-EMPTY vars(w) § dom(A,) A H™ Ay~ O
e H™ A~ A a:w, N H™ Ay~ o 0,0
A-MV-KUVARM A-MV-TVAR
—(vars(w) § dom(A;)) A H™ A&~ O vars(w) §f dom(A;) A H+™ Ay~ 0
a:o,N H™ A~ O a:o, M H™ Ay~ a: 0,0

A-MV-TVARM
—(vars(w) § dom(Ay)) A +H™ Ay a0~ 0O

a:w, AN H™" Ay~ 0

C.7 Context Application in PolyKinds

[A]n applies A as a substitution to 7.
[A]x = %
[A]lnt = Int
[Ala = a
[A]T =T
[A] — = -
[AlVa: w.n = Va:[Alw.[Aly
[AlV{a:w}.p = V{a:[Alw}.[Al
[Al(p1 p2) = ([Alp1) ([Alp2)
[Al(p1 @p2) = ([Alp1) @([Alp2)
[Ala]la = a
[Al@:0=pllz = [Al@:0=pllp

[A]T applies A as a substitution to T'.
[Q]e - .
[QIT,D:p) = [QT,D:[Q]p

[Q]A applies Q as a substitution to A.

Q] — .

[Q,a: w](A a: w) = [Q]A a: [Q)w

[Q,T: w](AT: w) [QIA,T : [Q]w
[Qa:w=p|Aa:w) = [Q]A
[Qa:o=plAa:w=p) = [QA  if[Q]p; =[Q]p:
[Q.3:0=plA - QA ifagA
[Q,»p](A, »p) = [Q]A

[Q, {Qi}](A, {A}) = [Q,Q](A, A7)

where A’ = topo (A;)
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C.8 Context Extension in PolyKinds

A— O (Context Extension)
A-CTXE-TVAR-TT A-CTXE-TCON-TT A-CTXE-KUVAR-TT

A-CTXE-EMPTY A— 0O A— 0O A— 0O

e — o ANa:w—0,a:w AT:n—0,T:q ANod:o—0,0: 0
A-CTXE-KUVARSOLVED-TT A-CTXE-SOLVE-TT A-CTXE-ADD-TT

A—©  [B]p; = [O]p, A—©O Ol p:[0w A—©O OlFry:x
ANd:w=p —0,0:0=p; ANa:w—0,a:0=p A—0,0:w
A-CTXE-ADDSOLVED-TT A-CTXE-MARKER A-CTXE-LO

A—©O Ol p:[0w A—© A—©  Atopo(A) — ©,0,

A—O,a:0=p Awp— O,pp A {A} — ©,{0:}

D PROOF FOR HASKELL98
D.1 List of Lemmas

D.1.1  Well-formedness of Declarative Type System.

Lemma D.1 (Well-formedness of Declarative Typing Data Constructor Declaration). If> I—‘;f D~
T, then 3 K 15 ¢ .

Lemma D.2 (Well-formedness of Declarative Typing Datatype Declaration). If3 it 7~ ¥, then
>rVY.

D.1.2  Well-formedness of Algorithmic Type System.

Lemma D.3 (Well-formedness of Promotion). If Ay, @, A; ok, and Ay, @, A, HJ; K1 ~ Ko 4 ©, then
0 = 01,a,0,, and Ay, @, Ay —> ©, and O, Il Ky, and © ok. By weakening, there is also © I ic,.

Lemma D.4 (Well-formedness of Unification). IfA ok, and A I k; = k3 4 ©, then A — ©, and
O ok.

Lemma D.5 (Well-formedness of Application Kinding). IfA ok, and A KPP | e iy : k 4 ©, then
A — ©, and © ok. Moreover, if A I k1, then we have © 1KY k.

Lemma D.6 (Well-formedness of Kinding). If A ok, and A Ko :x 40, then A — O, and © ok,
and © 1KY x and © K€ ¢ < k.

Lemma D.7 (Well-formedness of Typing Data Constructor Declarations). IfA ok, and A |F‘:§ D~
740, then A —> ©, and © ok. and © 1K€ 1 & *.

Lemma D.8 (Well-formedness of Typing Datatype Declaration). IfA ok, and A Mt 7 ~> T 4 ©,
then A — ©, and © ok, and © FeX T,
D.1.3  Properties of Context Extension.
Lemma D.9 (Declaration Preservation). If A — ©, if a type constructor or a type variable or a

kind unification variable is declared in A, then it is declared in ©.

Lemma D.10 (Extension Weakening). Given A — O,
o ifA I ., then © I k;
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o ifA ¢ o < K, then © I ¢ < k.

Definition D.11 (Contextual Size).

| Ak x| = 1

|Arx; > k2| = 1+|Ark |+ ]| AFKs|
| Ala] v @ | = 1

|[Ald=x]ra| = 1+|Ala=«]Fk]

Lemma D.12 (Substitution Kinding). IfA ok, and A I k, then A KV [A]k.

Lemma D.13 (Context Extension with Defaulting is Context Extension). IfA —» ©, then A —
o.

Lemma D.14 (Reflexivity of Context Extension). If A ok, then A — A.

Lemma D.15 (Well-formedness of Context Extension). IfA ok, and A — ©, then © ok.

Definition D.16 (Softness). A context A is soft iff it contains only of @ and @ = x declarations.

Lemma D.17 (Extension Order).

(1) If Ai,a : k,Ay — O, then © = Oy, a : k, Oz, where Ay — ©1. Moreover, if A, soft, then
0, soft.

(2) If A, T : x,A; — O, then ©
Q, soft.

(3) If A1, a, Ay — ©, then © = 01,0, @, where A —> Oy, and ©’ is either & or & = k for some
K. Moreover, if A, soft, then ©; soft.

(4) If A1, @ = k1,A; — O, then ©® = O1,a = k3,0;, where Ay — Oy, and [O1]k; = [O1]xs.
Moreover, if A, soft, then ©, soft.

01, T : k,0,, where Ay — ©4. Moreover, if A, soft, then

Lemma D.18 (Substitution Extension Invariance). IfA ok, and A IV k, and A —> ©, then O]k =
[0]([A]k) and [O]x = [A]([®]x). As a corollary, if A KV ky, A KV ko, and [Alk; = [Alks, then
[O]k1 = [O]«,.

Lemma D.19 (Substitution Stability). If Ay, A, ok, and Ay I k, then [Ay, Ay]k = [Aq]k.

Lemma D.20 (Transitivity of Context Extension). If A’ ok, and A’ — A, and A — O, then
AN — 0.

Lemma D.21 (Solution Admissibility for Extension). IfA;, @, Az ok and Ay I «, then Ay, @, Ay —>
Al, (’X\ =K, Az.

Lemma D.22 (Solved Variable Addition for Extension). If A1, A, ok and A4 I &, then Ay, Ay —>
Al, (’X\ =K, Az.

Lemma D.23 (Unsolved Variable Addition). IfA;, Ay ok then Ay, Ay — Ay, @, As.

Lemma D.24 (Parallel Admissibility). IfA; — ©4, and Ay, A, ok, and A1, Ay, — ©1, 02, and A,
is fresh w.r.t. ©y, then:

L4 AI’ EZ\, AZ — 81’6{\’ E‘)2
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o IfO; I k, then Ay, @, Ay — ©1,@ = k, O,
o If[O1]k1 = [O1]Ky, then Ay, @ = k1, Ay — O1, @ = K2, 0

Lemma D.25 (Parallel Extension Solution). If A, &, Ay — ©1,a@ = k2,05, and [0 ]k; = [O1]k2,
then A, & = k1, Ay — O, = Ky, Os.

Lemma D.26 (Parallel Variable Update). If A1, &, Ay — ©1,@ = k, ©3, and Ay I k1, and ©; I
K2, and [O1]x = [O1]x1 = [O1]kz, then A, & = k1, Ay —> O, @ = K2, 0,

D.1.4  Properties of Complete Context.

Lemma D.27 (Type Constructor Preservation). If A ok, and (T : k) € A, and A — Q, then
(T : [Q]x) € [Q]A.

Lemma D.28 (Type Variable Preservation). IfA ok, and(a: k) € A,and A — Q, then(a: [Q]k) €
[Q]A.

Lemma D.29 (Finishing Kinding). IfQ ok, and Q IV k, and Q — Q’, then [Q]x = [Q']x.
Lemma D.30 (Finishing Term Contexts). IfQ ok, and Q IF°* T, and Q — Q’, then [Q']T = [Q]T.
Lemma D.31 (Stability of Complete Contexts). If A — Q, then [Q]A = [Q]Q.

Lemma D.32 (Softness Goes Away). If A;,A; — Q1,Qy where Ay — Qq, and A, soft, then
[Q1, Q2](A1, Az) = [Q41]Ar.

Lemma D.33 (Confluence of Completeness). If Ay — Q, and Ay — Q, then [Q]A; = [Q]A,.

Lemma D.34 (Finishing Completions). If Q ok, and Q — Q’, then [Q]Q = [Q']Q".
D.1.5 Soundness of Algorithm.
Lemma D.35 (Soundness of Kind Validating). IfQ ok, and Q Il «, then [Q]« is a validate kind in

the declarative system.

Lemma D.36 (Soundness of Well-formed Type Context). If A ok, and A — Q, then [Q]A is a
valid type context in the declarative system.

Lemma D.37 (Soundness of Well-formed Term Context). If A ok, and A ™Y T and A — Q,
then [Q]A + [Q]T.

Lemma D.38 (Soundness of Promotion). If A ok, and A IIJ;Ar K1 ~ Ko 4 O, then [@]k; = [O]k,.
Moreover, if A Il k;, and © — Q, then [Q]k; = [Q]k.

Lemma D.39 (Soundness of Unification). IfA ok, and A Y )y, and A IFY ks, and A 1P k) ~ Ky 4O,
then [O]k; = [Olk,. If© — Q, then [Q]x; = [Q]xs.

Lemma D.40 (Soundness of Application Kinding). If A ok, and A I ky, and A 1KY k,, and
A IH@PP i) 0 iy : k3 4 O, then [O]k; = [O]ky — [Olks. IfO — Q, then [Qk; = [Qlky — [Q]xs.
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Lemma D.41 (Soundness of Kinding). IfA ok, and A I ¢ : k 4 ©, and © — Q, then [Q]A ¥
[Q]o : [Q]x.

Lemma D.42 (Soundness of Typing Data Constructor Declaration). IfA ok, and A |F‘;§ D~>140,
and © — Q, then [Q]A I—‘i? D~ 1.

Lemma D.43 (Soundness of Typing Datatype Declaration). IfA ok, and A It 7 ~5 T 4 ©, and
© — Q, then [Q]A ¥t T~ [Q]T.

Lemma D.44 (Soundness of Typing Program). IfQ ok, and Q I T, and Q; T IP8™ pgm : o, then
[Q]Q; [Q]T 8™ pgm : 0.

D.1.6 Completeness of Algorithm.

Lemma D.45 (Completeness of Promotion). Given A ok, and A — Q, and A K &, and A IH «,
and [Al@ = @, and [A]x = k, if k is free of @, then there exists k2, © and Q' such that ® — Q’', and
Q— Q7 andAIl%rKWKg 4 0.

Lemma D.46 (Completeness of Unification). Given A ok, and A — Q, and A Y %1 and A K ks,
and [Alk; = k1 and [Alkz = ko, if [Qlx; = [Qlx,, then there exists © and Q' such that ® — Q’,
and Q — Q' and A M k1 = ky 4 O.

Lemma D.47 (Completeness of Application Kinding). Given A ok, and A — Q, and A 1Y k and
A K &', and [Alx = k and [A]c’" = ¥/, if [Qlk = [Q]k’ — ki, then there exists ik, © and Q' such
that® — Q’, and Q — Q’ and A IH2PP x ek’ 1 k5 4 ©, and [Q' ks = k1.

Lemma D.48 (Completeness of Kinding). Given A ok and A — Q, if [Q]A & [Q]o : «, then there
exists © and Q' such that® — Q’, and Q@ — Q' and A K o : k¥’ 4 O, and [Q]k" = k.

Lemma D.49 (Completeness of Typing Data Constructor Declaration). Given A ok and A — Q,
if [Q]A I—CT'? D ~> 1, then there exists © and Q' such that® — Q’, and Q — Q' and A H—‘j? D~
740.

Lemma D.50 (Completeness of Typing Datatype Declaration). Given A ok, and A — Q, if
[Q]A Ht 7~ U, then there exists © and Q' such that ® — Q’, and Q — Q’ and A 1Mt
T ~T40and¥ = [Q']T.

Theorem D.51 (Completeness of Typing a Group). Given Q ok, if [Q]Q ¥ recfi ~ K ;?,-i

then there existsx_;l, f,-l, ®, and Q’, such that Q IF"P rec ‘7_,71 ~ K_; E-i 40, where ® — Q’, and
[Q]x =K , and ¥; = [Q]T; .

D.2 Proofs
D.2.1  Well-formedness of Declarative Type System.

Lemma D.1 (Well-formedness of Declarative Typing Data Constructor Declaration). If> I—ﬂf D~
Ty, then I-k Ty @ k.
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Proor. We have

DC-DECL
ST Sk

Z '_(;C D?ll ~ Fji —
The goal follows trivially.
O

Lemma D.2 (Well-formedness of Declarative Typing Datatype Declaration). IfS 1t 7~ ¥, then
DY

Proor. We have
DT-DECL

(T:%' > %) ex

- J
@k Do
Tlli

. ]
Zl-dt dataTa,-lz @j '\/)Dj:Va,-:Ki’.Tj
T Ko J
2, aj : K; Tk
S J
Zlk\/a,-:icil.fj:*A

——
b I-DjZV(ZiZK,'l.Tj

By Lemma D.1

By rule k-FORALL

By rule EcTx-DCON
]

D.2.2  Well-formedness of Algorithmic Type System. By Lemma D.15 we know that if A ok, and
A — 0, it follows that © ok. Therefore, in the following lemma when we have A ok and A — O,
we always implicitly derive that © ok.

Lemma D.3 (Well-formedness of Promotion). If Ay, @, A; ok, and Ay, @, A, HJ; K1 ~ Ko 4 ©, then
0 = 04,@,0,, and Ay, @, Ay —> ©, and Oy Il k3, and © ok. By weakening, there is also © K k.

Proor. By induction on promotion.

e Case
A-PR-STAR

Allg*w*—m

The goals hold trivially.
e Case
A-PR-ARROW

A ”{; K1~ k3 4 Aq Aq ”{; [Al]Kz ~> Ky 40O

r
AII% Ki — Ky~ K3 — K410

LH.
LH.

A— A AN = All,a{\,Alz A A ”JW K3
A —ONO=0,,a0;A0; Ik

A— 0 By Lemma D.20
A — Oy By Lemma D.17
O K ks By Lemma D.10

O 1KY 13 — Ky

By rule A-xv-ARROW
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e Case
A-PR-KUVARL

ABI@] I B~ B -4 A[Bl[a]

The goals hold trivially.

e Case
A-PR-KUVARR

AE(B] B~ pr 4 Alpr @B = Bi]
Most goals hold trivially. By Lemmas D.21 and D.23 and transitivity (Lemma D.20) we can

prove A[@][f] — Al @B = Bil.

O

Lemma D.4 (Well-formedness of Unification). IfA ok, and A I k1 = k3 4 ©, then A — O, and
O ok.

Proor. By induction on the derivation of kind unification.

e Case
A-U-REFL

Al xk=x4A
A — A | By Lemma D.14
e Case

A-U-ARROW

AIH K1 ~ K3 4 O 0, [ [@1]1(2 ~ [@1]1(4 10

Al Ky > kyx k3 — k410

A — ©; | By LH.
0; — 0 | ByLH.
A — © | By Lemma D.20

e Case
A-U-KVARL
A HJ; K ~ ky 4 O[]

Ala] 1M @ ~ k40 = k3]

0=0,,a,0, AA — O[a] A O; IV k, | By Lemma D.3

0 — Ola = k2] By Lemma D.21
A — Bla = k3] By Lemma D.20
e Case

A-U-KVARR

AIIJ;Ar K ~ ko 4 O[]

Ala] Mk ~ a4 0[a = k2]

Similar to the previous case.
O

Lemma D.5 (Well-formedness of Application Kinding). If A ok, and A KPP i, e iy : k 4 ©, then
A — ©, and © ok. Moreover, if A I k1, then we have © 1KY k.
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Proor. By induction on the derivation of application kinding.

e Case
A-KAPP-KUVAR

A[&\l,&\z,(/fZ (’Z\l - (’Z\z] [H 5?1 ~ k40

A[@] IH2PP Z o i : @y 4 ©

Ala] — Alay, a3, @] By Lemma D.23
Alay, az, @] — Alay, @z, @ = a1 — @] | By Lemma D.21
Alay, 0,00 = &y — o] — © By Lemma D.4
A— O By Lemma D.20
Aay, @y, 2 = a1 — @] I @, By rule A-KV-KUVAR
0 I @, By Lemma D.10
e Case

A-KAPP-ARROW

Ak ~x40

AIH2PP e 5 ky ek i ky 4O
A— O By Lemma D.4
Ak — Kk, | Given
AT e, By inversion
0 I i, By Lemma D.10

O

Lemma D.6 (Well-formedness of Kinding). If A ok, and A Ko : x40, then A — O, and © ok,
and © I x and © 1K€ ¢ = k.

Proor. By induction on the derivation of kinding.

e Case for rules A-K-NAT, A-K-VAR, A-K-TCON, and A-K-ARrROW follows trivially.

e Case
A-K-FORALL

AHY x

A,a:K||‘kO':K2-|@,aZK

[@] Ko = %

A Va:ko: %40

A,a:K—>®,a:K/\®,a:1<IIJ<Ca<=*
A— O

O K %

AHY x

O 1K«

OIH Va: ko =%

e Case
A-K-APP

AleT11K1-|®1

(CH |Fk Tyt Ky 4 Oy

By LH.

By inversion

By rule A-xv-sTAR

Given

By Lemma D.10

By rules A-xc-EQ and A-K-FORALL

0, IH2PP [@,]k; ® [Os]Ks 1 k3 4 ©

A|H(T1T2:K3-|®

A—)@l/\®1 ”J(vKl/\@l ”J(CT1¢K1
0 — 0, AO, ”JWKz/\@z ”J«Tzﬁkfz
@2—>®

LH.
LH.
By Lemma D.5
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0, — 0 By Lemma D.20

A— O By Lemma D.20

O, 1KY 5, By Lemma D.10

O, IHv [©]K1 By Lemma D.12

O 1KY i3 By Lemma D.5

O IHC 7, = Ky By Lemma D.10

O 1K 7, & Ky By Lemma D.10

[O]([©2]Kk1) = [O]([O2]x2) — [O]ks By Lemma D.40

[Blk; = [O]ky; — [O]ks By Lemma D.18

O IH2PP [O]k; o [O]k; : [Oks 4 © By rule A-xapp-ARROW and rule A-U-REFL
O 1 1 = k3 By rules A-xc-EQ and A-k-APP

O

Lemma D.7 (Well-formedness of Typing Data Constructor Declarations). IfA ok, and A |F‘:§ D~
T 40, then A —> ©, and © ok. and © I 1 & *.

Proor.
A-DC-DECL

AMET S 7:%40
AHE DT ~T 5740
Follows directly from Lemma D.6.

O

Lemma D.8 (Well-formedness of Typing Datatype Declaration). IfA ok, and A Mt 7~ T 4 ©,
then A —> ©, and © ok, and © |F¥<X T,

Proor.
A-DT-DECL '
=i =i i n 7)
(TZK)GA A, a; [H [A]K%((Zi —>*)-|®1,G(i=Ki @j aiZKl'l”‘(;“CEi Dj’\»‘[j-|®j+1, (Zl‘ZKl'l
s _ 1.. 7}
At data Ta' = Djje "o Dj:Va; iK1 4 Opng
—i
A— A, a; By rule A-CTXE-ADD
=i — i
A ai — O, a; =K; By Lemma D.4
A — O By Lemma D.17
©1,a: k' — Ouyp, @ k;' | By Lemma D.7 and Lemma D.20
0 — Opy g By inversion
A— O By Lemma D.20
- j€l..n
O, @K K 7 = % By Lemma D.7
- j€l..n
Op, a1 K; K 7 & By Lemma D.10
- j€l..n
0, Ik Va7 x; l.rj = x By rules A-kc-£Q and A-K-FORALL
— X j€l..n
=1
0, IF™ D; : Va; : a; .1 By rule A-EcTx-DCON

D.2.3  Properties of Context Extension.
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Lemma D.9 (Declaration Preservation). If A — ©, if a type constructor or a type variable or a
kind unification variable is declared in A, then it is declared in ©.

Proor. By a straightforward induction on A — ©. O

Lemma D.10 (Extension Weakening). Given A — O,

o ifA I, then © I k;
o ifA e 6 < K, then © I ¢ < k.

ProoF. Part 1 By induction on A IH k.
e Case
A-KV-STAR
AT %
The goal holds trivially.

e Case
A-KV-ARROW

A EY gy A Yk,

A K = K,
The goal holds directly from LH..

e Case
A-KV-KUVAR

ael
AR g
The goal holds directly from Lemma D.9.
Part 2 By induction on A I o : k 4 A.

e The case for rules A-k-NAT and A-k-ARROW holds trivially.

o The case for rules A-k-vARr and A-k-Tcon holds from Lemma D.7 and Lemma D.18.

o The case for rule A-x-roraLL holds from LH. and Lemma D.18.

e The case for rule a-x-arp depends on the extension weakening of application kinding.
Given the hypothesis, it’s impossible for the derivation to ever use rule A-KAPP-KUVAR.
The extension weakening on rule A-kapr-ARROW then depends on the extension weaken-
ing of kind unification. Given the hypothesis, it’s impossible for the derivation to ever use
rules A-U-kvARL and A-U-kVARR. The case for rule A-u-rrEFL holds trivially, and the case

for rule A-u-arrow holds directly from L.H..
mi

Lemma D.12 (Substitution Kinding). IfA ok, and A I k, then A KV [A]k.

Proor. By induction on | A + k |. We then case analyze k.

e k¥ = . The goal holds trivially.

® Kk = k; — Kj. The goal directly from LH..

e x = a. If & is unsolved in A, then the goal holds directly. Or otherwise we have A = A, @ =
K, A;. Because A ok, we have A; IV x and | A + k |=| A F « |, which is less then | A F @ |.
So we apply LH. to get the goal.

O

Lemma D.13 (Context Extension with Defaulting is Context Extension). IfA —» ©, then A —
o.

Proor. By straightforward induction on A —» ©. m]
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Lemma D.14 (Reflexivity of Context Extension). If A ok, then A — A.

Proor. By straightforward induction on A ok. The conclusion follows directly from the defini-
tion.
O

Lemma D.15 (Well-formedness of Context Extension). If A ok, and A — ©, then © ok.

Proor. By induction on A — ©.

e Case
A-CTXE-EMPTY

e —> e

Follows directly by rule A-TcTx-EMPTY.

e Case
A-CTXE-TVAR

A— 0O

ANa:k—0,a:k

A, a: k ok | Given

AT By inversion

A— O Given

O K x By lemma D.10

O ok LH.

0, a: k ok | By rule A-TCTX-TVAR

e Case
A-CTXE-TCON

A— ©
AT :k—0,T:k

This case is similar to the case for rule A-TCTX-TVAR.
e Case

A-CTXE-KUVAR
A— 0O

Ao — O,a
The goal holds directly from L.H. and rule A-TCTX-KUVAR.

e Case
A-CTXE-KUVARSOLVED
A— O [O]x; = [O]«k,
ANad=Kk — 0,a =k
0 ok LH.
A, @ = k; ok | Given
A i By inversion
A— O Given
O IHY By lemma D.10

Suppose k3 is not well-formed under ©, then it must contain kind unification variables that
are not in ©. Then it is impossible to have [©]x; = [O]k; given © IV k;. Thus by contradic-
tion we have © IH k,. Then ©, @ = k; ok by rule A-TcTX-TCON.
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e Case
A-CTXE-SOLVE

A—©O 0k

ANa— 0O,a=«

The goal holds directly from LH. and rule A-TCTX-KUVARSOLVED.

o Case
A-CTXE-ADD
A— 0
AN—0,a
The goal holds directly from L.H. and rule A-TCTX-KUVAR.
e Case

A-CTXE-ADDSOLVED
A—©O 0k

AN—0O,a=k

The goal holds directly from LH. and rule A-TCTX-KUVARSOLVED.

Lemma D.17 (Extension Order).

(1) If Ay,a : x,A; — O, then ©
Q, soft.

(2) If A, T : k,A; — O, then ©
0, soft.

(3) If A1, &, Ay — ©, then © = 01,0, 0, where Ay —> Oy, and O’ is either & or & = k for some
K. Moreover, if A, soft, then ©; soft.

(4) If A, @ = k1,Ay —> O, then ©® = O1,a = k3,0;, where Ay — Oy, and [O1]x; = [O1]xs.
Moreover, if A, soft, then ©, soft.

01, a : k,0;, where Ay — ©;. Moreover, if A, soft, then

01, T : k, 02, where Ay — ©1. Moreover, if A, soft, then

Proor. We give the detailed proof for the first part. The proof for the rest parts is similar.
By induction on Ay, a: x, Ay — O.

e Case A = o by rule A-cTxe-EmPTY. This case is impossible.

e Case Aj,a: k — ©’,a: k by rule A-cTxE-TVAR when A; is empty. In this case, let ©; = ©’
and ©; be empty. All goals follow directly.

e Case Aj,a : k,A',b : Kk — O, b : Kz by rule A-cTxe-TvAR where Ay = A’,b : kz and
Ay,a:x, A" — © . By LH. we have ® = ©1,a: k,0, and A; — 0. Let ©; = ©), b : k3
and all goals follow directly.

e Case Aj,a: x,N',T : ko — ©',T : kp by rule A-cTxE-TCON wWhere A; = A, T : k; and
A1, a:kx, N’ — ©’. This case is similar to the above case.

e Case Aj,a:k,A',@d — ©’, & by rule A-cTxe-KUVAR where A, = A’,@ and Ay, a: k,A' —
©’. By LH. we have ® = ©1,a: x,0; and A; — ©;. Let ©; = ©), @ and all goals follow
directly. And if A" soft, by LH. we have © soft. By definition we have 0, soft.

e Case for rules A-CTXE-KUVARSOLVED, A-CTXE-SOLVE, A-CTXE-ADD, and A-CTXE-ADDSOLVED
are similar to the above case.

i

Lemma D.18 (Substitution Extension Invariance). IfA ok, and A IV k, and A — ©, then [O]x =
[O]([A]k) and [O]x = [A]([O]x). As a corollary, if A IV xy, A IV ky, and [Alk; = [Alk, then
[©]k1 = [O]k,.
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Proor. Because A K k, so every solved kind unification variable in A is solved in ©. Therefore

[0]x = [A]([O]K).

To show that [@]k = [O]([A]x), we do inductionon | A F k |.

[ ]
A-KV-STAR

AT %
The goal follows trivially.

L]
A-KV-ARROW

A Y Ak

A K = K,
The goal follows directly from LH..

[
A-KV-KUVAR

aeN

K
There are two subcases. Firstly, & is unsolved in A. Then [0@]([A]@) = [O]a follows directly.
Or we have A = Ay,a = k,A;. Then by Lemma D.17 we have ® =0, = k,0, and
[©:]x = [©1]’. Because | A + k |<| A + & |, by LH., we know that [@]x = [O]([A]k).
Therefore, [O]a = [O]x” = [O]k = [O]([A]x) = [O]([A]).
For the corollary, we have [O]k; = [@]([A]x1) = [O]([Alk2) = [O]k;.

Lemma D.19 (Substitution Stability). If A1, Az ok, and A, I x, then [A1, As]k = [Ar]x.

Proor. Follows directly as x and A; do not contain kind variables in A,.
O

Lemma D.20 (Transitivity of Context Extension). If A’ ok, and A’ — A, and A — ©, then
AN — 0.

Proor. By induction on A — ©.

e Case
A-CTXE-EMPTY

e —> e

We have A’ — e as given.

e Case
A-CTXE-TVAR
A— 0O
ANa:k—0,a:k
N —Aa:x Given
A = Aj,a:k ANy — A | By inversion
A,a:xk — 0,a:k By rule A-CTXE-TVAR

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.



53:28 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

e Case
A-CTXE-TCON

A— 0O
AT :k—0,T:k

This case is similar to the case for rule A-CTXE-TVAR.
e Case

A-CTXE-KUVAR
A— 0O
Ao — O,a
Since A’ — A, @, the derivation must conclude with either rule A-cTXE-KUVAR or rule A-CTXE-ADD.
— By rule A-CTXE-KUVAR.

AN =A,a AN — A | Given
A — O ILH.
A, — O,a By rule A-CTXE-KUVAR

— By rule A-cTXE-ADD.

AN — A Given
AN — © LH.
A’ — ©,a | By rule A-CTXE-ADD

e Case
A-CTXE-KUVARSOLVED

A —_ @ [@]Kl = [@]Kz

ANad=ki — 0,0 =k

Since A’ — A, @ = k1, the derivation must conclude with either rule A-cTXE-KUVARSOLVED
or rule A-CTXE-ADDSOLVED.
— By rule A-CTXE-KUVARSOLVED.

N =A,a=xKxg AN — AA[A]ko = [A]x; | Given

A — O LH.

@]KO

= [O]k; By Lemma D.18

= [O]«k; Given

A, d=k)— ©O,a = Ky By rule A-CTXE-KUVAR

— By rule A-CTXE-ADDSOLVED.

N — A Given
AN — 0O LH.
A" — ©,a =k, | By rule A-CTXE-ADDSOLVED

e Case
A-CTXE-SOLVE

A—©O 0k

ANa— 0O,a=«
Since A’ — A, @, the derivation must conclude with either rule A-cTXE-KUVAR or rule A-CTXE-ADD.
- By rule A-CTXE-KUVAR.
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AN =A,a AN — A | Given
A — O ILH.
A, d — O,a =k By rule A-CTXE-SOLVE

— By rule A-cTXE-ADD.

AN — A Given
AN — 0O LH.
A’ — ©,a =k | By rule A-CTXE-ADDSOLVED

e Case
A-CTXE-ADD
A— 0O
A—0,a
AN — 0O LH.
A —> ©,a | By rule A-CTXE-ADD
e Case
A-CTXE-ADDSOLVED
A—©O Ok
AN—0O,a=k
AN — 0O 1H.

A — ©,a = k | By rule A-CTXE-ADDSOLVED

O

Lemma D.21 (Solution Admissibility for Extension). IfA;, @, Az ok and Ay I «, then Ay, @, Ay —>
Al, (’f =K, Ag.

Proor. By induction on A,.

e Case A, is empty. Then A, — A; by Lemma D.14, and A;,& — A;,&@ = k holds by
rule A-CTXE-SOLVE.

e Case Ay = Aj,a: x. By LH,, we Ay, a, A, — A, a =K, Aj. Then by rule A-CTXE-TVAR we
are done.

e Case Ay = A}, T : x. By LH. and rule A-CTXE-TCON.

e Case A; = A), @. By LH. and rule A-CTXE-KUVAR.

e Case Ay = A), @ = k. By LH. and rule A-CTXE-KUVARSOLVED.

O

Lemma D.22 (Solved Variable Addition for Extension). If Ay, A, ok and A4 I K, then Ay, Ay —>
Al, Ef =K, Az.

Proor. The proof is exactly the same as the one for Lemma D.21. Except for the case when A,
is empty, we use rule A-CTXE-ADDSOLVED.
m]

Lemma D.23 (Unsolved Variable Addition). If A;, A, ok then Ay, Ay — Ay, @, As.

Proor. The proof is exactly the same as the one for Lemma D.21. Except for the case when A,

is empty, we use rule A-CTXE-ADD.
i
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Lemma D.24 (Parallel Admissibility). If A; — ©4, and Ay, A, ok, and Ay, A, — ©1,0;, and A,
is fresh w.r.t. ©y, then:

L] Al, (’Z\, Az — @1, (’7(\, @2

o IfO; I k, then Ay, @, Ay — ©1,@ = k, O,

[ ] If[@l]Kl = [@1]1(2, then Al,ff = Kl,Ag — @1,(’1\ = Kz,@g

Proor.  Part 1 By induction on ©,.
e O, = o. Because A; is fresh w.r.t. ©;, we must have A, = o. We have A, — ©;,a by
rule A-CTXE-KUVAR.
e ©; = @, a: k. Then the derivation of A;, A, — ©1, ®; must conclude with rule A-cTXE-TVAR.
It must be Ay = AJ, a: k. (Or otherwise if (a : k) € Ay, then we must have (a : k) € ©; by
Lemma D.9, and ©4, ©; is no longer well-formed.)

A, AL a:k — ©1,05,a:k Given
Ay, A} — 04,0, By inversion
A a, A, — 01,a,0, LH.

~ A/ . ~ ~7 .
Ay a,Aja:x — O,a,0),a: k | By rule A-CTXE-TVAR

e O, = ©;,T : k This case is similar to the case when @, = @7, a : k, except that we reason
using rule A-CTXE-TCON.

* 0; =0, a; Then the derivation of A1, Ay — ©1, ©, must conclude with either rule A-cTXE-KUVAR
or rule A-CTXE-ADD.
- Subcase: the derivation concludes with rule A-cTXE-KUVAR. It must be Ay = AJ, ai.

A, A — 04,0, Given
Al,(’f, Aé — @1,(’1\, @é ILH.
Ay, @, Ay, @y — ©4,@,0),a; | By rule A-CTXE-KUVAR

— Subcase: the derivation concludes with rule A-cTxE-ADD.

Al, Az — @1, @é Given
AL @ Ay — ©,,0) LH,
Ay, o, Ay — O1,a,0),a; | By rule A-CTXE-ADD

e O, = ©),1 = k. Then the derivation of A;,A; — ©1,0; must conclude with either
rule A-CTXE-KUVARSOLVED or rule A-CTXE-ADDSOLVED or rule A-cTxE-sOLVE. In either case,
the reasoning is similar to the above case.

Part 2 Similar to Part 1, except that when ©;, = e, we apply rule A-CTXE-SOLVE.
Part 3 Similar to Part 1, except that when ©;, = e, we apply rule A-CTXE-KUVARSOLVED.
O

Lemma D.25 (Parallel Extension Solution). If Ay, @, Ay — ©1,@ = k2, 0., and [O1]x; = [O1]k2,
then A, & = k1, Ay — O, = Ky, Os.

Proor. By induction on ©;.

e Case O, is empty. Then A, must be empty. Then Aj, @ — Oy, @ = k2. By inversion we have
A1 — ©1. And A1, & = k; — Oy, @ = k3 holds by rule A-CTXE-KUVARSOLVED.

e Case O, =0),a: k. Then Ay = A}, a: k. By LH, we Ay, & = k1, A} — O1,& = k32,0). Then
by rule A-TCcTXE-TVAR We are done.

e Case ©; = ©,,T : k. By LH. and rule A-TCTXE-TCON.
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e Case O, = O}, ;. Then the derivation of Ay, &, A; — O1,& = k3, 0}, &, must conclude
with either rule A-CTXE-KUVAR or rule A-CTXE-ADD.
— Subcase: the derivation concludes with rule A-cTXE-KUVAR. It must be Ay = AJ, ai.

A, @, Ay — 01, = k3,0, Given
Al,(/f: Kl,A/ — @1,(’3{\2 Kz,e)/ LH.
2 2

A, o =K1, Ay, @y — O1,a = k3,0, @2 | By rule A-CTXE-KUVAR

— Subcase: the derivation concludes with rule A-cTxE-ADD.

A, @, Ay — 01, = K3, 0, Given
Al,ff: K],Az e @1,(7: Kz,@é LH.
Ay, o = K1,Ay — O, & = k2,0, ; | By rule A-cTxE-ADD

e Case ©, = ©,, a; = k. This case is similar to the last one.
O

Lemma D.26 (Parallel Variable Update). If Ay, &, Ay — ©1, & = k, ©3, and Ay I k4, and ©; I
Kz, and [O1]k = [O1]ky = [O1]ky, then Ay, @ = k1, Ay — O, @ = k3,0

Proor. The proof is exactly the same as the one for Lemma D.25. Except for the case when 0,
is empty, we use rule A-CTXE-SOLVE.
O

D.2.4  Properties of Complete Context.

Lemma D.27 (Type Constructor Preservation). If A ok, and (T : k) € A, and A — Q, then
(T : [Q]x) € [Q]A.

Proor. Suppose A = Ay, T : k, Ay. Then by Lemma D.17 we know Q = Q,T : k, Qz, Ay — Q.
So (T : [Q1]x) € [Q]A according to the definition of context application. Because A ok, and
A — Q, by Lemma D.15 we have Q ok. So by inversion we have Q; I k. By Lemma D.19
we have [Q]x = [Q1]k. Therefore (T : [Q]x) € [Q]A.

O

Lemma D.28 (Type Variable Preservation). IfA ok, and(a: k) € A,and A — Q, then(a: [Q]k) €
[Q]A.

Proor. This lemma is similar to Lemma D.27.

Lemma D.29 (Finishing Kinding). IfQ ok, and Q I k, and Q — Q’, then [Q]x = [Q']x.

Proor. By Lemma D.18 we know [Q']x = [Q"]([Q]k). Because [Q]x contains no unsolved kind
unification variable, we have [Q']([Q]x) = [Q]k. Therefore [Q']x = [Q]«.
O

Lemma D.30 (Finishing Term Contexts). IfQ ok, and Q IF°* T, and Q — Q’, then [Q']T = [Q]T.

PROOF. By Q [ T', we have that any kind « that appears in I has Q IV k. So our goal follows
directly from Lemma D.29.
m]

Lemma D.31 (Stability of Complete Contexts). If A — Q, then [Q]A = [Q]Q.

Proor. By induction on A — Q.
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e Case
A-CTXE-EMPTY

e —> e

The goal follows trivially.

e Case
A-CTXE-TVAR

A— 0O

ANa:k—0,a:k
Wehave A=A,a:xk, Q=Q",a:kand A" — Q’.
QJA
[Q,a:k](A’,a: k) | By definition
[QA,a:[Q]k By definition
[
[

—

QN a: [Q]k By LH.
Q',a:k|(Q,a: k) | By definition

e Case
A-CTXE-TCON

A— 0O
AT :k—0,T:k

This case is similar to the case for rule A-CTXE-TVAR.
e Case

A-CTXE-KUVAR
A— 0O
ANa— O,a
This case is impossible as Q is a complete context.

e Case
A-CTXE-KUVARSOLVED

A e @ [@]Kl = [@]Kz
ANad=k3 — 0,0 =k
Wehave A= A, a=k;,Q=Q", & = ky and [Q']x; = [Q]k>.

[Q]A

=[Q,a = k2](A',@ = k1) | By definition
= [Q']A’ By definition
- [Q']Q’ By LH.
=[Q,a = k2](Q', @ = k2) | By definition

A-CTXE-SOLVE

A—©O 0k

ANa— 0O,a =«

This case is similar to the case for rule A-CTXE-KUVARSOLVED.

e Case
A-CTXE-ADD

A— O
A— O,a

This case is impossible as Q is a complete context.
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e Case
A-CTXE-ADDSOLVED

A—©O 0k

AN—0O,a=k
This case is similar to the case for rule A-CTXE-KUVARSOLVED.
O

Lemma D.32 (Softness Goes Away). If A;,A; — Q1,Qy where Ay — Qq, and A, soft, then
[Q1, Q2](A1, Az) = [Q1]Ar.

Proor. By induction on A; and the goal follows directly from the definition of context applica-
tion.
O

Lemma D.33 (Confluence of Completeness). If Ay — Q, and Ay — Q, then [Q]A; = [Q]A,.

Proor. By Lemma D.31 we have [Q]A; = [Q]Q and [Q]A; = [Q]Q. Therefore [Q]A; = [Q]A,.
O
Lemma D.34 (Finishing Completions). If Q ok, and Q — Q’, then [Q]Q = [Q']Q".

Proor. By induction on Q — Q.

e Case
A-CTXE-EMPTY

e —> e

The goal follows trivially.
e Cases for rules A-CTXE-KUVAR and A-CTXE-ADD are impossible as Q and Q' are complete
contexts.

e Case
A-CTXE-TVAR

A— 0O

ANa:k—0,a:k

Sowehave Q = Qy,a:k,and Q' = Qf,a: k.

[Q]Q; = [Q]]Q] By LH.

[Ql,a K|(Qi,a:x) =[Q]Q,a:[Q]x By definition
[Qf,a:k](Q],a:x)=[Q]]Q],a:[Q]]x By definition

Q ok Given

Q; ok A Q; IHY k By inversion
[Qi]x = [Q]]x By Lemma D.29

[Q1,a:k](Q,a:x) =[Q],a:«k](Q],a:«) | Follows from the equations

e The rest cases are similar to the above case.

D.2.5 Soundness of Algorithm.

Lemma D.35 (Soundness of Kind Validating). IfQ ok, and Q Il «, then [Q]k is a validate kind in
the declarative system.

Proor. By induction on the size of | Q F k |. Then case analyze on k.

e Case k = . Follows trivially by [Q]x = *.
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e Case k = Ki = K. Follows directly from L.H..
e Case k = a. Q must be Qq, & = k,Q,, and [Q]a = [Q]x. By LH., we know [Q]k is a well-
formed kind.

O

Lemma D.36 (Soundness of Well-formed Type Context). If A ok, and A — Q, then [Q]A is a
valid type context in the declarative system.

Proor. By induction on the well-formedness of type context.

e Case
A-TCTX-EMPTY
e ok
Holds trivially.
e Case
A-TCTX-TVAR
Aok Ak
A, a:x ok
Aa:k— Q Given
Q=0Q1,a:x,Q ANQysoft A\ A — By Lemma D.17
[Q](A,a: k)
=[Q,a:x Q](A a: k)
=[Q,a:x](A,a: k) By Lemma D.32
= [Q1]A,a: [Q1]x By definition
[Q1]A is a valid declarative type context | LH.
[Q1]x is a declarative validate kind By Lemma D.35
[Q1]A, a: [Q4]x is a valid type context
e Case

A-TCTX-TCON

Aok Ak
A, T : x ok

This case is similar to the case rule A-TCTX-TVAR.

e Case

A-TCTX-KUVAR

A ok

A, @ ok
Aa— Q Given
Q=0Q,a=x,Q AQ;soft AA—> Q; | By Lemma D.17
[Q](A, @)
=[Qq, & =k, Q](A, @)

[Q1]A By Lemma D.32

[Q1]A is a valid declarative type context | LH.

e Case
A-TCTX-KUVARSOLVED

A ok Ak

A, @ =k ok
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This case is similar to the case rule A-TCTX-KUVAR.
O

Lemma D.37 (Soundness of Well-formed Term Context). If A ok, and A F** T, and A — Q,
then [Q]A + [Q]T.

Proor. By induction on the judgment of well-formed term context.

e Case
A-ECTX-EMPTY
A I o
Follows trivially by rule EcTX-EMPTY.
e Case
A-ECTX-VAR
AT AR s = %
AFYT,x:0
[QIA+[QIT LH.
[Q]A K [Q]o : [Q]* By Lemma D.41
[Q]A K [Q]o : % By definition
[QIT,x:0)=[Q]l,x: [Q]o | By definition
[QIA+[QIT, x: 0) By rule ECTX-VAR
e Case

A-ECTX-DCON
AT A g =%

AT D:o
This case is similar to the case for rule A-ECTX-VAR.

Lemma D.38 (Soundness of Promotion). If A ok, and A IIJZ{Ar K1 ~ Ko 4 O, then [@]k; = [O]k,.
Moreover, if A I k1, and © — Q, then [Q]i; = [Q]xks.

Proor. By Lemma D.3 and Lemma D.138, if given [O]k; = [B]k,, we can prove [Q]x; = [Q]k,.
Thus we only need to prove that [@]x; = [O]«k.
By a straightforward induction on the promotion judgment. All cases follow trivially.
O

Lemma D.39 (Soundness of Unification). IfA ok, and A Y %1, and A 1Y x5, and A I k1 ~ kp 4 O,
then [O]k; = [Olk,. If© — Q, then [Q]x; = [Q]x,.

Proor. By Lemma D.4, Lemma D.10 and Lemma D.18, if given [O]k; = [O]k2. we can prove
[Q]x1 = [Q]xz. Thus we only need to prove that [O]k; = [O]x;.
By induction on the unification judgment.

e Case
A-U-REFL

A x=x4A
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e Case
A-U-ARROW
AlM Kk = k340, 01 IF [O1]k; ~ [O1]ks 1 ©
Ak > KkyrKk3 — k410
A — 0O By Lemma D.4
0, — 06 By Lemma D.4
A—© By Lemma D.20
[©1]k1 = [O1]ks3 By LH.

[O©]k; = [O]k3

A H‘kv K2

O I [01]k,

01 K [O1]k4

[O]kz = [O]ky

[O](x1 — k2) = [O](k3 — Kk4)

e Case

[0[a]]x = [O[a]]x,

A — O[a] A Ofa] K k,
Ola] — O[a = ;]

[0]a = k2]]x = [6]a = K2]]K>

e Case

By Lemma D.18

By inversion

By Lemma D.10 and Lemma D.12
As above

By LH. and Lemma D.18

Follows directly

A-U-KVARL

AIIJ;Ar K ~ ko 4 O[]

Ala] M @ ~ k 4 0[a = k2]

By Lemma D.38

By Lemma D.3

By Lemma D.3 and Lemma D.21
By Lemma D.18

A-U-KVARR

AHJZ?r K ~ Ky 4 0[]

Ala] Mk ~ a4 0[a = k2]

This case is similar to the case for rule A-U-KvVARL.

Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

O

Lemma D.40 (Soundness of Application Kinding). If A ok, and A I ky, and A 1KY k,, and

A KPP i) @ Ky : k5 4 ©, then [O]k;

= [B]k; — [O]xs. If® — Q, then [Q]x;

=[Qlky; — [Q]xs.

Proor. By Lemma D.5, Lemma D.10 and Lemma D.18, we know [Q]x; = [Q]([@]x;) and [Q]k, =
[Q]([O]k2) and [Q]ks = [Q]([O]k3). Thus we only need to prove that [O]k; = [@]k; — [O]xs.
By induction on the application kinding judgment.

A-KAPP-KUVAR

&\2,&\2(’1\1 —>6?2]||—”5?1z1<4®

e Case

A[&\ly
[©]a; = [©]«
Alay, ap, 0 =y — a] — ©
[©]a
= [0]([Alay, a2, = a1 —
= [0]([Alay, a2, = a1 —

a]]a)

@]y — @) | By definition

A[@] IHePP Z ok : @y 4 ©

By Lemma D.39
By Lemma D.4

By Lemma D.18
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=[0](a1 — @2) By Lemma D.18

= [0]a; — [O]a; By definition

= [O]x — [O]a; By substituting the equation
e Case

A-KAPP-ARROW
Ak ~x40

AP ) — ek ik 4O
[Olk; = [O]x By Lemma D.39
]
= [O]k; — [O]k; | By definition
[©]k — [®]k, | By substituting the equation
O

Lemma D.41 (Soundness of Kinding). IfA ok, and A I ¢ : x 4 ©, and © — Q, then [Q]A ¥
[Q]o : [Q]x.

Proor. By induction on the kinding judgment.

e Case

A-K-NAT

Al Int:x4A

[Q]A & [Q]Int : [Q]* By rule k-NAT.

e Case

A-K-VAR

(a:x)€eA

A g:kA

(a:x)eA Given

(a:[Q]x) € [Q]A | By Lemma D.28
[QJAF [Q]a: [Q]k | By rule xk-var

e Case
A-K-TCON
(T:x)eA
AKT: k4A
Similar to the rule A-k-vAR case with Lemma D.27.
e Case
A-K-ARROW

A= % = % = % 4A
[Q]A & [Q] —: [Q](* — * — *) by rule K-ARROW.

e Case
A-K-FORALL
ARk Aa:klHo:k,40,a:k [O]ks = %
A Va:ko: x40
0 — Q Given
Q,a:k —> Q,a:k By rule A-CTXE-TVAR
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[Q,a:x](Aa: K) K[Q,a:k]o: [Q,a: K]k, LH.
[QA, a: [Qlk ¥ [Q,a:k]o: [Q,a:k]([O,a:k]ky) | By Lemma D.18
[QIA, a: [Q]k K [Q,a:k]o : [Q, a:Kk]x By definition
[Q]A, a: [Q]k ¥ [Q]o : [Q]* By property of context application
[Q]A K Va: [Qlk.[Q]o : [Q]x By rule k-FORALL
e Case
A-K-APP
A ”‘k T1: K1 40 0, ”‘ Ty : Ko 4 Oy 0, ”_kapp [@2]K1 ° [@z]Kz 1 k340
A IH T1Ty : K3 40O
0, — 0, By Lemma D.6
0, — 0 By Lemma D.4
0, — Q By Lemma D.20
[Q]A I—k [Q]71 : [Q]k LH.
[Q]A ¥ [Q]z : [Q]k2 Similarly
[Q]x1 = [Q](k2 — k3) =[Q]k2 — [Q]ks | By Lemma D.40
[Q]A K [Q](11 12) : [Q]ks3 By rule x-app-p

O

Lemma D.42 (Soundness of Typing Data Constructor Declaration). IfA ok, and A |F‘;§ D~>140,

and © — Q, then [Q]A

Proor. We have

e D~ 1.

A-DC-DECL :
AT S 7:%40

AHE DT ~T 5740

Follows directly from Lemma D.41 and rule pc-pEcL.

O

Lemma D.43 (Soundness of Typing Datatype Declaration). IfA ok, and A It 7 ~5 T 4 ©, and
0 — Q, then [Q]A ¥ T~ [Q]T.

Proor. We have

A-DT-DECL

0, @K |rdc

(T:x)eA

A G M [Alk ~ @

/\—i
— %) 401, a; = k; i Dj~> 14Oy, K

7

A 1M data

i

— ——j€l..n J
Ta; =.Z)j MDjZV(ZiZK,' -Tj 40,41

=1 =
A, ap — Oy, a; = k;
A—>®1

By Lemma D.4
By Lemma D.17

0;,
®j — ®j+1
Opy; — Q
0, —a
A— Q
®n+1, ai :

5®+1,

K,‘l

—)Q, aiiK,'l

By Lemma D.7

By Lemma D.17
Given

By Lemma D.20

By Lemma D.20

By rule A-CTXE-TVAR
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j
Ojy1, it K —>Q a; K

[Q, a7 x; ](®}+17 aj : Kj l) D ~> [Q]T]

— J
[Q]®j+1, a; : [Q]Kz "d z)j [Q]Tj
[QIA, a; : [Qlx; K z)j [Q]7;

(T:x)eA
(TI[Q]K)G[ 1A

- —_—i
®l,at—’<t > Q, al_Kl

[Q, m](m]m- Q. @ =r )@ — %)
[QI([A]K) = [Q]Kl — *

[Q]x = [Qlx; — *

[Q]A Ht T ~ [QIT

Lemma D.44 (Soundness of Typing Program). IfQ ok, and Q I T, and Q; T I8 pem :

[Q]Q; [Q]T 8™ pgm : 0.

By Lemma D.20
By Lemma D.42

By definition
(1) By Lemma D.33

Given
(2) By Lemma D.27

By rule A-CTXE-KUVARSOLVED
By Lemma D.39
By definition

(3) By Lemma D.18
By rule pT-pECL and (1), (2), (3)

Proor. By induction on the typing program judgment.

e Case
A-PGM-EXPR

[QIQ[QITke: o

Q;TIPeEM e o
The conclusion holds directly from the hypothesis and rule PGM-ExPR.

e Case
A-PGM-DT

—i —
0,=Q,0a ,Ti:q;

0, K 5 [ 401 Oy —»Q QLT P8 pem: o
Q;T [Pem reci-’iEl " ipgm: o
By Lemma D.8

0; — ®i+1i
8n+1 — Q’

@—)Q’i

—i€l..n —i€l..n ,
Q, a; , T o — Q
, , —i€l..n Tielun
QzQ’aizki’Qi ,Tiiai,Qi
—_— 0 i
Q;soft A Q! soft
Q — Q//
[Q7]Q
, = i€l..n — /iel..n
= [Q", & = ki, Qi > Ty o, Q]
i€l..n i€l..n

(Q, a; = ki, Q; T, QF )
—i€l..
=[Q"Q" T x; "
—i€l..n
=[QIQ, T xi
[Q1]©; 1t 77 ~ [Q]T;

i€l..n

By Lemma D.13
By Lemma D.20
—i€l..n —i€l..n
@1 Q (Z, . Tl' DO
By Lemma D.17

Above
Above

for some «k;, by Lemma D.32
By Lemma D.34

By Lemma D.43

53:39

o, then
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i€l..n

[Q16; = [ By Lemma D.31
i€l..n

[Q]Q Ht T7 ~ [QUT By substituting the equation

- i€l..n
[Q]Q, T; : k; L gt Ti ~ [Q]T; (1) By substituting the equation
[, T = [, [ " By definition
[Q]T

i€l..n i€l..n

=[Q,’al_Ki’QiE ”I‘l E{\i’Q;’E ]
=[Q"”]l By definition and freshness
=[Q]T By Lemma D.30
[Q]Q: [Q(T, T wem pgm: o LH.

—i€l..n ————i€l..n
[Q]Q, T; : k; < ;[QIT, [Q]T; 8™ pem : o | (2) By substituting equations
[Q]Q;[Q]T P8 pgm : o By rule pGM-DT and (1), (2)

D.2.6 Completeness of Algorithm.

Lemma D.45 (Completeness of Promotion). Given A ok, and A — Q, and A K &, and A I x
and [Al@ = @, and [A]x = k, if k is free of @, then there exists k2, © and Q' such that ® — Q’, and
Q— Q) andAll%erlcz 4 0.

Proor. By induction on k.

e k = %. Then by rule A-Pr-sTAR, we have © = A, and Q' = Q.
® K=K — K».

A Ky~ ks 4 A AN — QA Q — O LH.
A Y @ By Lemma D.10
Ay IHY ALk, By Lemma D.10 and Lemma D.12
Aq ”{i; [Al]Kz ~~ Kk 1ONO — Q' AQ — Q| LH.
A HJ; Ki — Kz~ K3 — K440 By rule A-PrR-ARROW
Q— Q' By Lemma D.20
K =p.
- B is to the left of @. Then by rule A-Pr-kUVARL, we have © = A, and Q' = Q.
/? to the right of &. Then by rule A-Pr-KUVARR, we have © = A[ﬁz, a][ﬁ = ﬁg].
Ala] [ﬁ] —Q Given
Q=Qla= Kg][ﬁz Kq] By Lemma D.17
ALBo, @Bl — QLBz = [Qrs, @ = K31 = xa] By Lemma D.24
A[ﬁz,ﬁ][é = fo] — QB =LQ]K4,§ = k3][B = k4] | By Lemma D.25
Q, = QIf; = [Qks @ = k31[B = K Let

i

Lemma D.46 (Completeness of Unification). Given A ok, and A — Q, and A IKY 5, and A 1KY Ky,
and [Alk; = k1 and [Alkz = ko, if [Qlx1 = [Qlxy, then there exists © and Q' such that ® — Q’,
and Q — Q" and A IF k1 =~ ky 4 ©.

Proor. By case analysis on k; on k.
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e k; = x and k; = *. Then by rule A-U-rEFL, we have @ = A, and Q' = Q.
e k1 = ki1 — Kipand ky = K31 — K.
[Q](x11 — K12)
=[Q]k11 — [Q]k12 By definition
= [Q](k21 — K22) Given
= [Qlka1 — [Q]k22 By definition
[Q]k11 = [Q]x21 A [Q]x12 = [Q]K22 Follows directly
A k12K 40 A0; — QAQ — O (l)IH
[Q1]([O1]x12) = [Qu K12 = [Q1]([Qx12) By Lemma D.18
= [Q]([Q]x22) Known
= [Ql]Kgg = [Qﬂ([@ﬂkzg) By Lemma D.18
0, I [@1]1(21 = [@1]1(22 140N — Q' AQ — Q (2) LH.
AlF ki1 = K12 XKy — k2 10O By rule A-u-arrow and (1) (2)
Q— By Lemma D.20
e k; = &. Then we have [Q]a = [Q]k;.
- k1 = @. Then by rule A-u-rEFL, we have ® = A, and Q' = Q.
— Otherwise k; must be free of @.
AR k)~ Kk 401 AO; — Q' AQ — Q' | By Lemma D.45
Ao Given
0; = Oy, @, Oy By Lemma D.3
e = @11,(7 = Kz,@lg Let
AM Kk ~a40 By rule A-U-kvAaRR
[Q']a
= [Q']k; By Lemma D.18
=[Q']k, By Lemma D.38
0 — O By Lemma D.25
e The case when k; = @ is the same.
[m|

Lemma D.47 (Completeness of Application Kinding). Given A ok, and A — ©Q, and A Y k and
A &', and [Alx = k and [A]c’" = &/, if [Q]k = [Q]k’ — ki, then there exists ik, © and Q' such
that® — Q’, and Q — Q’ and A IH2PP x ek’ 1 k5 4 ©, and [Q' ks = k1.
Proor. By induction on «.
e k = & for some @ and [Q]a = [Q]x’ — k1.

A=A, a A, Assume

A3 = Al,(ll\l,(’iz,(’)(\: (’)(\1 i (’)'(\2,A2 Let

A — As By Lemma D.23, Lemma D.21, and Lemma D.20
Q=0 a=kxs3Q Assume

Q3 = Ql,fil = [Q]K/,(/Z\g = Kl,(’fz K3, Qg Let

Q— Q4 By Lemma D.22, and Lemma D.20

AN— Q Given

A3 — Q3 By Lemma D.24 and Lemma D.25

AIH a2~k HOA0 — Q' AQ3 — Q' | By Lemma D.46

A IHPP T ok’ ay 4 © By rule A-KAPP-KUVAR
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Q— QY By Lemma D.20
[Q']a

= [Qs]a; By Lemma D.29
=K

e Case Kk = K31 — K22.

[Q]k21 = [Q]x” A [Q]k22 = K1 Follows directly
APk 2k HOA0 — Q' AQ — Q' | By Lemma D.46
AIH@PP 0k kg 4 O By rule A-kAPP-ARROW
[Q' ka2 = [Q]K22 = K1 By Lemma D.29

i

Lemma D.48 (Completeness of Kinding). Given A ok and A — Q, if [Q]A X [Q]o : k, then there
exists © and Q' such that® — Q’, and Q@ — Q' and A K o : k¥’ 4 O, and [Q]k" = k.

Proor. By induction on the kinding judgment.

e Case
K-NAT
3K Int : %
A Int : % 4 A | By rule a-x-NaT
0=A Let
Q' =Q Let
e Case
K-VAR
(a:x)eXx
>¥a:k
(a:k)€e[Q]A Given
(a:K2) € AN[Q]kz = k | By inversion
Al a:k,4A By rule A-x-vARr
0 =A Let
Q' =Q Let
e Case
K-TCON
(T:x)eX
STk
Similar as the case for rule x-vAR.
e Case
K-ARROW

SHE x> ok —
Similar as the case for rule x-NAT.
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e Case
K-FORALL

Z,a:KI—kO':*

S Va:ko:k

ANa:xk— Q,a:k
[Q,a:k](A,a: k) E[Q]o: *
Aa:klKo:x 40, A0 — QU AQa:k — Q1 A[Qi]K; = %
0, =0,a:k
AEVa:ko: x40
Qa:k — Q
Q]ZQH,GZK,le/\Q—)QH
Q/ZQH
e Case
K-APP
Zl-leiKl — K3 ZI—kTZ:KI

Zl-leTziKz

[Q]A K [Q]ry i k1 — K2
AIFle:K{-|®1/\®1—>£21/\Q—>Ql/\[§21]1<{=1<1 — K
A — @1

A — Ql

[Q]A ¥ [Q]z : Ky

[Q]z = [Q([Q1]7) = [Qi]n

[QIA ¥ [Qi]r i 1

QJA

=[Q]Q

= [Q1]

[©1]©;

[Q1]01 & [Q4]r2 1 Kk

O1 K 1 1k 40, AO2 — QA Q; — Qp A QK] =K
[Qz]x] = [Q]([Q]x]) = k1 — K2

@1 “‘kv K{

@2 ”_kv Ké /\@1 — @2

@2 H‘kv K{
0, |Hev [@2]]({ A O, |Hev [@2]K£

53:43

By rule A-CTXE-TVAR
Given

LH.

By inversion

By rule A-x-FORALL
Known

By Lemma D.17

Let

Given

LH.

By Lemma D.4
By Lemma D.20
Given

By Lemma D.18
Follows directly

By Lemma D.31
By Lemma D.34
By Lemma D.31
Follows directly
LH.

By Lemma D.18
By Lemma D.6
By Lemma D.6
By Lemma D.10
By Lemma D.12

O, KPP [@,]k] @ [@]K) : k3 HO A O — Q' A Qy — Q' A[Q']k3 = kp | By Lemma D.47

A||‘kT1T22K3-|®
Q— Qf

By rule A-x-app
By Lemma D.20

O

Lemma D.49 (Completeness of Typing Data Constructor Declaration). Given A ok and A — Q,
if [Q]A I—CT'? D ~> 1, then there exists © and Q' such that® — Q’, and Q — Q' and A H—‘i? D~

T40.
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Proor. Given
DC-DECL
k —i

SFET S T:%

D L
Follows directly from Lemma D.48 and rule A-Dc-DECL.
[m]

Lemma D.50 (Completeness of Typing Datatype Declaration). Given A ok, and A — Q, if
[Q]A E T ~> W, then there exists © and Q' such that ® — Q’, and Q — Q’ and A |IFt
T~ T 40 and¥ = [Q']T.

Proor. We have

DT-DECL

. J
(T:%' »%x)ex % a:x ch Do

> data Tq' = Ej'\» D;:Va Tk T‘j
i =4 j Vv ai P K Tj

(T:%" — %) e[Q]A Given
T:x)eAN[Qx=%" > * By inversion
A — Q A Given
A, ?,l — Q, a; = Kll By rule A-CTXE-SOLVE
[Q, a; = x; ]K =k' > *x=[Q, a; =«k; l](?,-l — %) | Follows directly
— i
[Q, a; = k; ]K
=[Q, a; = k; ]([A a = K; ]K) By Lemma D.10
= [Q,A&\, Ki ]([A]K) . a; fresh
A, ?,-l [A]K x 0(1 - x40, a; = Klfl By Lemma D.46 and inversion
AOL, @i =k, — QI AQ, ;= Kil — O Above
[Qi1]xi = [Q]x] = K; By Lemma D.17
A, Zl — 0y, a; = Klfl By Lemma D.4
A — O By Lemma D.17
Ql = Qll,é?l = KN, le A @1 — Qll By Lemma D.17
Q— Qp By Lemma D.17
[Qu]x] = [ K] = K By Lemma D.19
©O1, a; : Ki — Qi1, a; ¢ Klfl By rule A-CTXE-TVAR
i i
[Q]], aj i K / ](@1, aj . K; )
=[Q11]©1, a; : [Qll]lclfl By definition
=[Q1]101, @ x;' A By equations
=[Q11]Q11, @ x5 K, By Lemma D.31
=[Q]Q, @  k; K, By Lemma D.34
=[Q]A, @ K’ By Lemma D.31
[Q]A, @ Kll ch D1~ 1 Given
[Qu1, a; : k] ](@1, a; : K] ) I—C}C_, D~ 1 By equations
(©1, a; : K l) IFdC D1~ 1140, a5 Klfl By Lemma D.49 and inversion
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— i
AOs, a, K N Qs A Q11 a; : Klf — Q,
Qy = Qa1, a1 : k7, Qo A Q1 — Qp

0; — Q21

0, a, K} QN Qy1, a; 1 K]
Qy — Qz;

By Lemma D.49
By Lemma D.17
By Lemma D.17

l By rule A-CTXE-TVAR
By Lemma D.17

i

—_i _
Qu1, ai 1 k] — Qa1 a1 K] By rule A-CTXE-TVAR

We repeat the process for each j. Let O, 1, mz and Q4 , ai:—lclfl be the final output context
and the complete context. And 0,1, mz — Qnyy, G K] B
By Lemma D.20 we have Q — Q1.
By Lemma D.29 we have [Qu;1]x] = [Qu1]x] = ;.
So collecting all the hypothesis, by rule A-DT-DECL we get A It 7~ ~> T 4 ©. And [Q,]T = ¥.
Let Q' = Q4 1.

O
8P rec?i ~ K_l',?,i,
Fl 4 O, where ® — Q’, and

Theorem D.51 (Completeness of Typing a Group). Given Q ok, zf [Q ]

then there exists k! , Fl , 0, and Q’, such that Q I8P rec‘7,' ~ K]

[Q]x] = x; , and ¥; = [Q]T; .
Proor. We have
—i€l..n —i€l..n
@1 = Q, [24] B Ti 4 Let
— i€l..n —i€l..n
Q1=Q,O{i=Ki ,T,-:a,- Let
0, — O . By Lemma D.21
[Q]Q, T; : Kil M7~ W Given
[Q1]0; K 7 ~ ¥ By definition
(CH H‘dt Lo A0, A0 — Qo AQ; — QA Y] = [QZ]TI (1) By Lemma D.50
[QIQ, Ti: x; KU T; ~ W, Given
[Q2]0;
= [QZ]QZ By Lemma D.31
= [Q1] By Lemma D.34
=[Q]Q, T; : K By definition
[Q:]0, ¥ T ~ P, Substitute the equation
Oy M T3~ T, 403 A O3 — Q3 A Qp — Q3 AWy = [Q3]T; | (2) By Lemma D.50
By repeating the process from (1) to (2) for each i, we can get
O o T4 Ot AOps — Quuy AW = [ Il
Q —_ Qﬂ+1 ) Let
(@& = [1(]@) By Lemma D.1§
[Q]a; = Kil Namely
[Q/]T; = [ z+1]ril By Lemma D.30
[Q]T; = Namely
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E PROOF FOR HASKELL98 WITH KIND PARAMETERS
E.1 List of Lemmas
Theorem E.1 (Pr1n01pahty of Haskell98 with K1nd Parameters). IfX 8P rec Ti ~ %Y, then

there exists some K " such that 3 v recT ~P K .

Theorem E.2 (Completeness of Typing Programs with Kind Parameters). Given algorithmic con-
texts Q, T', and a program pgm, if [Q]Q; [Q]T P8™ pgm : o, then Q;T IPE™ pgm : o.

E.2 Proofs
Theorem E.1 (Pr1n01pahty of Haskell98 with K1nd Parameters). IfX 8P rec Ti ~ %Y, then

there exists some " such that 3 v recT ~>P K .

Proor. We have

> 18P recfl ~ K_,'i;?,'i Given
Q=X Let
Q [P recfl ~ K_lfl;ﬁl 410 By Theorem D.51

@ — QA[QIK =K A[QIL =9 | Above

We solve all unsolved kind unification variables in © w1th fresh kind parameters to get Q. Then

we choose k!’ = [Q 1]1<l , and we prove X + recT ~P K

0 — Ql By Lemma D.21
Q, 0(1 . T a, — By Lemma D.20
Q1 = Qq1, a1 = K11, Q1o, T,-T,-,Q;i By Lemma D.17
AQ — Qi1 A Qs soft A mi Above

[Q:]© . .
-l —1
= [Ql](Q, (’Z\i N Tl' : (?{\i ) By Lemma D.33
=[QIQ, Ti : [Ql]§il By definition and Lemma D.32
=2,T: K”l By Lemma D.17
> rec‘T ~ K” ‘I” repeat Lemma D.43

For any %;' such that 3 8™ rec 7,71 ~ Kl ;?,-l, by Theorem D.51 we know there exists some

Q’ such that ® — Q' and [Q’]x] = K,'l and [Q']; = " Now we construct a kind parameter
substitution S. If in ©, we have an unsolved kind unification variable @, which maps to a parameter
P in Q. then S maps P to [Q’]a. Because ® — Q’, then S(Q;) — Q’ by Lemma D.25. So
S(xi") = S([Q1]x;) = [S(Q1)]x]. By Lemma D.29, we have [S(Q;)]x; = [Q']x] = k;. Similarly we
have S(¥/) = ¥;

[m|

Theorem E.2 (Completeness of Typing Programs with Kind Parameters). Given algorithmic con-
texts Q, T', and a program pgm, if [Q]Q; [Q]T P8™ pgm : o, then Q;T IPE™ pgm : o.

Proor. By induction on typing programs.
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e Case
PGM-EXPR
>;Yre:o
>, PEm ¢
Follows trivially by rule A-PGM-EXPR.
e Case
PGM-DTP

> P recfi ~ K ;@i >k recfi ~PGE ST S*(Ki)l;‘l’, S*(\I’,-)l P pem: o

X psm recfi ;pgm: o

i

> 18P recfi ~ G5 Given
RS rec7,-"l ~P Gl Given
Q |F8'P recfl ~ K_;I;E-l 4 © | By Theorem D.51
0 — Q Above
[Q]k] = Kil Above
Q=¥ Above

Because from Theorem E.1 we know that if we solve all unsolved kind unification variables
1 .
in © with fresh parameters to get Q;, then [Q;]«/ are principal kinds. Because ¥;' are prin-

cipal kinds, then [Q ]k} "and i; ' are equivalent up to renaming of type parameters. Suppose
© —» Q,, then [Q;]x] = S*(K,’)l. Similarly we can prove [Q,]T; = S*(¥;) "

—i€l..n

—i€l..n

Q, a; , T — 0 By Lemma D.8
0 — Q By Lemma D.13
—i€l..n —i€l..n

Q, a; , T o — Q, By Lemma D.20

71‘61.11 —i€l..n
Q, a; = [Q]x] LT — Qy By Lemma D.25
[©2]Q,

— i€l..n —i€l..n
= [Q, a; = [QZ]K; ) ’I‘l L ]
Aiielun —Aielun

(Q, a; = [Q]k] T a ) By Lemma D.34

- [Q]Q, T : [Q]([QZ]K’) clen By definition

=[Q]Q, T : $* (K,) By substituting the equation
AT SIS

= [Q.]T, [Q ]rl’ By definition

emma D.30 and Lemma D.19

QJr, S*(¥;) ¥; A By L D dL D
[Q1Q, T; - 5*(ky) : [QIT. S*(¥)) +p pgm: o | Given
[€2]€Q2; [Q2](T, F,-l) PEM pom : o By substituting the equations
Qy I, T; IPE™ pgm : o LH.
Q;T I8 rec 7, spgm: o By rule A-rGM-DT
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F PROOF FOR POLYKINDS

F.1 List of Lemmas

F.1.1  Well-formedness of Declarative Type System.

Lemma F.1 (Well-formedness of Declarative Instantiation). If3 ¥ 1y : 5y, and 3 #"t py : py C
N2 ~> lig, then =12 1y @ .

Lemma F.2 (Well-formedness of Declarative Kinding). We have:
o ifS Ko :n~s p thenS 2y p;
¢ ifS ¥ g = n~>p, thenS 2 i1y,

Lemma F.3 (Well-formedness of Declarative Elaborated Kinding). If3 ok, and = 2 ;i : 1, then
SR g,

Lemma F.4 (Well-formedness of Declarative Typing Signature). If % ok, and = ¥ S ~» T : 1,
then % 112 i : x.

Lemma F.5 (Well-formedness of Declarative Typing Data Constructor Declaration). If¥ ok, and
ZkgCZ)'\»p, then 3 €2 11 : x.

Lemma F.6 (Well-formedness of Declarative Typing Datatype Declaration). If % ok, and = t
T ~ VY, then> + V.

Lemma F.7 (Well-formedness of Declarative Generalization). If3 ok, and¥ + ¥; and X I—?j;n Y~
Y, then X + s,

F.1.2 Well-formedness of Algorithmic Type System.

Lemma F.8 (Well-formedness of Promotion). If A1, & : ,As ok, and A, @ : w, A, |ela p1t Wy,
and A, @@ @ w, A, II%r p1 ~ p2 4 O, then ® = 01,& : 0,0,, and A, a : w,A\y — O, and
0, Ik p2 : [®]w,, and © ok. By weakening, there is also © |fela p2 : [O]w,. Similar lemma holds
when in the input context, & : w is in a local scope.

Lemma F.9 (Well-formedness of Moving). IfA; +™ A, ~> ©, then topo (A1, A;) = ©.

Lemma F.10 (Well-formedness of Unification). IfA ok, and A I x; = k; 4 ©, then A — O, and
O ok.

Lemma F.11 (Well-formedness of Instantiation). IfA IH"' p; : 5y C 5y ~> py 4 ©, and A 2 p, -
N1, then A — ©, and © ok, and © |fela p2 : [O]n2.

Lemma F.12 (Well-formedness of Quantification Check). If Ay, a : w, Az ok, and A, — a, then
Al, Az ok.

Lemma F.13 (Well-formedness of Unsolved). If A, A; ok, and A; soft, then Ay, unsolved(A;) ok.
Lemma F.14 (Well-formedness of topo). If A1, Az ok, then A1, topo (Az) ok.
Lemma F.15 (Well-formedness of Kinding). Given A ok,
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o if Al G :n~> 40, then A — O, and © ok and © I¥2 ;1 : [O]n;

e if NI 6 =~ 40, then A —> ©, and © ok and © 2 11 : [O]n.

e if AIHPP (p; - ) eT :w~ py 40, and A IFF? py : 1, then A — O, and © ok, and
0 IR p, : [O]w.

Lemma F.16 (Well-formedness of Elaborated Kinding). IfA ok, and A "2 i : 1, then A IF€'2 - %,
and [A]n = 1.

Lemma F.17 (Well-formedness of Typing Signature). IfQ ok, and Q I8 S ~» T : y, then Q I€2
ook

Lemma F.18 (Well-formedness of Typing Data Constructor Declaration). IfA ok, and A H—dpC D~
140, then A — O, and@ll—e'ay:*.

Lemma F.19 (Well-formedness of Typing Datatype Declaration). IfA ok, and A I¥* 7~ T 4 ©,
then A — ©, and © I T,

Lemma F.20 (Well-formedness of Generalization). If A ok, and A IF™ T, and A IFiin I ~ I,
then A I T,

F.1.3  Properties of Context Extension.

Lemma F.21 (Declaration Preservation). If A — O, if a type constructor or a type variable or a
kind unification variable is declared in A, then it is declared in ©.

Lemma F.22 (Extension Weakening). Given A — ©, if A [F¥'2 1 : , then © "2 11 : [©]n.

Definition F.23 (Contextual Size).

| Ak x| =1

|AFal =1

| A+ Int | = 1

| ART| = 1

| A F—| = 1

| A+ w s | = 1+ |Arow |+]|AF |
| A+ w @ws | = 1+ |Arow |+]|AF |
|Ala: o]+ a | = 1

|Ald:w=plra|l = 1+|Ald:w=p]rw]|
| A+Va:pw]| = 1+ |Arp|+|AFw]|
| A+V{a:p}l.o| = 1+ |Arp|+|A+w]|

Lemma F.24 (Substitution Kinding). IfA ok, and A IF¥' i : p, then A "2 [A]y - 7.

Lemma F.25 (Soft Substitution Kinding). If A1, A; ok, and A, soft, and Ay, A, [Fela i 1, then
A1, unsolved(Ay) IF'2 [Ay]y : 7.

Lemma F.26 (Reflexivity of Context Extension). If A ok, then A — A.
Lemma F.27 (Well-formedness of Context Extension). If A ok, and A — ©, then © ok.
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Definition F.28 (Softness). A context A is soft iff it contains only of @ and @ = k declarations,
including local scopes.

Lemma F.29 (Extension Order).

(1) If Ai,a : @,A; — O, then ©
0, soft.

(2) If A, T : n,A; — O, then ©
Q, soft.

3) IfA,& : w,Ay — O, then ® = 01,0',0,, where Ay — Oy, and ©’ is either @ : w or
a : w = p for some p. Moreover, if A, soft, then ©; soft.

(4) If A1, @ : @ = p1, Ay — O, then ® = O1,& : @ = pi, Oy, where Ay — Oy, and [O1]p; =
[©1]p2. Moreover, if A, soft, then O, soft.

(5) If A1, {A},A; — O, then © = O1,{0O}, Oz, where Ay —> O, Moreover, if A, soft, then
Q, soft.

©1,a : w,0,, where Ay — ©1. Moreover, if A, soft, then

©1,T : n,0;, where Ay — ©;. Moreover, if A, soft, then

Lemma F.30 (Substitution Extension Invariance). If A ok, and A [Fela u:n,and A — O, then
[O]k = [O]([Aly) and [O]x = [A]([®]y). As a corollary, if A ¥ g = py, A Iy 2 ny, and
[Alps = [A]pz, then [O]u; = [O]p,.

Lemma F.31 (Substitution Stability). IfA;, Az ok, and Ay IF? p : w, then [A{]p = [A1, Aslp.

Lemma F.32 (Transitivity of Context Extension). If A’ ok, and A’ — A, and A — O, then
AN — 0.

Lemma F.33 (Solution Admissibility for Extension).
o IfA1,@: w, Ay ok and Ay 112 p : [Aq]w, then A, @ : w0, Ay — A, @ : 0 = p, A,
o If AL, {As,@ : @, Ay}, Az ok and Ay, Az 112 p 2 [Ay, As]o, then Ay, {As, @ = ©,As}, Ny —
A], {A3, (’)?Z w = p, A4}, Az.

Lemma F.34 (Solved Variable Addition for Extension).
e If Ay, Ay ok and Ay 12 p - [Aq]w, then Ay, Ay — A, @ = w = p, As.
L4 I_fAl’ {A29 A3}9 A4 ok andA15 AZ H_EIa p: [A15 Az]&), then A15 {AZ’ A?)}’ A4 B A]’ {A29 Ex\ tW =
p’ A3}, A4~

Lemma F.35 (Unsolved Variable Addition).
e If Ay, Ay ok and Ay I ¢ : % then Ay, Ay —> A1, @ : , As.
[ ] IfAl, {Az, Ag}, A4 Ok (an Al, Az ”_ela w *, then Al, {Az, Ag}, A4 — Al, {Az, 5?: w, Ag}, A4.

Lemma F.36 (Parallel Admissibility).

o [fA; —> Oy, and A1, A; ok, and A1, Ay —> ©1, 03, and A, is fresh w.r.t. ©4, then:
— if AL IER o s %, then A, @ : w0, Ay — ©1,T : w, Oy;
— ifO I p: [O1]w, then Ay, @ : w, Ay — O1,& : @ = p, Oy;
- if[©1]p1 = [O1]p2, then A, @ : @ = p1, Ay — ©1, & : 0 = p2, 0.

o If A1, {A3} — ©1,{Os}, and A1, {As, Ay}, Ag ok, and Ay, {As, Ay}, Ay — O, {03, 04}, 0,
and Az, Ay is fresh wr.t. ©1, Os, then:
- l'fAl, {Ag} ”_ela w : k, then Al, {A3,(’Z\Z w, A4},A2 — @1, {@3,5(\1 w, @4},@2;
- if@l, {@3} ”_e]a p [@1,@3]0), then Al, {A3,EZ w, A4},A2 — @1, {@3,&\1 w = p, @4},@2;
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- if [01,0s5]p1 = [©1,03]ps, then A, {As, & : @ = p1, A}, Ay — 01,{05,& : w0 =
p2,04},0;.

Lemma F.37 (Parallel Extension Solution).
o If A1, : w,Ay — ©1,& : @ = p3,0,, and [O1]p; = [O1]p2, then A, a : w = p1, Ay —
01,0 : w =Ky, Oy,
o If A1, {As5, @ : 0,Ag}, Ay — ©1,{O3,& : 0 = p2,04},0,, and [01,03]p; = [O1, O3] py, then
A], {A3,(’)'(\Z w = pl,A4},A2 e @1, {@3,(’)'(\2 w = p2,®4},®2.

Lemma F.38 (Parallel Variable Update).
o IfAL,&: w,A\y — O1,& : 0 = p,Oy, and A4 |ela p1 : [Arlw, and ©; I p, : [01]w, and
[©1]p = [O1]p1 = [O1]p, then A, & : @ = p1, Ay — O1, X : 0 = pa, O
o If A, {A3,@: 0, Ay}, Ay — ©1, {03, : @ = p,04},0,, and Ay, Az 112 py : [Ay, As]w, and
01,05 IF2 p, : [0, O3]w, and [01]p = [O1]p1 = [O1]p, then A1, {As3,@ : @ = p1, Ay}, Ay —>
01,{03,a : w = p2,04},0;

F.1.4  Properties of Complete Context.

Lemma F.39 (Type Constructor Preservation). If A ok, then (T : ) € A, and A — Q, then
(T : [Q]n) € [Q]A.

Lemma F.40 (Type Variable Preservation). If(a: w) € A, and A — Q, then (a : [Q]w) € [Q]A.
Lemma F.41 (Finishing Kinding). IfQ ok, and Q I p : 0, and Q@ — Q’, then [Q]p = [Q']p.
Lemma F.42 (Finishing Term Contexts). IfQ ok, and Q ™ T, and Q — Q’, then [Q']T = [Q]T.
Lemma F.43 (Stability of Complete Contexts). If A — Q, then [Q]A = [Q]Q.

Lemma F.44 (Softness Goes Away). If A1, Ay — Qi, Qy where Ay — Qi, and A; soft, then
[Ql5 Qz](Ah Az) = [QI]AI

Lemma F.45 (Confluence of Completeness). IfA; — Q, and Ay — Q, then [Q]A; = [Q]A,.

Lemma F.46 (Finishing Completions). If Q ok, and Q — Q’, then [Q']Q’ = topo([Q]Q).
F.1.5 Termination.

Lemma F.47 (Promotion Preserves (A)). IfA II%r w1 ~ wp 40, then (A) = (O).
Lemma F.48 (Unification Makes Progress). If A I w; = w; 4 ©, then either © = A, or (B) < (A).

Lemma F.49 (Promotion Preserves |p|). Given a context Ala] ok, if A IIJZ{Ar w1 ~> W 4 O, then for
all p, we have |[Alp| = |[O]p].

Theorem F.50 (Promotion Terminates). Given a context Ala] ok, and a kind p; with [Alp1 = p1,
it is decidable whether there exists © such that A H{; w1~ w3 4 0.

Theorem F.51 (Unification Terminates). Given a context A ok, and kinds p; and p,, where [A]p1 =
p1, and [A)pz = pa, it is decidable whether there exists © such that A I p; = p; 4 ©.
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F.1.6  Source of Unification Variables.

Lemma F.52 (Source of Unification Variables). If A IK ¢ : 5 ~ p 4 ©, then for any @ €
unsolved(®), either & € fkv([@]y), or there exists § € unsolved(A) such that & € fkv([O]f).

F.1.7  Soundness of Algorithm.

Lemma F.53 (Soundness of Promotion). If A ok, and [A]lw; = w1, and A II%r w1 ~ wy 4 O, then
[O]wr = [O)wz = w2. IfO — Q, then [Q]w; = [Q]w..

Lemma F.54 (Soundness of Unification). If A ok, and A IM w; = w; 4 ©, then [Olw; = [O]w;. If
0 — Q, then [Q]w; = [Q]w,.

Lemma F.55 (Soundness of Instantiation). If A ok, gnd A kel Y1 : n,and A IF2 o : %, and
AEMSY i E @~ pp 40, and © — Q, then [Q]A ™ [Qy; : [Q]7 T [Q]w ~ [Q]pe.

Lemma F.56 (Soundness of Kinding). If A ok, we have
e if AKX G :n~ p40,and©® — Q, then [Q]A K o : [Q]n ~ [Qly;
o if A6 =~ p40,and® — Q, then [Q]A K€ ¢ < [Q]n ~ [Qp.
o if AIHPP (py i) @7 :w~> py 40, and A1 py @y, and © — Q, then [Q]A ™ [Q]p; :
[Q]n C (01 — [Qlw) ~ p3, and [Q]A K 7 = g~ pa. and [Q]p2 = p3 pa.

Lemma F.57 (Soundness of Elaborated Kinding). If A ok, and A IF¥'2 i : 5, and A — Q, then
[Q]A ¥ [Q]p - [Qn.

Lemma F.58 (Soundness of Typing Signature). IfA ok, and Q IF8 S ~» T : 5, then [Q]Q ¥&8 S ~»
T:n.

Lemma F.59 (Soundness of Typing Data Constructor Decl.). If A ok, and A IF‘;C D ~> 40, and
0 — Q, then [Q]A I—Ej[cmp) D~ [Qp.

Lemma F.60 (Soundness of Typing Datatype Decl.). IfA ok, and A It 7~ T 4 ©, and® — Q,
then [Q]A Ht T~ [Q]T.

Lemma F.61 (Soundness of Typing Program). If Q;T IP8™ pom : p, then [Q]Q; [Q]T 8™ pgm :
[Q]p.

F.1.8  Principality.

Lemma F.62 (Completeness of Promotion). Given A ok, and A — Q, and @ € A, and A |ela p:w,
and [Al@ = @, and [A]p = p, if p does not depend on & in the dependency graph, then there exists ps,
© and Q' such that® — Q’, and Q — Q’, and A H%r P~ paH0.

Lemma F.63 (Completeness of Unification). Given A ok, and A — Q, and A |fela p1 : w and
A IFR py - w, and [Alpy = py and [A]ps = pa, if [Q]p1 = [Q]pa, then there exists © and Q' such that
©— QLand Q — Q" and A I p; = py 4 0.

Lemma F.64 (Completeness of Instantiation). Given A — Q, and A I¥'2 p : n and A IF¥2 o : %,
and [A]ln = n and [Alw = o, if [Q]A " [Q]p; : [Qn E [Q]w ~»> pa, then there exists p;, © and Q'
such that ® — Q’, and Q — Q" and A H™' p; : n T w ~> p}, 40, and [Q']p}, = p».
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Lemma F.65 (Principality of Kinding).

e Given A — Q, if[QIJA X o :p~> u,and A K o : n' ~ p’ 4 O, then there exists Q' such
that ® — Q’, and Q — Q’. Moreover, [Q'|y’ = 1. Furthermore, if p and p’ are monotypes,
then [Q'y = p.

e Given A — Q, if[Q]A ¢ o = [Q]n ~> p, and A 1K€ 6 < 5 ~> i’ 4 O, then there exists Q'
such that ® — Q’, and Q — Q’. Furthermore, if u and p’ are monotypes, then [Q'|p" = p.

e Given A — Q, if[Q]A ™ [Q]p; : [Q]n C (w1 — w2) ~> p3, and [Q)A K€ 1 & w; ~> py
and A IH2PP (py : ) @ 7 : @ ~> py 4 ©, then there exists Q' such that ©® —s Q’, and Q — Q.
Moreover, [Q"|w = w;. Further, [Q"]p2 = ps pa-

Lemma F.66 (Principality of Typing Data Constructor Declaration). Given A — Q, if [Q]A kgc
D ~> py, and A IFff D ~> uy 4 O, then there exists Q' such that ® — Q’, and Q — Q.

Lemma F.67 (Principality of Typing Datatype Declaration). Given A — Q, if [Q]A ¥t T~ ¥,
and A HE T~ T 4 ©, then there exists Q' such that ® — Q’, and Q — Q’.

Theorem F.68 (Principality of Typing a Datatype Declaration Group). If Q [P rec fi ~
7 :T}', then whenever [Q]Q P recT; ~ 17_;1;?,-1 holds, we have [Q]Q + [Q]n; < 7;.

F.2 Proofs

Lemma F.1 (Well-formedness of Declarative Instantiation). If% ¥ y; : y, and 3
N2 ~> lig, then X112 1y = 1y,

|_inst

Hi:m E

Proor. By induction on the derivation.

e Case
INST-REFL

NESt i wC s p
The goal follows trivially.

o Case
INST-FORALL .
SER p o TS @pipla p] C wp ~
>, pnst p1:Va:w.nE wy~
3, el 1 :Va: oy Given
%R by Given
Y @p:pla p] | By rule ELa-kapp
Xy g, LH.
e Case

INST-FORALL-INFER
ela

TERpiw Sy @pipla pl C wy ~

THES Ve 01}.p Ewp ~
Similar as the previous case.

Lemma F.2 (Well-formedness of Declarative Kinding). We have:
e ifXKg:n~> p thenS 2y p;
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o ifS ¥ g = n~>p, thenS 2 iy,

Proor. By induction on the derivation.

Part 1 e Case for rules KTT-STAR, KTT-NAT, KTT-VAR, KTT-TCON, and KTT-ARROW holds triv-
ially.

e Case
KTT-APP

Zkkrlsz\»pl SEMS p i E (01 = wz) ~ py Zl‘kcl’2<=a)1’\/>p3

k
2 F T1 T2t Wy ™ Pg P3

YR iy LH.

3 fela p2:w; — w; | By LemmaF.1
%R st By part 2

%R by py s wy By rule ELA-APP

e The rest cases are similar, following directly from I.H. and part 2.

Part 2
KC-SUB

SEoin~ SESt W~

S = wn

i p | By part 1
%y s w | By Lemma F.1
m]

Lemma F.3 (Well-formedness of Declarative Elaborated Kinding). If3 ok, and €2 ;i : 1, then
3R gk

Proor. By a straightforward induction on the judgment, utilizing the substitution lemma.
m]

Lemma F.4 (Well-formedness of Declarative Typing Signature). If % ok, and = ¥ S ~» T : 1,
then > 1¥2 5 : x.

Proor. We have

TG_T $eQlo) QM) TG HEVh ok~ Ve |l =g
Y8 dataT: o~ T:V{¢}.V{¢}.n

%, ¢ K V. ok~ V¢. n | Given

%, ¢ 12 Ve p By Lemma F.2

Z, ¢S 2 Vg n By rule ELA-FORALL-INFER
¢ is well-formed

3 el V{5 V{¢ ). % By rule ELA-FORALL-INFER

O

Lemma F.5 (Well-formedness of Declarative Typing Data Constructor Declaration). If ok, and
Zl—ff@'\»,u, then 3 1€ 11 : x.

Proor. We have
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DC-TT )
¢ € Qu\s 1) 3, ¢° L Vo.Ti' > pix~op
SHECV.DT ~ V(g

3, ¢ K VPT — p:k~> p | Given

%, C KR g% By Lemma F.2
¢° is well-formed
2R Vg By rule ELA-FORALL-INFER

O

Lemma F.6 (Well-formedness of Declarative Typing Datatype Declaration). If % ok, and 3
T ~ V¥, then> + V.

Proor. We have

DT-TT
. - J
. - n d

(T VALY 0" > *) €2 D40 ¢ @01 (7 i ety D™ i

L —J

>t data T@' = D) ~ D;: V{§). V5. VarTaor

- Jj
3,95, 95, @it wp R gk By Lemma F.5

. j

3l V{p$} VS, Var ;' x| By rule ELA-FORALL
—J

Y+ Dj: V{¢{}.V5. Va; - w; 'y | By rule EcTx-DCON

i

Lemma F.7 (Well-formedness of Declarative Generalization). If3 ok, and¥ + ¥; and ¥ Iiecn Y~
Y, then X + Vs,

Proor. Follows directly from rule EcTx-DcON-TT and rule ELA-FORALL-INFER.

F.2.1  Well-formedness of Algorithmic Type System.

Lemma F.8 (Well-formedness of Promotion). If A, & : ,As ok, and A, @ : w, A, [Fela p1 ¢ Wy,
and A, @ @ , A, H%r p1 ~ p2 4 0O, then® = 01,& : ©,0,, and A, a : w,Ay — O, and
0 IR p, : [O]wsy, and © ok. By weakening, there is also © |ela p2 : [O]w,. Similar lemma holds
when in the input context, & : w is in a local scope.

Proor. For most cases, the goal follows directly.
The case for rule A-Pr-kAPP is similar as rule A-pPr-APP.

e Case
A-PR-APP
A Hl; w1 ~ pp A Aq Aq ”J;Ar [A]]wz ~ po A (€]
r
A”{ix‘ wlwgwmp24®
AR 0 @y W, Given
AR g w; = wy AA kel gy ] By inversion

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.



53:56 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

A— A AN = All,(’Z\Z p,AIZ A Aok A Aqq ”_ela p1: [Au]w{ -

Al H_e|a wy : [A]]a)i

Ay IF12 [A]ws : [Ar]e]

A —OANO=0,,a:p,0; A0 okAB; I p,: [0]([A1]w)])
Ay — 64

A— 0O

0 ¥ p; - [61]([An]w]) — [©:1]([A11]w))

©1 ¥ p; 1 [01]w] — [©1]w]

01 ¥ p, : [0]w]

®1 ¥ py py : [O]w

[All]wé LH.

By Lemma F.22
By Lemma F.24
LH.

By Lemma F.29
By Lemma F.32
By Lemma F.22
By Lemma F.30
By Lemma F.30
By rule A-ELA-APP

e Case
A-PR-KUVARR-TT _
AT [Alp ~ pr 4 ©[Ql[B: p]
ALZ[B < p] I B~ By 4 ©LBy < pr. @B < p = Bl
A ok Given
AR p %

G pl,a]ﬁ p= /31]—@1,/31 p1,Q: p2,®2,/3 p=p1.0s
elallp : Pl okAA—>®[a][ﬁ plA©; KR py
A—>®ﬁ1 p1,@l[B : pl

@1,,[11 L p1, @ ¢ Py, O IFER ,51 [91],01A

01, B p1,@: p2, 02 I By : [O[AT[B : pllps
O, f1: 1. < p2, O lpeta [31 [O[al(B : p1I([Alp)
O, f1 1 p1. @ 2 p2, O lpeta [31 [e[a][B: pllp
O, 1 : p1, @ .p2,®2 kel B, - [0, @ : pa, ©]p

A — O[f: : pr.allf : p = Bi]

By inversion

Suppose

LH.

By Lemma F.35, Lemma F.32

By rule A-£LA-vAR and Lemma F.31
By Lemma F.31

By Lemma F.53

By Lemma F.30

By Lemma F.53

By Lemma F.33, Lemma F.32

O

Lemma F.9 (Well-formedness of Moving). IfA; +™ A, ~» ©, then topo (A1,A;) = ©

Proor. By a straightforward induction on the moving judgment.

O

Lemma F.10 (Well-formedness of Unification). IfA ok, and A I x; = k; 4 ©, then A — O, and

© ok.

Proor. By induction on the derivation.

o The case for rule A-U-rerL-TT follows directly from Lemma F.26.

e Case
A-U-KVARL-TT

A pr~s pp 40,0 : 01,0, O pyiwy  O1 1M [O1]an ~ wp 4Oy

AP &~ p1405,a: w = p2,0;

A— O, : 1,0, AO1, @ : 1,0, ok | By Lemma F.8

0, — O LH.
0, |pela P2t Wy Given
0, Itel p2 : [03]w; By Lemma F.22

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.



Kind Inference for Datatypes: Technical Supplement 53:57

[05]w, = [05]([©1]w1) By Lemma F.54

[O3]w: = [O3]w; By Lemma F.30

0, el P2+ [O3]wy By substituting equations
O, a: 0,0, — O3, : 0,0, By extension rules
01,0 : 0,0, — O3,& : W = P2, O Lemma F.33

A— O3,a: w = ps,0; Lemma F.32

e The case for rule A-U-kVARR-TT is similar as the previous case.
e Case
A-U-KVARL-LO-TT
ALy #H™ @01~ O AHON I p1~ 2 401,{0;,@ : 1,03}, Oy
@1, {@2} ”_e]a P2t W2 @1, {@2} [ [@1,@2]0)1 X Wy A @5, {@5}

A[{Al,(/fl a)l,Az}] Mo~ p1 A @5,{@6,5(\2 w1 = pz,@g},®4

topo (A1, @ : w1,A2) = © by Lemma F.9
A[{A1, @ : w1, A2}] — A[{©}] By definition
A[{©}] — ©1,{0,,a : w1,03},0, Lemma F.8

0, {8,) —> O, {64} LH.

©1, topo (0;) — BO5, 04 By inversion
01,topo (0,),a : w1,0; — O5,04,a : w1, O3 By definition
@1, {@2, a: w1, @3} — @5, {@6, a: w1, @3} By rule A-CTXE-LO
@1, {@2, (/Z\ w1, @3}, @4 e @5, {@6, (’Z\ w1, @3}, @4 By definition
04, {©,} Irel2 P2t W2 Given

Os, {Og} IFet2 P2 ¢ [Os, Og w2 By Lemma F.22
[@5,@6]&)2 = [@5,@6]([@)1,82]&)1) Lemma F.54
[@5, @5]602 = [@5, @5]601 Lemma F.30
@5, {@6, (/Z\ w1, @3}, @4 e @5, {@6, (’Z\ L w1 = P2, @3}, @4 Lemma F.33
Al[{A1, @ : w1, A3} — O5,{Og, @ : w1 = p2, 03}, 04 By Lemma F.32

e The case for rule A-U-KVARR-LO-TT is similar as the previous case.
e The case for rule a-u-arp follows directly from I.H. and Lemma F.32.
o The case for rule A-u-xarp follows directly from LH. and Lemma F.32.

i

Lemma F.11 (Well-formedness of Instantiation). IfA "' p; : 5y C 5y ~> py 4 O, and A IF? p, -
n1, then A — O, and © ok, and © [Fela p2 : [O]n,.

Proor. By induction on the derivation.

e Case
A-INST-REFL
AlM o~ w; 410
AIF™Y 4y Ewy ~ 40
A— 0O Lemma F.10

[O]w; = [O]w; | Lemma F.54
AR o Given

© I 4y : [@]w; | Lemma F.22
© I 4 : [@]w, | By equations
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e Case

A-INST-FORALL

Aoy I @@ plar @] C wy ~ pi 40

AII—i”Stpl Va:o.pEwy~> piz 40

AN — Aa:w rule A-CTXE-ADD-TT
A et g1 :Va:w.g Given
[Al(Va: wi.n) =Va: w1y By Lemma F.16
[A]wr = w1 By inversion
AT o 112 7 [A]wy By rule A-ELA-KUVAR
AT w2 7w By equation
Ao B2 g [A @ 01|(Va: wy.n) By Lemma F.22
A @ 12 gy s [Al(Va: w1.9) a fresh
Ao 12 s (Va: wr.n) by equation
A@: w2 iy @@ :pla [A, @ : w1]@] | By rule a-ELa-kapp
AT w12y @ pla— @l By definition
AT :w — OAO IRy [O]w, LH.
A— 0 Lemma F.32

e The case for rule A-INST-FORALL-INFER is similar to the previous case.

[m|
Lemma F.12 (Well-formedness of Quantification Check). If Ay, a : w, Az ok, and Ay — a, then
Al, Az ok.
Proor. All items in A, are well-formed by strengthening on elaborated kinding.
O

Lemma F.13 (Well-formedness of Unsolved). If A1, Az ok, and A soft, then A1, unsolved(A;) ok.

Proor. All unification variables in unsolved(A;) are well-formed, which can be derived similarly
as Lemma F.24, and strengthening on elaborated kinding.
O

Lemma F.14 (Well-formedness of topo). If A1, Az ok, then A1, topo (Az) ok.

Proor. As Ay, topo(A;) ok preserves a well-formed ordering, by strengthening and weakening
we can prove Aq, topo (Az) ok.
O

Lemma F.15 (Well-formedness of Kinding). Given A ok,

o if Al G :n~> 40, then A —> O, and © ok and © 12 ;1 : [O]n;

o if A 6 =~ 40, then A —> ©, and © ok and © 2 11 : [O]n.

o if AP (p; - )T :w~ py 40, and A IFF? py : 1, then A — O, and © ok, and

0 IR p, : [O]w.

Proor. By induction on the derivation.

Part 1 e The case for rules A-KTT-STAR, A-KTT-NAT, A-KTT-VAR, A-KTT-TCON,and A-KTT-ARROW

is trivial.

e Case
A-KTT-FORALL

Ak ex~>w4h Apa:olloex~ p4Aa:0,As A3 a

A Va:k.o:x~ VYa: @.[As]u 4 Az, unsolved(As)
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A— A AAIER ¢ % A A ok Part 2

Ayl 6 % By Lemma F.22

A1, a: wok By rule A-TCTX-TVAR-TT
A,a:w— Ny,a:w,A3 ANy, a: w,Asz ok | Part 2

AN, a: w, A3 |fela TR S Above

A1 — Ay A As soft By Lemma F.29

A3 —> a Given

Ao, A3 ok By Lemma F.12

A, unsolved(A3) ok By Lemma F.13

Ay — A,, unsolved(A3) By rules A-CTXE-ADD-TT and A-CTXE-ADDSOLVED-TT
A — A,, unsolved(As) Lemma F.32

A,, unsolved(As) 12 o : x. Lemma F.22

Az, a: w,As IR Ux Known

Ay, a : o, unsolved(A3) IFe2 [As]y = *. By Lemma F.25

Because unsolved(As) does not depend on a, we can reorder the context to get that A,, unsolved(As), a
w IF¥™2 [Ag]y : %. So by rule A-ELA-FORALL we get Ay, unsolved(As) €2 Va : . [As]p : *.
e The case for rule A-KTT-FORALLI is similar as the previous case.

e Case
A-KTT-APP

INERE N~ p1 44 A, IHa@pp (pr:[Alm)e:w~>p40

All—krlrg:wf\»p—|®

A— A AN ”_e]a p1: [Al]l]l LH.
Al — OAOIER p: [Olw Part 3
A— 0 By Lemma F.32

e Case
A-KTT-KAPP

AIFle:r]«»plﬁAl [Alp =Va: wn A1|FkCT2¢a)’\/>p2-|A2

A “‘k T1 @Tg : T]z[a = pz] ~ p1 @,Dg 4 Ag

A — Ay A DA IR py: [Ag] LH.

A1 — Ay A D IFR py : [Az]w Part 2

A— Ay Lemma F.32

A |ela p1:Va: w.n, by equations

A, Il p1:Va: [Az]w.[Az]n2 Lemma F.22

Ay IER oy @ps : ([Asln2)a = [Ag]pz] | By rule a-ELa-xapp
A, |rela p1 @p3 : [Az](nz[a — pz]) By substitution

e Case rule A-KTT-KAPP-INFER is similar as the previous case.
Part 2 We have
A-KC-SUB

ARG g~ 4A; A IES i [A C [Ar]w ~> pp 4 Ay

All—kca<=a)«»p24A2

A — Ap AA IFER i1 [Aqlg Part 1
A — Ay AN Ay |tela Ho : [Az]([Al]a)g) By Lemma F.11
A— A, Lemma F.32
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[Az]([Ar]w) = [Az]w Lemma F.30
Ay IER gy 2 [Ag]w by equations

Part 3 By induction on the judgment.

e Case
A-KAPP-TT-ARROW

A7 = w;~> py 40O

All—kapp(P11w1 — @) eT: W~ pr1p2 1O

A— ©AOIE2 py: [O)w, | By Part 2

A Ipela P10 — Wy Given

O I p, : [@]w; — [O]w; | By Lemma F.22

O IF2 py py : [O]wy By rule A-ELA-APP
e Case

A-KAPP-TT-FORALL
A, @ : wy PP (pr@a:pla— al)er:w~ p40

A KPP (1 :Va:win)er:w~>p40

A2 by :Va:wyy Given
AR Ya: w.n: By Lemma F.16
AR g % By inversion
A— Aa:w By rule A-CTXE-ADD-TT
A IF? py i Va: wy By Lemma F.22 and @ fresh
AT o IR 7w By rule A-ELA-KUVAR, Lemma F.16, and @ fresh
A@:w 2 py @@ :plav> @] | By rule A-ELa-kaPP
Aa:w — OAOIER p:[Olo | LH.
A— O By Lemma F.32
e The case for rule A-KAPP-TT-FORALL-INFER is similar to the previous case.
e Case
A-KAPP-TT-KUVAR
Al,(’l\l :*,EZ\Z : *,(’Z\Z w = ((’)(\1 e (’)'(\2),A2 |ch T & (’1\1 ~> po (S
Ay, @ ¢ w, Ay IFPP (pr:@)eT:a~> p1ps 40
ALk, Ny — ALy i x, 0%, a k= (ay — az), Ay By Lemmas F.32, F.33 and F.35
AL T H, k@ k= (@) — @), Ay — O AO IR p, : [O]a; | By Part 2
A,a:x, Ay — O By Lemma F.32
ATk, Ay 2 py Given
0 IR p, : [O]a By Lemma F.22
QIR p, : [Ola; — [O]a, By Lemma F.30
0 I py p, : [O]a, By rule A-ELA-APP

O

Lemma F.16 (Well-formedness of Elaborated Kinding). IfA ok, and A "2 i : 1, then A IF€'2 - %,
and [A]n = n.

Proor. By induction on the derivation.
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o The case for rules A-ELA-STAR, A-ELA-NAT, A-ELA-ARROW, A-ELA-FORALL, and A-ELA-FORALL-INFER
is straightforward.

e The case for rules A-ELA-KUVAR, A-ELA-VAR, and A-ELA-TCON is similar. Consider
A-ELA-KUVAR

(a:w)e A
AFR 7 [Alw
Given A ok, by inversion and weakening, we have A 2 o« %, By Lemma F.24, we have
A IF2 [A]w : %. And [A]([A]w) = [A]w.

e Case
A-ELA-APP

A IR P10 — W2 NG P2t 1

ela
A py pa : o
AlER o — wy i,k A[A)(w7 — w2) = w1 — wy | LH.
AR Gy % A [Alws = wo inversion
e The case for rules A-ELA-KAPP and A-ELA-KAPP-INFER is similar. Consider
A-ELA-KAPP

A It p1:Va:w.n A |l P2 ®
A IR p1 @p2 : pla— [Alp:]

AR Va: o :*x LH.
Aa:ol?p: % By inversion
Al py o Given

Al [Alpy : 0 Lemma F.24
2R pla s [Alps] : * By substiution
[Al(Va: w.n) =Va:w.ny by LH.

[Aln=n Follows directly
[Al(nla — [Alp2])

= ([Aln)la — ([Al([Alp2))]

= nla = [Alp.]

O

Lemma F.17 (Well-formedness of Typing Signature). IfQ ok, and Q I8 S ~» T : y, then Q II€2
ook

Proor. We have
A-SIG-TT '
lof  @i=fkvo) Qi@ %a:@}Foix~n4A
@] = scoped_sort(q; : [A]o?,-l) (j?% = unsolved(A) A—a'

Q¥ dataT: 0~ T: V{¢§}((V{¢§}[A]’7)[‘;§ = é))

Al p:xAQ — A By Lemma F.15

Al (Al : % By Lemma F.24

A=Q,{A1}, Ay A Ay soft By Lemma F.29 and properties of kinding
A contains only unification variables except for a;' | Above

A — Ei Given
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Q, (j?% ok By Lemma F.12 and Lemma F.13

Q, g?;g, @7 ok #7 has no solved unification variables
Q, ;ﬁg, #5 12 [A]g : % By strengthening and reorder of context
Q, g?;g [l V{g{}[Alnp: % By rule A-ELA-FORALL-INFER

Q, ¢ 112 (V{g<}.[AIn)[¢S — ¢S] : * By substitution

Q |l V{¢§}.(V{¢§}.[A]ry)[$§ AR By rule A-ELA-FORALL-INFER

i

Lemma F.18 (Well-formedness of Typing Data Constructor Declaration). IfA ok, and A H-ff D~
[ 40, then A — ©, and © 12 11 : %,

Proor. We have

A-DC-TT A R
A wop IH Vo.(Ti' = p)ix~> 401, pp,0, ¢° = unsolved(0;)

A VDT~ V{6 L(([O:1[F° - ¢1) 4 6,

A, »p ok By rule A-TCTX-MARKER
App — O, pp, 02 AO,pp, 0, IFe'a,u:* By Lemma F.15

A — O; A O, soft By Lemma F.29

@1,>D,(;5\° ok By Lemma F.13

O1, 0, ¢ IF2 [@,] : % By Lemma F.25

Oy, »p, ¢° IH€12 ([@2];1)[(;/5\C MR By substitution

O, »p IR V{gbc}.([@z]y)[g’ﬁ\c — P % By rule A-ELA-FORALL-INFER
0 It V{qﬁ“}.([@z]p)[ac — ¢ % By strengthening

i

Lemma F.19 (Well-formedness of Typing Datatype Declaration). IfA ok, and A I4* 7~ T 4 ©,
then A — ©, and © |FEX T,

Proor. We have

A-DT-TT
(T VG55 w) €A AGE g5, @iox M [Alo~ (@ — %) 401,565 & : % = o
- -
®j’ ¢(1:’ 9{’5, ai: wil ”_ijc. @43; @955‘1_:1) z)j ~ Hj 4 ®j+1’ ¢(1:’ ¢§, a . wil
 _—jel.. —j
A data TG = Dy " ~> Dy V{PS}.VGE. Vartor gty 4 Opas
Aok A(T : V{¢{}.Ve5. @) € A Given
A, ¢S, ¢5 ok By inversion and weakening
A, ¢S, b5, @i * ok By rule A-TCTX-KUVAR-TT

—_—i = !

A, d);’ ¢§’ aj ik —> G)1’ ¢§’¢;’ @i i X = W Lemma F.10
, j

0, ¢S, 45, @i ;' — Oj1, ¢S, ¢S, @i : ;' | By Lemma F.18

- J
Oji1, S, ¢S, @i ;' IF2 gy s % By Lemma F.18
A— O,y By Lemma F.29 and Lemma F.32
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- J
Onrr, 5, @5, @i ;' IF1 gy % A By Lemma F.22
- J
Oy lFela V{¢$}.Ves. \{ai : a)i'.,uj Dk By rules A-ELA-FORALL and A-ELA-FORALL-INFER
—_—j
Ops1 IF™ Dj : Ve, p By rule A-ECTX-DCON-TT

i

Lemma F.20 (Well-formedness of Generalization). If A ok, and A 1% Ty, and A Il-iin I~ Iy,
then A I T,

Proor. Follows directly from rule A-EcTX-DCON-TT, rule A-ELA-FORALL-INFER and substitution.
O

F.2.2  Properties of Context Extension. Proofs for many lemmas are essentially the same as its
corresponding lemmas in Haskell98. Therefore in this section, we only give proof for those of
lemmas with slightly different reasoning or extra cases that are worth attention.

Lemma F.22 (Extension Weakening). Given A — ©, if A [ 1 : i, then © 2 s : [©]n.

Proor. By a straightforward induction on the elaborated kinding, making use of Lemma F.30.
]

Lemma F.25 (Soft Substitution Kinding). If A1, A; ok, and A, soft, and Ay, A, |Fela i 1, then
Ay, unsolved(Ay) IF? [Ag]p : 7.

Proor. Similar as the proof for Lemma D.12, making use of weakening.

O
Lemma F.27 (Well-formedness of Context Extension). IfA ok, and A — ©, then © ok.
Proor. Similar as the proof for Lemma D.15.
For the case
A-CTXE-LO
A— O A, topo (A1) — 6,0,
A {A1} — 0,{0}
A, {A1} ok Given
A, Aq ok By inversion
A, topo (A1) ok | By Lemma F.14
@, @1 ok LH.
O

Lemma F.32 (Transitivity of Context Extension). If A’ ok, and A’ — A, and A — O, then
A — O.

Proor. By induction on A — ©. The proof is similar as the proof for Lemma D.20.
For the case

A-CTXE-LO
A— O A, topo (A1) — 6,0,

A’ {Al} E— ®’ {®1}
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N — A {A} Given

A" = Ay, {As} A Ay — A A Ay, topo (As) — A, A; | By inversion

Az, topo (As) — A, topo (Aq) By reordering As according to topo (A1)
Az, topo (As3) — O, 04 LH.

As, {As} — 0,{0,} By rule A-CcTXE-LO

Lemma F.33 (Solution Admissibility for Extension).
o IfA1,@: w, Ay ok and Ay 112 p : [Ar]w, then A, @ : w0, Ay — A, @ : 0 = p, A,
o If AL, {As, @ : @, Ay}, Az ok and Ay, Az 112 p 2 [Ay, As]o, then Ay, {As, @ = ©,As}, Ay —
A], {A3, (’)'(\Z w = p, A4}, Az.

Proor.  Part 1 By induction on Aj. The proof is similar as the proof for Lemma D.21.
For the case A; = A),{As}. By LH,, we have Aj,& : « — A,@ : @ = p. Then by
rule A-CTXE-LO we have Ay, @ : w, {A}} — A, @ : 0 = p, {A}}.
Part 2 By induction on A;. Most cases are similar as Part 1. When A; is empty, we only need
to prove A1, As, & : w, Ay — Ay, A3, @ : @ = p, Ay. By referring Part 1 we are done.
O

Lemma F.36 (Parallel Admissibility).

o [fAy — Oy, and A1, A; ok, and Ay, Ay — ©1, 02, and A, is fresh w.r.t. ©4, then:
— if AL IER o s, then A, @ : w0, Ay — 1,7 : w, Oy;
— ifO 1€ p : [O1]w, then Ay, @ : w, Ay — O1,& : w = p, Oy;
- lf[@l]pl = [@1],02, then Al,(’Z\Z w = pl,Az — @1,5(\2 w = pz,@z.

o If A1, {A3} — ©1,{O3}, and A1, {As3, Ay}, Ag ok, and Ay, {As, Ay}, Ay — ©1,{03,0,}, 0,
and Ay, Ay is fresh w.r.t. ©1, Os, then:
— if AL {As} IFR o x, then Ay, {As, @ : 0, Mg}, Ny —> O, {03, @ : 0,04}, 0y;
— if01, {03} 12 p : [0y, O3]w, then Ay, {As, @ : @, Ay}, Ay —> O, {03, & : w = p, 04}, O;
- if[@l,®3]p1 = [@1,83]p2, then A],{A3,(’X\ Lw o= pl,A4},A2 — @1,{83,(’){\ Pw o=

P2, 04}, 0.

ProOF. Part 1 By induction on the size of ©;. Most cases are similar as in Lemma D.24.
For the case where @, = 03, {0,}, the derivation of A;, A; — ©, ©, must conclude with
rule A-cTxE-LO. It must be Ay = Ay, {Ag}.

A1, Az, {Ag2} — ©1, 03, {0y} Given

A1, Agp,topo (Agz) — ©4,05,0, By inversion
Al,(/l\l , A21,t0p0 (Az) — @1,(’1\1 w, @3,@4 LH.

ALa:w, Ay, {A} — O, @ : w,03,{0,} By rule A-cTXE-LO

Part 2 By induction on ©,. Most cases are similar to Part 1. For the first case, when ©; is
empty, we know A; is empty. We have A;, topo (A3), topo(Ay) — ©1,03,0,. By Part 1
we know Ay, topo(As),@ : w,topo(Ay) — ©,0;,@ : w, 4. By rule a-crxe-Lo we have
Al, {A3, (/f: , A4} — @1, {@3, (/fl , @4}

O

Lemma F.37 (Parallel Extension Solution).

o If AL, : w,Ay — ©1,& : @ = p3,0,, and [O1]p; = [O1]p2, then A, a : w = p1, Ay —
@1,(’1\1 w = Kz,@z.
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o If A, {As, & : w, Ay}, Ay — 01,{O5,& : @ = p3,04}, 0, and [01, O3]p; = [0, O3]y, then
AL {As, 0 0 = p1, s}, Ay — 01, {03, : 0 = p2, 04}, 0,.

Proor.  Part 1 By induction on ©;. The proof is similar to Lemma D.25. For the case when
@2 = @3, {@4}, we have Az = A3, {A4} And Al, (/Z\ L, Ag, {A4} - @1, (/f L, @3, {@4} By
inversion, we have A, & : w, As,topo(Ag) — ©1,@ : w, 03,0, By LH., we have Ay, :
® = p1,0s3,topo(Ay) — O, @ : w = pi, 03,0, By rule a-cTxs-10 we have A, & : @ =
pl,A3, {A4} — @1,&\: w = pz,@g, {@4}

Part 2 By induction on ©,. Most cases are similar to Part 1. We discuss when ©; is empty. Then
A, must to empty. From givens we know that Ay, As, & : @, A — 01,03, : @ = p;, 04
where As, @ : w,Ag = topo(As,@ : w,Ay). By Part 1 we have A, As,@ : w = p1,Ag —
01,03, : w = p3,04.Since As, @ : w = p1, Ag = topo (A3, @ : w = p1, Ay), by rule A-CTXE-LO
we have Ay, {As, & : 0 = p1, Ay} — 01,{03, & : 0 = p2,O4}.

O
F.2.3  Properties of Complete Context.
Lemma F.43 (Stability of Complete Contexts). If A — Q, then [Q]A = [Q]Q.
Proor. By induction on A — Q. Most cases are the same as Lemma D.31. For the case
A-CTXE-LO
A— O A, topo (A1) — 6,0,
A {A} — ©,{6:}
A A} — Q,{Q} Given
A, topo (A1) — Q,Q; | Given
[Q. {Q}(Q, {Q1})
=[Q, Q1](R, Q) By definition
=[Q, Q1](A, topo(A;)) | LH.
= [Q, {Q1}1(A, {A}) By definition
O
Lemma F.46 (Finishing Completions). If Q ok, and Q — Q’, then [Q"]Q’ = topo([Q]Q).
Proor. By induction on Q — Q’. Most cases are the same as Lemma D.34.
For the case
A-CTXE-LO
A— O A, topo (A1) — 6,0,
A {A} — ©,{6:}
Q,{Q1} — Q' {Q]} AQ,topo (1) — Q', Q] AQ — Q| Given
[Q {QIH(Q, {Q1})
= [Q%, Q1(Q, Q) By definition
= topo ([Q, topo (21)](Q, topo (21))) LH.
= topo ([Q, Q1](Q, Q1)) Follows
O

F.2.4 Decidability.
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Lemma F.47 (Promotion Preserves (A)). IfA HJ; w1 ~ wy 4 0, then (A) = (O).

Proor. By a straightforward induction on the derivation.

O

Lemma F.48 (Unification Makes Progress). If A I w; = w; 4 ©, then either © = A, or (@) < (A).

Proor. By induction on the derivation.

o In rule A-U-REFL-TT, the goal holds trivially.

e Case
A-U-KVARL-TT
A pr~s pp 40,0 : 01,0, O pyiwy  O1 1M [O1]wn ~ wp 4Oy

A&~ p1405,a: w = p2,0;

(01,0 : w1,02) = (A) Lemma F.47
03 = 0; U (B3) <(01) LH.
(03) < (0y) Follows

(03,0 : w1 = p3,03) < (O3, : w1,03)
< (01, a: w1,03)
=(A)

e The case for rule A-U-kVARR-TT is similar as the previous case.

e Case
A-U-KVARL-LO-TT
A, Ay #+™ @~ O Al{8}] ”J; p1~= p2401,{02,@ : w1,03},04
@1, {@2} ”_ela P2t W2 @1, {@2} [ [@1,@2]0)1 x wy @5, {®6}

A[{Al,(/fl a)l,Az}] Mo~ p1 A @5,{@6,5(\2 w1 = pz,@g},®4

(©) = (A, @: »,Az) By moving
(A[{©}]) = (©1,{@3,@ : w1, 03}, 0y) By Lemma F.47
05, {06} = 01,{0;} UBs5, {B} < (01,{0}) | LH.

(05, {06}) < (01,{602}) Follows

<®5, {@6,5(\2 w1 = pz,@g},®4>
< (Os5,{0¢, @ : w1, 03}, 0y)

< (01, {02, @ : w1,03},0y)

= (A[{O}])

= (A[{A1, @ : w1, Az}]).

o The case for rule A-U-KVARR-LO-TT is similar as the previous case.

e Case
A-U-APP

A IF p1 = p3 - A] Al [F [A]]pz = [A]]p4 10
Al p1ps = psps 10

Ar=AU{(A;) < (A) | LH.
Al =0U <®> < <A1> LH.
IfAl =A andA1 =0

A=0© Follows directly
Otherwise
(®) < (A) Follows directly

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.



Kind Inference for Datatypes: Technical Supplement 53:67

o The case for rule A-U-kAPP is similar as the previous case.
m]

Lemma F.49 (Promotion Preserves |p|). Given a context Ala] ok, if A HJ; w1 ~> wy 4 O, then for
all p, we have |[Alp| = |[O]p].

Proor. By a straightforward induction on the promotion judgment.

e Most cases we have A = ©. So the goal follows trivially.

e Case
A-PR-APP

A ”{i; w1~ p1 4 Aq Aq ”J;r [Al]a)z ~ po A Q)

All%rwlwgwmp24®
The goal follows directly from LH..

o The case for rule A-Pr-kAPP is the same as the previous case.

e Case
A-PR-KUVARR-TT

AR [Alp ~ py 4 ©[RI[B : pl
ALGI[B: p1 I B~ i 4 ©B1 < pr.&lIB - p = Bi]

From L.H., forallp we have |[O]a ][ﬁ p]]p | = |[A]p’|- As compared to O[a ][ﬁ : pl, ®[/?1 :
P1, a] ﬁ p= ,[31] only substltutedﬁWlth ﬁl,whlch preserves the size. Therefore |[O[][f : pllp’| =

[O1B1 : p1, @B : p = Billpl- So |[O1B: : p1, @B : p = Bullp’] = l[ALp'].

O

Theorem F.50 (Promotion Terminates). Given a context Ala] ok, and a kind p; with [Alp1 = p1,
it is decidable whether there exists © such that A H%r w1~ w3 4 0.

Proor. Draw the dependency graph of the input context. We measure the promotion process
A H{; w1 ~> wy 4 O by the lexicographic order of

(1) the maximal height of the being promoted types in the dependency graph;

(2) |onl.

We prove the measurement always get smaller from the conclusion to the hypothesis.

We first prove (1) gets no larger from the conclusion to the premises. This can be done via a
straightforward induction on the promotion judgment.

Now we induction on the promotion judgment.

e Most cases do not have hypothesis.

e Case

A-PR-APP )

AHJ;\ w1Wp1-|A1 Aq ”JZ? [A]]wzwp2-|®

r
A”{ix‘ wlwgwmp24®

|w1] < |1 wo Follows directly
[[A1]wz| = |[A]ws| | By Lemma F.49
= |ws| Given the equation
< | ws| Follows

o The case for rule A-Pr-xAPP is the same as the previous case.
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e Case
A-PR-KUVARR-TT

A [Alp ~ pi 4 O[@IB : p]
AL : p] I B~ Bi 4 OBy« p1. @B p = Bi]

In the dependency graph, there are edges from ﬁ to [A]p. So the height gets decreased from
the conclusion to the hypothesis.

i

Theorem F.51 (Unification Terminates). Given a context A ok, and kinds p; and p,, where [A]p; =
p1, and [A)pz = pa, it is decidable whether there exists © such that A I p; = p; 4 ©.

Proor. We measure the unification derivation by the lexicographic order on:

(1) ()
(2) il

We case analyze the derivation.

e The case for rule A-U-REFL-TT is decidable.

e Case
A-U-KVARL-TT
A py~s pp 40,0 01,0, O pyiwy  O1 1M [O1]wn ~ wp 4Oy

AM &~ p1405,a: w1 = ps2,0;

(01,0 : w1,02) = (A) Lemma F.47
(©1) < (01, : w1,0,) = (A) | Follows

o The case for rule A-U-kVARR-TT is similar as the previous case.
e Case
A-U-KVARL-LO-TT
A Dy #™ @01~ 0 AHOHIE py v py 401,{0,a : w1,05},0,
01, {02} % py 1wy ©1,{O;} M [01,0;]w; ~ @z 4 Os, {O}

A[{AI’&\: a)l’Az}] HJJ E{z pl - 857 {86’&\: w1 = p25 83}’ ®4

(©) = (A1, & w1,z) By moving
(A[{O}]) = (A[{A1, @ : w1, As}]) Follows
(A[{®}]) = (©1,{0,,a : w1,03},0,) | Lemma F.47
(01,{02})

<(01,{0;, @ : w1,03},0,)
= (A[{Ar, @ : w1, A2}])

e The case for rule A-U-KVARR-LO-TT is similar as the previous case.

e Case
A-U-APP

Al pr~ps 47 Ay IF [Aq]p2 = [A1]lps 40

A”‘uplpz zp3p4—|®
For the first condition, we know that (A) = (A) and the size of the expression decreases.
For the second condition, from Lemma F.48, we know that either A; = A, or (A1) < (A).In
the former case, we know that [A;]p2 = pa. So the size of the expression decreases. In the
latter case, we have (A1) < (A) so we are done.
e The case for rule A-u-xAPP is similar as the previous one.
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F.2.5 Source of Unification Variables.

Lemma F.52 (Source of Unification Variables). IfA K ¢ :n ~ p 4 O, then for any @ €
unsolved(®), either & € fkv([®]p), or there exists ,[3 € unsolved(A) such that @ € fkv([©]p).

Proor. Thislemma depends on the similar lemma on many judgments, including kind checking,
instantiation, and unification. We prove them one by one.
When the input context is the same as the output context, the lemma holds trivially, as all
unsolved unification variables in © are in A. So we will skip the discussion of those cases.
Part 1: Kinding By induction on the judgment.

e Case
A-KTT-FORALL

ARk ex~>w4A, Apa:olFoex~p4A,a:0,As A3 a

A Va:k.o:x~ VYa: @.[As]u 4 Az, unsolved(As)

Given a € unsolved(A,, unsolved(A3)), we know that & € unsolved(A,, a : w, A3).
Then by the lemma on kind checking. we have two cases.
(1) @ € fkv([A2, a : @, As]p). Then
(a) & € fkv(u), and @ is unsolved in Ay, a : w, As.
Therefore & € fkv([As]p).

Since & € unsolved(A, unsolved(A3)), we have @ € fkv([A;, unsolved(As)]([As]y)) so
we are done.

(b) there exists a [’f\z € fkv(y), such that & € fkv([A;, a: w, A3][’3\2)
Now the goal is to prove & € fkv([Az, unsoIved(Ag)]([Ag]ﬁz))
Notice that [A,, unsolved(As)|([As]82) = [A2]([A3]B2) = [Az, a: 0, As] .
So we are done.
(2) there exists ﬁl € unsolved(Ay, a : @) such that & € fkv([Az, a: o, A3]ﬁ1)
Because /31 isin Ay, a : w, then it must be /31 in Ay, a: @ by Lemma F.29 and Lemma F.21.
Therefore [A,, a : w, A3]El = [AZ]E.
So we have @ € fkv([Az]B1).

Also, it must be f; € unsolved(A;). Then by the lemma on kind checking. we have two
subcases.

(a) 1 € fkv([A1]w).
We know that A; — A, by Lemma F.15 and Lemma F.29.
So [Az, unsolved(As)]w = [Az]w = [Az]([A1]w).
We already know that B, € fkv([A]w)and @ € fkv([Az]B;), so we know & € fkv([A2]([A1]w))
and we are done. _

(b) there exists f3 € unsolved(A) such that §; € fkv([A 1]/33)
Similar as theprev1ous subcase, we have [A,, UnSOlVCd(A3)]ﬁ3 = [Az]ﬁ3 = [A]([A ]ﬁg)
We already know that ,81 € fkv([A ],83) anda € fkv([ Az]ﬁl) sowe know a € fkv([A2]([ l]ﬁg))
and we are done.

e The case for rule A-KTT-FORALLI is similar as the previous case.

e Case
A-KTT-APP

A IF i~ prA A A, IF@pp (p1:[A1]lm) e 20w~ p-40O

A IH o~ p40
Given & € unsolved(®), by the lemma on application kinding part we have two cases.
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(1) & € fkv([®]p). Then the goal follows directly.
(2) there exists /?1 € unsolved(A;) such that & € fkv([@]//f\l).
Because El € unsolved(A;), by LH., we have two subcases.
(@) B € flov([Aulpy).
Then by Lemma F.30 we have [O]p; = [O]([A1]p1)-
We already know that /?1 € fkv([A]p1) and @ € fkv([@]//f\l) so we must have o €
fkv([O]p1).
By the lemma on application kinding, we have & € fkv([®]p), so we are done.
(b) there exists //3\2 € unsolved(A;), such that /?1 € fkv([Al]//f\z)
By Lemma F.30 we have [@][’f\z = [®]([A1]EZ)
And we must have @ € fkv([0]([A1]52)).
e The case for rules A-KTT-KAPP and A-KTT-KAPP-INFER is similar as the previous case.
Instantiation The statement for instantiation is: if A H"' yy : 5y © 5y ~> pp 4 ©, then for
any @ € unsolved(0), either @ € fkv([@®]u,), or there exists /? € unsolved(A), such that
a € fkv([O] E) Moreover, pi; contains all the unification variables in .
We prove it by induction on the derivation.

e Case
A-INST-REFL

Al o ~ w40
A oy Cwy ~> 40
The first half of the goal follows directly from the lemma on unification part, and the

second goal holds trivially.
e Case

A-INST-FORALL
A@: o Py @a:glar @) Ewy~ pip 40

AIP”St,ul Va:opEwy~> 1240

The second half of the goal follows directly from LH.. Given @; € unsolved(®), by LH., we

have two cases.

(1) a; € fkv([© ],uz) So the first half of the goal holds directly.

(2) there exists ﬁ € unsolved(A @ : wy), such that a; € fkv([@]ﬁ)
Then we have either ﬁ =@, or ,[3 € unsolved(A). In the former case, as j; @@ contains
@, we have u, contains a. Therefore @; € fkv([@]uz) and we are done. In the latter case,
the goal follows directly.

e The case for rule A-INST-FORALL-INFER is similar as the previous case.

Application Kinding The statement for application kinding is: if A KPP (p; : ) e 7 : w ~>
p2 4 O, then for any @ € unsolved(®), either @ € fkv([®]p2), or there exists E € unsolved(A),
such that a € fkv([©] E) Moreover, p; contains all the unification variables in p;.

We prove it by induction on the derivation.

e Case
A-KAPP-TT-ARROW

A T =y~ py 40

A [Hkapp (p1:w; > wy)eT:wy~> prp; 410
The first half of the goal follows directly from the lemma on kind checking part.
The second half of the goal holds trivially.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.



Kind Inference for Datatypes: Technical Supplement 53:71

e Case
A-KAPP-TT-FORALL

AT o K (o, @T:plar> @) et :w~ pHO

AHPP (py:Va:win)et:w~> p40O

The second half of the goal follows directly from I.H..

Given @; € unsolved(®), by LH., we have two cases.

(1) a; € fkv([O] p) So the first half of the goal holds directly.

(2) there exists ﬁ € unsoIved(A @ : wy), such that a; € fkv([ ®]ﬁ)
Then we have either ﬁ =@, or ﬁ € unsolved(A). In the former case, as p; @& contains
@, we have p contains @. Therefore @; € fkv([®]p) and we are done. In the latter case,
the goal follows directly.

e The case for rule A-KAPP-TT-FORALL-INFER is the same as previous case.

e Case
A-KAPP-TT-KUVAR

Al,(’Z\l :*,52:*,E:w=(51 e 5?2),A2 IFk°r=51Mpz 410

Al,(/fl O),Az ”_kapp (pl Z(/Z\)OT : (’Z\z ~> p1p2 - ®

The second half of the goal follows trivially.

Given a3 € unsolved(©), by LH., we have two cases.

(1) a3 € fkv([®]p2). So the first half of the goal holds directly.

(2) there exists E € unsolved(Aj, a1 : *, @ @ x,a@ : @ = (@1 — @), A,), such that
@ € fkv([O]p).
Then we have either ﬁ = o, or /? = O3, or /? € unsolved(A, & : w = @y — @, Ay). In
the former two cases, we pick @ from the input context. And [@]a = [O]([A1, a1 : *, @3 :
x,a:k=(a — ), \]a) =0 ](a1 — &) by Lemma F.30. Therefore &3 € fkv([O]a).
In the later case, then it must be ﬁ € unsolved(A, @ : w, Ay) So we are done.

Kind Checking The statement for kind checking is: if A I* ¢ & 5 ~» p 4 ©, then for
any @ € unsolved(®), either & € fkv([®]u), or there exists ﬁ € unsolved(A), such that
a € fkv([O]p).

To prove the lemma, we have
A-KC-SUB
IR N~ ppH A Ay IH"St p1: [Arn E [Ar]o ~ p2 4 A

AIFkCO'ca)'\»yz-!Az
Given a € unsolved(A;), by the lemma on the instantiation part, we have two cases.
1) ae fkv([Ag]pz) Then the goal follows directly.

(2) there exists ,[3 € unsolved(A;), such that & € fkv([Az],B) Then because ﬁ € unsolved(A,),
by the lemma on the kinding part, we have two subcases.

(a) E € fkv([A1]p1). Then by the lemma on the instantiation part, we know that E €
fkv([A1]p2). By Lemma F.30, we have [Az]uz = [A2]([A ],uz) Sowehave & € fkv([A2]([A1]p2)).
(2) there exists ,82 € unsoIved(A) such that ﬁ e fkv([ l]ﬁz) By Lemma F.30, we have

[A21B2 = [A21([A11(B2)). So we have & € fkv([Az]([A1]52).

Promotion The statement for promotion is: if A HJ; @ ~ wy 4 O, then for any &’ €

unsolved(©), there exists ﬁe unsolved(A), such that &’ € fkv([@]ﬁ).
The only interesting case here is
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A-PR-KUVARR-TT

AT [Alp ~ py 4 O[] : p]
AR : pl I B~ i 4 OB - pr.@lIB - p = Bi]

Given a’ € unsolved(@[ﬁl PP 5?][3: p= El]), we have two cases:

e &’ is not f;.
Then we have &’ € unsolved(0[a] [E pl), and by LH. we are done.
o & is Bi.
Then we pick Efrom the input context, and we have that [@[El : p1, @] [ﬁ: p= ﬁl]]ﬁ = El
so we are done.
Unification The statement for unification is: if A I w; ~ w; 4 ©, then for any & € unsolved(©),

there exists E € unsolved(A), such that & € fkv([@]ﬁ).
Here, all cases are essentially the same. We discuss two of them and the rest can be proved
in a similar way.

e Case
A-U-APP

A pr~ps 47 A1 IF [Aq]p2 = [A1]ps 1 ©
A p1ps~p3sps 40
Given & € unsolved(®), by LH., we know that there exists E € unsolved(A;), such that
a € fkv([0]H).
And because E € unsolved(A;), by LH., we know that there exists [’f\z € unsolved(A), such
that B € fkv([A1]B2).

By Lemma F.30 we know that [0]B; = [0]([A1]B2). So we must have @ € fkv([0]([A1]52)).

e Case
A-U-KVARL-LO-TT
A, Ay #+™ @ w0~ O Al{8}] ”J:;r p1~ p2401,{02,@ : w1,03},04

01, {02} I p; : 01,{0;} IF [01,02]w; ~ @2 4 Os, {O6}
Al{AL, @ : w01, A} I @~ p1 405, {Og, @ : 01 = p2,03},04
Given @; € unsolved(@s, {O4, @ : w1 = p2, O3}, O4), we have two cases to discuss.
(1) @; € unsolved(©s, {B4}).
Then by LH., we know that there is El € unsolved(©1, {0,}) such that &; € fkv([Os, {@)6}]51).
By the definition, we know that .El € unsolved(©1, {0,, & : w1, O3}, ).
Then by the lemma on the promotion part, we know that there exists a ﬁg € unsolved(A[{©}])
such that B € fkv([O1, {05, @ : w1, O3}, O4]B2).
By the definition of moving, we know that all unsolved unification in unsolved(A, @ :
w1, Az) are in unsolved(®). Therefore we have EZ € unsolved(A[{B}]).
We have that [©5, {©6, & : w1 = p2,03},04]fs = [05,{Og, & : w1 = p2,03},04]([01, {02, :
w1, 03}, 04]62) by Lemma F.30,as Oy, {@2, @ : w1,03},0, — 05, {Og, & : @ = p2, 03}, 0y,
whose derivation can be found in the proof of Lemma F.10.
Then we must have @; € fkv([Os, {Og, @ : w1 = p2, O3}, O4]([O1, {O, & : w1, O3}, @4]32)).
(2) @ is in the domain of ®; and ©,.
Then it must be in unsolved(01, {®,, @ : w1, O3}, Oy).
Then by the lemma on the promotion part, we know that there exists a E € unsolved(A[{©}])
such that @; € fkv([©1, {0, @ : wy, O3}, ©4]B).
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By moving, we know that all unsolved unification in unsolved(A[{©}]) are in unsolved(A[{A, & :
o1, A2, )
Therefore we have § € unsolved(A[{A1, @ : w1, Az}]).
We have that [©5, {O6, & : w1 = p2,03},04]p = [05,{O, & : w1 = pa,O3},04]([01, {O, & :
w1, 03}, 04]) by LemmaF.30,as O1, {0, & : w1, 03}, 04 — Os,{Og, & : w1 = pa, O3}, Oy,
whose derivation can be found in the proof of Lemma F.10.
Then we must have @; € fkv([Os, {Os, @ : w1 = p2, O3}, O4([O1, {O2, & : w1, O3}, @4]3)).
O

F.2.6 Soundness of Algorithm.

Lemma F.53 (Soundness of Promotion). If A ok, and [A]lw; = w1, and A II%r w1 ~ wy 4 O, then
[Olw; = [O]w, = ws. If® — Q, then [Qlw; = [Q]ws.

Proor. The first half follows directly from a straightforward induction on promotion.
The second half of the goal follows directly from and Lemma F.30.
O

Lemma F.54 (Soundness of Unification). If A ok, and A IM @y = w; 4 ©, then [Olw; = [O]w;. If
0 — Q, then [Q]w; = [Q]ws.

Proor. By Lemma F.30, we only need to prove the first half of the lemma.

The case for rule A-u-rREFL-TT holds trivially. And the case for rule A-u-Arr and rule A-u-xarp fol-
lows from I.H. and Lemma F.30. As rule A-u-kvARL-TT and rule A-U-kvARR-TT, rule A-U-KVARL-LO-TT
and rule A-U-KVARR-LO-TT are symmetric, we only prove one of them.

o Case
A-U-KVARL-TT
A pr s py401,T 01,0, O 1% pyiey O 1M [O1]wy ~ wp 4Oy

AM &~ p405,a: w1 = ps2,0;

O, & : 0,0, — O3, : @ = P2, O We have proved in Lemma F.10
[@1,(’1\2 w1,®2]p1 = [@1,(’1\1 w1,®2]p2 By Lemma F.53
[@3,(’1\2 w1 = pz,@z]pl = [@3,&\1 w1 = pz,@z]pz By Lemma F.30
[@3,(’1\2 w1 = pz,@z]a{\ = [@3,(’1\2 w1 = pz,@z]pz By definition
(03, : w1 = p2, 0] = [O3,& : @1 = p2,02]p1 | By equations

e Case
A-U-KVARL-LO-TT
Al,Az Hm (/fl w1 ™~ () A[{@}] ”{i; p1~> p2 @1,{@2,(’3{\2 w1,®3},®4
@1, {@2} ”_e]a P2t W2 @1, {@2} [F [@1,@2]0)1 X Wy A @5, {@5}

A[{Al,(/fl a)l,Az}] Mo~ p1 A @5,{@6,5(\2 w1 = pz,@g},®4

01,{02,a : 01,03},0, — Os5,{Og, @ : w1 = p2,03},04 We have proved in Lemma F.10
[@1, {@2, (/f w1, @3}, @4],01 = [@1, {@2, (’Z\ w1, @3}, @4]p2 By Lemma F.53

[O5, {06, @ : w1 = p2,03},04]p1 = [Os,{O6, & : w1 = p2,03},04]p, | By Lemma F.30

[©5, {06, @ : w1 = p2,03},04]a = [O5,{O¢, @ : w1 = p2,03},04]p2 | By definition

[@5, {@5, (/fl w1 = P2, @3}, @4],01 = [@5, {@6, (/Z\Z w1 = P2, @3}, @4](’3{\ By equations
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Lemma F.55 (Soundness of Instantiation). If A ok, gnd A el Y1 : n,and A 2 o : %, and
AEMSY 4 i E @~ gy 40, and © — Q, then [Q]A ™ [Qy; : [Q]y T [Q]w ~ [Q]pe.
e Case
A-INST-REFL
AlM o = w; 40
AFS oy Cwg~ 40
[Qlw; = [Q]w; By Lemma F.54
[Q]A it [Q)p - [Q]w; E [Q]w; ~ [Q]p | By rule INST-REFL
e Case
A-INST-FORALL
A@: o Py @a:glar @) Cwy~> pip 40
AII—i”Stpl Va:o.pEwy~> piz 40
0 —Q ‘ Given
[QI(A, @ = 1) ¥ [Q)p @([Q@) : [Q(yla - @]) E [Qwz ~ [Q]pe LH.
[QI(A, : o) ¥t [Q]1 @([Q1E) : (I21n)]a — [Q1F] £ [Qlws ~ [l | By substitution
AR 1y s Va: wy Given

A H_e|a w1k

AN— Aa:w

ANa:o— 0O

0 — Q

ANad:o,— QAN — Q

[Q1(A, : 1) = [Q]A

[Q]A ™ [Q] @([Qla) : ([Qln)[a - [Q]a] E [Qwz ~ [Q]pe
A,(/f: w1 ”_ela (’Z\Z [A]w1

[Q(A, @ : ) 2 [Q]a : [Q]([A]ewr)

[Q]A 2 [Q]a : [Q]([A]w))

[Q]A #2 [Q]a : [Q]wy

[Q]A B [Q)py : Va: [Q]wr.[Q]n T [Q]w, ~ [Q]us

e The case for rule A-INST-FORALLI is similar as the previous one.

Lemma F.56 (Soundness of Kinding). If A ok, we have

e if AKX G :p~> p40,and©® — Q, then [Q]A K o : [Q]n ~ [Qlp;

By inversion

By rule -A-CTXE-ADD-TT
By Lemma F.11
Given

By Lemma F.32

By Lemma F.45

By equation

By rule A-ELA-KUVAR
By Lemma F.57

By equation

By Lemma F.30

By rule INST-FORALL

e if A o =~ 40, and® — Q, then [Q]A K€ ¢ < [Q]n ~ [Qp.
o if AIHPP (py i) @7 :w~> py 40, and A1 py 2y, and © — Q, then [Q]A ™ [Q]p; :
[Q]n C (w01 = [Qlw) ~ ps, and [Q]A K 7 & o ~> py. and [Qpa = ps pa.

Proor. By induction on the derivation.

Part 1 e The case for rules A-KTT-STAR, A-KTT-NAT, A-KTT-VAR, A-KTT-TCON, and A-KTT-ARROW

are straightforward.

e Case
A-KTT-APP

Alkkl'liih’\/)pl-|A1

A, IHa@pp (p1:[A1lm) ez~ p40O

A|FkT1T22&)’\z>p-|®
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By well-formedness of the judgments, we know every output context is an extension of
the input context and by transitivity we have that output context is an extension of all the
previous input contexts.

[Q1A ¥ 71 : [Q1n: ~ [Qlps LH.

Ay IER o [Aq]n By Lemma F.15

[Q]A, F'"St[ lpr: [QI([A1]m) E @1 — [Q]w ~ pp | By Part 3
[Q]A] I— Ty & W1 ™~ P3

AQlp = p2 ps
[Q]A = [Q]A; By Lemma F.45
[Q]A i [Q]p; - [Qm E w1 — [Q)w ~ po By equations and Lemma F.30
[Q]A &€ 1y = wy ~> p3 By equations
[QIA K 711, : [Qlw ~ [Q]p By rule xTT-APP
o Case
A-KTT-KAPP

A“‘k T1:I]’\/>p1—|A1 [A1]17=Va:w.172 Al ”_kc Tg(za)’\/)p2-|A2

A “‘k T1 @Tg : T]z[a = pz] ~ p1 @pz 4 Az
By well-formedness of the judgments, we know every output context is an extension of
the input context and by transitivity we have that output context is an extension of all the
previous input contexts.

[QA & 7, : [Q]n ~ [Qlpy LH.
[Qly = [Q]([A1]n) = Va : [Qw.[Q]7,. By Lemma F.30
[Q]A & 71 : Va: [Q)w.[Q]n: ~ [Q]p: By equations
[Q]A; I—kC 7 < [Qw ~ [Q]p2 By Part 2
[Q]A &€ 7, & [Qlw ~ [Q]p2 By Lemma F.45
[QIA & 7, @1y : ([Qly2)[a = [Qp2] ~ [Qp1 @[Q]p2 | By rule kTT-xAPP
[QIA & 7 @1y : [Ql(2[a = p2]) ~ [Q(p1 @p2) By substitutions
o The case for rule A-KTT-KAPP-INFER is similar to the previous case.
e Case
A-KTT-FORALL
A = %~ w4 A Al,a:a)lkkcoc*«»y-iAz,a:w,A3 A3 — a
A Va:ko:%~> Va: @.[As]p 4 Az, unsolved(As)
A,a:w— Ny, a:w, A3 Lemma F.15
Ay — Ay A A5 soft By Lemma F.29
Ay — A,, unsolved(A3) As proved in Lemma F.15
Az, unsolved(Az) — Q Given
A — Q by Lemma F.32
[Q]A K€ k & %~ [Qw By Part 2
Ny — QA Q =Q1, Qs A Qy soft By Lemma F.29
Np,a:0— Q,a:w By rule A-CTXE-TVAR-TT
Construct a Q3 such that
N, a:w,A3 — Qi,a: 0w, Q3
AY@ € unsolved(A3), the solution for & in Q3 is [Q]a
[Q1,a: w,Q3](As, a: w,As3) K o= %~ [Q1,a: w, Qs3] | Part2
[Q1,a: w,Q3](As, a: w,As3)
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=[Qp,a: w](Az,a: w) By Lemma F.44
=[Q1]Az, a: [Q]w By definition
=[Q1]Az, a: [Qlw By Lemma F.31
=[Q1]A, a: [Q]w By Lemma F.45
=[Q]Aa: [Qw By Lemma F.44
[Q1,a: 0, Qs3]p
= [Q1, Q2]([As]p) By the way Qs is constructed
~ [QI([As]n)
[Q]A, a: [Q]w K€ o & * ~ [Q]([As]y) By equations
[Q]A K Va:k.0: %~ Va: [Qlo.[Q]([As]y) By rule KTT-FORALL
[Q]A & (Va:k.0): %~ [Q](Va: w.([As]p)) By substitution

e The case for rule A-KTT-FORALLI is similar to the previous case.
The notable thing is that we use the solution of & (as in the rule A-xTT-FORALLI) in Q as
the w in rule KTT-FORALL.

Part 2 We have
A-KC-SUB

ARG~ 4A; A IES (A C [Ar]w ~> pp 4 Ay

All—kca<=a)«»p24A2

Follows directly from Part 1 and soundness of instantiation (Lemma F.55).
Part 3 By induction on the judgment.

e Case
A-KAPP-TT-ARROW

AIFkCTca)l«»pzﬁ(B

A|Fkapp(,01:wl — &)2).'[:&)2’\’}101/0248

[Q]A ™t [Q]p; : [Qlor — [Qlws T [Qwy — [Q]ws ~ [Q]p: | By rule iNsT-REFL
[Q]A &€ 7 = [Qw; ~ [Q]p2 Part 2

e Case
A-KAPP-TT-FORALL

Ao o Ip(app(pl@ff:r][aHEx\])oT:w«»pq@

A KPP (o1 :Va:wi.n)er:w~>p40

[QI(A, @ : ) i [Q](py @) : [Q](gla @]) E 0’ — [Qlw ~> p3 | LH.

[QA, @ : 1) KT = '~ ps AQ]p = p3pa Above

A— O By Lemma F.15
A— Q By Lemma F.32
ANa:w — 0 By Lemma F.15
Aa:w — Q By Lemma F.32

[Q]A = [Q(A, @ : wy) By Lemma F.45

[Q]A it [Q]p; @([Q]a) : ([Qyla [Q]a]) E o — [Q]w ~ p3 | By equations and substitutions
[Q]A K€ 7 &= ' ~> py By equations
AT:o 2T [AT: 0o By rule A-ELA-KUVAR
[QIA, @ : wy) ¥ [Q]7 : [Q[A, @ : w1]wr) By Lemma F.57
[Q]A #2 [Q]a : [QI(A, @ : wi]w:) By equations

[Q]A #2 [Q]a : [Q]w; By Lemma F.30
[Q]A it [Q]p; : Va: [Qwr.[Qn E o' — [Q)w ~ p3 By rule INST-FORALL
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o The case for rule A-KAPP-TT-FORALL-INFER is similar as the previous case.

e Case
A-KAPP-TT-KUVAR

Al,(’l\l :*,(’X\z:*,(’l\lwz((’fl g (’)'(\2),A2 |chT¢(’X\1’\/>pz 410

A1, @ ¢ w, Ay IFPP (pr:@)ot:0~> p1p 410

Ao %%, a:0= (@ — a),A\; — 0 By Lemma F.15
A, 0 : *, az *a:w= (0 = o), Ay — Q By Lemma F.32
[Al,(/fl Dok, O(z *, ad:w= ((’Z\ - (/Z\z), Az](/f

[A,ay: %0 xa:0=(a, > @), A](a; = @) By definition
[Qla = [Ql(a; — @) By Lemma F.22
[QI(AL @ : w,Ay) 1 [Q]py : [Qa E [Qlay — [Qa: ~ [Q]p: By rule INST-REFL
[QIAL @ i *, @i %, @ 0= (2 — @), As) K€ 1 <= [Qlay ~ [Q2]p2 | Part 2
A,o:w,Ay — O By Lemma F.15
A,a:w, Ay — Q By Lemma F.32
[Q)(ALL @ : w, Ay) K€ 1 = [Q]ay ~ [Qp2 By Lemma F.45

O

Lemma F.57 (Soundness of Elaborated Kinding). If A ok, and A IF¥'2 i : 5, and A — Q, then
[Q]A ¥ [Q]p - [Qn.

Proor. By a straightforward induction on the derivation.
O

Lemma F.58 (Soundness of Typing Signature). IfA ok, and Q IF8 S ~» T : 5, then [Q]Q ¥ S ~»
T:n.

Proor. We have

A-SIG-TT )
lof  @'=fkvo) Q{@:xa:a@}Ko:x~nA
@5 = scoped_sort(a; : [A]@; l) ;ﬁ; = unsolved(A) A—>a'
Q IFE data T : 0 ~> T : V{g5}.((V{$51.[AIIS — ¢5])

From A — @' we know that all unsolved unification variables in A do not depend on @l

Given gzlﬁ\; = unsolved(A), we further know that gzlﬁ\; only contains unsolved unification variable
that do not depend on ;. .

So ¢§ only contains type variables that do not depend on any unification variable or ;.

By weakening, we can add ¢ into the kinding judgment, so we get Q, ¢S, {@; : *, a; : @; l} K o
* ~> 11 4 Ay, where A is identical to A except for the presence of ¢5.

Now, we solve all unsolved unification variable in A (i.e., the domain of ¢5) to its corresponding
type variable in ¢5. We get a complete context Q; and A} — Q.

By by Lemma F.15, we have Q, ¢S, {@; : %, a; : 5?,-1} — A

So by Lemma F.32 we have Q, ¢7, {@;: %, a; : a; l} — Q.

By soundness of kinding (Lemma F.56), we know that [Q{](Q, ¢35, {a; : %, a; : &; l}) Ko:x~s
[Q1]n.

[Q(Q, g5, {ai: *,a;: @ }) = [Q]Q, ¢5, ¢5[ ¢C — ¢5], where ¢ is a well-formed order of ¢{.
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And [Q4]g = ([A]iy)[q’;C — $;5], because A contains all the solved unification variable in Q;
except for g’é\c

Namely, [Q]Q,qﬁg,qﬁg[Q/S\C = ¢S] Kok~ ([A]r))[d’;c > ¢5]. By reordering the context while
preserving well-formedness, we have [Q]Q, g{)g,gbi[(j’;c = ¢5] Ko:x~o ([A]iy)[q/;C = 5]

By the kinding rule we can get [Q]Q, #5 e V{gﬁi[g’ﬁ\c = @51}.o Kk~ V{gﬁi[g’ﬁ\c — ¢§]}([A]ry)[g’é\c —
$5]. By substitution we get [Q]Q, ¢ e V{gﬁi[g’ﬁ\c = @5}k (V{¢§}[A]U)[$C — @5l

To prove the rule, our goal is to prove all preconditions in

SIG-TT
lof  $€Q)  ¢eQVn  SgiEVe oo Vg 19l =14
Y8 dataT: o~ T:V{¢}.V{¢}.n
We have ]o[ as given. We claim that ¢ fits ¢ (¢°), and ¢; fits ¢5.
We first prove ¢f fits ¢. Because ¢{ = scoped_sort(a; : [A]a; l), obviously ¢ is one of the well-
formed permutation of @;', namely the free kind binder of o.
We then prove ¢5 fits ¢{. That requires us to prove that ¢ is the free kind binder of(V{qS;}.[A]r])[g’é\c —
#5]. Because (j’;g = unsolved(A), by Lemma F.52, we know every unsolved unification variable in
q/S\; either appears in [A]y, or appears in ¢{. For sure [A]n and ¢{ cannot contain more unsolved
unification variable than ;ﬁg or otherwise it would be ill-formed. Namely, qlﬁ\; are the free unification
variables of [A]n and ¢{. By substituting qlﬁ\; with ¢7, we know that ¢5 are the free kind binder in

(V{S . [AImIS > 5],

By now we have proved all the preconditions and we conclude that [Q]Q K8 S ~» T : p.

i

Lemma F.59 (Soundness of Typing Data Constructor Decl.). If A ok, and A IF‘;C D ~> 40, and

dc
© — Q, then [Q]A Kl D~ [Q]pu.

Proor. We have

A-DC-TT

A wop IH Vgﬁ.(?,-i — p)ik~o 1 401,pp, 0 g’é\c = unsolved(©,)

Al Y$.DT ~o V{§ V(O = ¢1) 4 01
To prove our goal, we claim that ¢ fits the ¢° in

DC-TT .
¢ € Qp\s 71) 5,0 K VT — pik~op
S HVY.DT ~ V{gp
We prove this by Lemma F.52 and the similar reasoning as in Lemma F.58.

The important thing to note is q/S\“ only contains unsolved unification variables in p.
Note that ¢ might contain unsolved unification variables in ©;. Then they must be the depen-
dency of unsolved unification variables in A. And those are not unification variables that we should

generalize over.

O

Lemma F.60 (Soundness of Typing Datatype Decl.). IfA ok, and A I T~ T 40, and® — Q,
then [Q]A H T~ [Q]T.

Proor. We have
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A-DT-TT
(T V{GSIVS. @) €A AP ¢S, @i:x IF [Alo~ @ — *) 405, ¢5 65 @ : % = ;.
- -j
®j’ ¢‘1:’ 9{’;, a: wil ”_?; @¢§ @¢§a—ii z)j ~ Ly 3 ®j+1’ ¢‘1:’ ¢§’ a: C‘)il
dt — —j€l..n c c i J
AlF dataTa;' = Dj ~> Dj : V{¢1}V¢2 Ya;: w; oA Oni1
A G ¢S, @it x —> O ¢S ¢, @ik = By Lemma F.10
A — 0O By Lemma F.29
- -j

0, ¢S, ¢5, ai ;' — O, §5, 95, @it ;' By Lemma F.18

0, — ®j+1j By Lemma F.29

Op — Q Given

0, — Q By Lemma F.32

A— Q By Lemma F.32

O, ¢, ¢S, &i k= i —> O, ¢5, ¢S, @k = wr By definition

[ 6,65 @ % = w1 1([Alo) = [ ¢, 45 @ : % = w; |@ — *) | By Lemma F.54

[Q]([A]w) = [Q]w,-l — % By definition and freshness
[Qlw = [Q]a),-l - * By Lemma F.30

T V{4 }.Ve5. [Qlor — ) € [Q]A By Lemma F.39

1792 y
0 — Q’ By Lemma F.32
- -J
Oji1, #5905, i - ;' — Q, ¢S, 95, @it ;' A By definition
— j
[Q]A, ¢S, 5, a; : [Q]a),-l I—E'; @b @sT D; ~ [Qy; By Lemma F.59, and Lemma F.45
1 2 % .
A —
[Q]A ¥t data T@' = D’ ~ D;: [QUV{¢S).VeS. Var T ) By rule pr-TT

O

Lemma F.61 (Soundness of Typing Program). If Q;T IP8™ pom : p, then [Q]Q; [Q]T #&8™ pgm :
[Q]p.

Proor. By induction on the derivation.

o Case
A-PGM-EXPR
[QI[QITFe: o
QTP e: o
The goal holds directly.
e Case

A-PGM-SIG

QIFES~T:p QT :np;TIFPE™ pgm: p
;T IFP8™ sig S; pgm :
The goal holds directly from soundness of typing signature (Lemma F.58) and LH..
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e Case
A-PGM-DT-TT

®1:Q’E{\i

Q; [t Ti~> T4 @H.]l

Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

i —i
kL, T

51? = unsolved([®,; {]a;)

Q, Ti : V{¢;}.(([© n+1]a1)[¢c > ¢ ]) ;T

i

Ons 157 (©uer (T 6 1 ¢¢ 1)~ T7

[[Ti-T, @qﬁl?i] IFPE™ pem : p

Q;T |em rec‘]{iEl " s pgm:

The key is to prove that ¢ corresponds to the ¢ in rule pGM-DT-TT. The reasoning is similar

to the one in Lemma F.58.

The key observation here is that, in typing datatype decl (rule A-pT-TT), the result context
does not have new unification variables at the end. Therefore, all unsolved unification vari-
able in O, is in one of the free kind variable in [©,,;]a;. Once we have all the ¢S, the rest

of preconditions follow straightforwardly.

F.2.7  Principality.

i

Lemma F.62 (Completeness of Promotion). Given A ok, and A — Q, and @ € A, and A |fela p:w,

and [A]a = @, and [A]
® and Q' such that® — Q’, and Q — Q’, and A IIJ;Ar P~ pad0O.

p = p. if p does not depend on @ in the dependency graph, then there exists p;,

Proor. By induction on the lexicographic order indicated in the proof of Theorem F.50.

The proof is essentlally the same as Lemma D.45.
For case p = ﬁ and the context Ala : w] [ﬁ p1], we have

Al : o][B : pi “i;: [Alpy ~ ps 4 A[@ : @][B : pi]
A\ [@ : a)]ﬁ i1l —>QI/\Q—>§21
Ala : w][ﬁ pa] I B~ BrA D [ﬁz p2.@:0llB:pr =
NG VR Pl] A1, @ @, Ayg, B2 pr, Ass
Aqy 12 py
Q= QH,E{\: w = p3,Qi2,: p1
[A1]lpz = [A]([Alp1)
= [A1]lp1
[Q1lp2 = [Qu]p1
Qi 12 py: [Q1]ps
Q; ¥ [Q]ps : [Q]pr
Q1 K2 [Q1]ps : [Qu]po
Qqy It [Ql]P4 :[Q1]p2
Qqq 12 py
Qqy 12 [Q 1]P4 [Qi1]p2
Al[a ol[B:pi] — Qula: w][ﬁ p1 = pal R
ﬁz p2. @ w][ﬁ prl — Qulps p2 = [Qlps.a: wlf: p1 -
A[Bs : P2 @ : ollB: p1 = o]l — Q1[[32 pz = [Qlps. @ : 0][p: p1
Q— QB p2 = [Qlps,@: @I[B: p1 = pa]

B2

= p4, Q3 AAjp — Qqy
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= pal

= pal

LH.

Above

By rule A-PR-KUVARR-TT
Let

By Lemma F.8

By Lemma F.29

By Lemma F.53

By Lemma F.30

By Lemma F.30

By inversion and weakening
By Lemma F.24

By equation

By strengthening

By Lemma F.22

By Lemma F.31

Given

By Lemma F.36

By Lemma F.37

By Lemmas F.32 and F.34

O
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Lemma F.63 (Completeness of Unification). Given A ok, and A — Q, and A [Fela p1 : w and
A IFR py - w, and [Alpy = p1 and [A]ps = pa, if [Q]p1 = [Q]pa, then there exists © and Q' such that
©— QLand Q — Q" and A I p; = py 4 0.

Proor. By induction on the lexicographic order indicated in the proof of Theorem F.51. Then
case analysis on p; and p.

The proof is essentially the same as Lemma D.46.

For case p; = @, and p, does not depend on @ in the dependency graph, we have

A py~ ps 401 A0 — QI AQ — O By Lemma F.62

©1 = 011, @ : 3,012 A Oy K2 ps 2 [011]w By Lemma F.8

[Q1]p2 = [Q1]ps By Lemma F.53

Ql = Qll,(’fi w3 = P4, le A @11 — Qll Lemma F.29

[Qla = [Q]p2 Given

[Qi]a = [Qi]p2 By Lemma F.30

[Q1lps = [Qu]p2 By definition

[Q1]ps = [Qu]p3 By equations

A— By Lemma F.8 and Lemma F.32
A |Fela a:w Given

Q; 2 7 : [Qi]w By Lemma F.22

[Qi]ws = [Q]w By inversion

[Qi1]ws = [Qui]w By Lemma F.31

[Q11]([©11]@3) = [Q11]([©11]w) By Lemma F.30

O I [@11]0)3 ] [@11]0) 40, ANOy — Qy A Qq — Qo | LH.

A& = py 40, : w3 = p3, O12 By rule A-U-KVARL-TT

O, & : w3 = p3,012 — N2, @ : w3 = pg, Q12 By Lemma F.36, Lemma F.38, Lemma F.37
Q— Qp,@: w3 = psg, Q12 Similarly

What if p, depends on a? For that to be possible, according to the dependency graph, we have
either @ = % or @ =—. Then for the unification constrain to be solvable, we have either p, = *,
p2 ==, 0r p = E When p, = % or p; =—, we know p, does not depend on & at all. When
p2 = ﬁ because we know that the context is well-formed, if ﬁ depends on @&, we must have @ not
depending on B\ So we can solve the case using rule A-U-KVARR-TT.

The case when the variable in a local scope is similar.

O

Lemma F.64 (Completeness of Instantiation). Given A —s Q, and A ¥ p :  and A IF¥? o : *,
and [Aln = n and [A]lo = o, if [Q]A 1" [Q]p; : [Q]n E [Q]w ~> p, then there exists p5, © and Q'
such that ® — Q’, and Q — Q" and A 5™ p; : n T w ~> p} 4O, and [Q']p} = ps.

Proor. By induction on the declarative instantiation.

e Case
INST-REFL

TESt w0~ p
Follows directly from rule A-1NsT-REFL and Lemma F.63.

e Case
INST-FORALL
ela

S pw S ESt  @p i gla— pl T wp ~

T HEMS Va1 Cwy ~ g
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We case analyze 7, and it can only be of the shape Ya : w;.3, and [Q]w; = w; and [Q]n2 = 1.
From hypothesis we get [Q]A £ ([Q]r; @[Q]p) : [Qula— [Q]p] T [Qwz ~ [Q]pe.
By substitution, [Q]A ™ [Q](1; @p) : [Q](u[a = p]) T [Qlws ~ [Q]ps.
By definition, [Q, @ : w; = p]A ™ [Q, @ : w1 = pl(1y @) : [Q, & : w; = pl(u[a — @]) E
[Q,a:w = plwy ~ [Q,a:w = plus.
The goal follows directly from LH., and rule A-INST-FORALL.

e The case for rule INST-FORALL-INFER is similar to the previous case.

Lemma F.65 (Principality of Kinding).

e Given A — Q, if[QIJA X o :p~> y,and A K o : ' ~ p’ 4 O, then there exists Q' such
that ® — Q’, and Q — Q’. Moreover, [Q'|n’ = n. Furthermore, if 1 and p’ are monotypes,
then [Q'y = p.

e Given A — Q, if[Q]A ¢ 0 = [Q]n ~> p, and A 1K€ ¢ < 5 ~> i’ 4 O, then there exists Q’
such that ® — Q’, and Q — Q’. Furthermore, if u and p’ are monotypes, then [Q"|py" = p.

e Given A — Q, if[Q]A 1™ [Q]py : [Q]n C (w1 — w2) ~ p3, and [Q]A K€ 1 & w; ~> py
and A IH@PP (p) 1) @7 1w ~> py 4 O, then there exists Q' such that ® — Q’, and Q — Q.
Moreover, [Q"|w = wa. Further, [Q"]p2 = p3 pa.

Proor. From this lemma, we make use of Any to ensure every algorithmic context can be ex-
tended to a complete context. The existence of Any does not affect at all how this lemma is used.
By induction on the algorithmic kinding.
Part 1 e The case for rules A-KTT-STAR, A-KTT-NAT, A-KTT-VAR, A-KTT-TCON, and A-KTT-ARROW
follows trivially by picking ® = A, and Q" = Q.

e Case
A-KTT-FORALL
A = %~ w4 A Al,a:a)lkkcoc*«»y-iAz,a:w,A3 A3 — a
A Va:ko:%~> Va: @.[As]p 4 Az, unsolved(As)

[QIA K Va:k.o: %~ Va: . Given
[QIA K€k & %~ w1 A QA a: w K€ 0 & %~ By inversion
AN — QUAQ — Q1 A [Ql]w = w1 LH.
[Q,a: w](Ar,a: w)
=[Qi]A1,a: w; By definition
is a well-formed permutation of [Q]A By Lemma F.45 and Lemma F.46
[Q1,a: 0](A,a: 0) K o &%~y Follows
Np,a:w, A3 — QyAQ,a: 0 — Qy LH.
Aa:w— Ny,a: w, A3 By Lemma F.15
A1 — Ay A As soft By Lemma F.29
Qp = Qp1,a: 0, Q0 ANy — Qa1 A Qp — Qo1 A Qyp soft | By Lemma F.29
construct Q,3 which contain same domain of unsolved(A3)
Q= Q21, Qz3 Let
Az, unsolved(Az) — Q' By rule A-CTXE-SOLVE-TT
Q — Qf By rule A-CTXE-ADDSOLVED-TT

e The case for rule A-KTT-FORALLI is similar as the previous case.
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e Case
A-KTT-APP

A||‘kT1:}]1’\/>p1-|A1

53:83

Ay IF#PP (py : [Ar]p) @12 i w0 ~> p4©

A|FkT1T22&)’\z>p-|®

[Q]A o T1T2 W2~ P2pPs

[Q]A ¥ 7y Mo~ pa A[QIAEMSY py iy Ty — wp ~ po
/\[Q]A '_kC Ty & W1 ™~ pP3

Ay — Qi AQ— QA [Qi]p1 = ps A[Q]n1 =12
[Q1]A is a well-formed permutation of [Q]A

[Q]A " [Qy]py : [Qm E w1 = w2 ~> pa

[Q]]A '_kc Ty & W1 ™ P3

O —QAQ —>QUA[Q]p=p2p3 AN[Q]w = w;
Q— Q

e Case
A-KTT-KAPP

A||‘kT1217’\/>p1—|A1

[A{lp=Va: wn; Ay

Given

By inversion

LH.

By Lemma F.43 and Lemma F.46
By equations

By equations

By Part 3

By Lemma F.32

||_kCT2<:(A)’\/>p2-|A2

A “‘k T1 @Tg : T]z[a = pz] ~ p1 @pz 4 Az

[Q]A ¥ 7y @1y spsla ps]~ py @ps

[QIA K 7, : Va: Wo. i3 ~> pg A [QIA K€ 1y &= wy ~> p3

Al — QUAQ — Q1A [Ql]I] =Va: w23 A [Ql]pl = P4
[Q1]A is a well-formed permutation of [Q]A

[Q1]n = [Q1]([A1]n)

=Va: [Qi]o.[Qi]n:

=[Qilp=Va: wy.pis
[Qi]w = w
[Q1ln2 = p3

[Q1]A ¥ 1y = [Qi]w ~ ps

Ay — Q' ANQy — Q' A [Q]p2 = p3
Q— Q

[Q'](mz[a - p2])

= ([Q]n2)la - [Q']p2]

= (p3)la > ps]

Given

By inversion
LH.

By Lemma F.43 and Lemma F.46
By Lemma F.30
By definition
Given

Follows
Follows

By equations
By Part 2

By Lemma F.32

By substitution
By Lemma F.41

e The case for rule A-KTT-KAPP-INFER is similar as the previous case.

Part 2 We have
A-KC-SUB

AIFkO':r]'\»,ulﬁAl A IP”St,ul:[Al]r]E

[Ar]w ~> p2 4 Ay

All—kca<=a)«»p24A2

[Q]A &€ o = [Qlw ~ py

[QIA ¥ 23~ ps

[QIA Bt pi3 3 © [Qew ~> py

A — UAQ— QU A[U]n=1n3

If y1; and ps are monotypes, then [Q4]p = ps3
[Q1]A is a well-formed permutation of [Q]A

Given

By inversion

By inversion

LH.

LH.

By Lemma F.43 and Lemma F.46
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[Q1]o =[Q]ew By Lemma F.41
[Q1]A; EMSY g 2 [Q1]7 C [Q1]w ~> g Follows

If y1; and ps are monotypes

[Q1]A4 I—f"St [Q1]p1 : [Q1]n T [Q1]w ~ g Follows
[©@11A; £ [Qy 11 : [@41([ArIn) € [1([A1]w) ~> e | By Lemma F.50
Q — QAN — Q' A[Q g2 = 4 By Lemma F.64

If y1; and ps3 are polytypes

then only rule INsT-REFL and rule A-INST-REFL can apply
Ay = Ag Follows
Q' =0 Let

Part 3 e Case
A-KAPP-TT-ARROW

A7 = w;~> py 40

All—kapp(P11w1 — @) eT: W~ pr1p2 1O

[Q]A |—inSt [Q]Pl : [Q]wl — [Q](A)Z c [Q](A)l i [Q](A)z ~> [Q]Pl Given
[Q]A &€ 7 = [Qwy ~ py Given
The goal follows directly from Part 2

o Case
A-KAPP-TT-FORALL
AT :w IHPP (py @ :pla— @) eT:w~> p4O
A KPP (1 :Va:win)er:w~>p40
[Q]A ™t [Q]p; : Va: [Qor[QNE ws — wy~> p3 Given
[Q]A &€ 7 = w3 ~ py Given
[Q]A "2 ps : [Qew; By inversion
[Q]A st [Q]py @ps = ([Qm)a ps] E w3 — g~ p3 By inversion
[Q,@:w = ps](A,@: w) B
[Q,&:w =psl(pr @) : [Q, @ : w1 = ps](nla+— @]) T w3 — w4 ~> p3 | By definition
The goal follows from LH.

o The case for rule A-KAPP-TT-FORALL-INFER is similar as the previous case.

e Case
A-KAPP-TT-KUVAR

Al,(’l\l :*,(’X\z:*,(’l\lwz((’fl g (’)'(\2),A2 |FkCT¢(’X\1’\/>pZ 10

A1, @ ¢ w, Ay IFPP (pr:@)ot:0~> p1p, 40
As a can only be instantiated with monotypes, obviously the declarative instantiation
judgment must be rule iNsT-REFL. Then the goal follows directly from Part 2.
[m]

C

Lemma F.66 (Principality of Typing Data Constructor Declaration). Given A — Q, if [Q]A K]
D ~> py, and A H-ff D ~> py - O, then there exists Q" such that ® — Q’, and Q — Q’.

Proor. We have

A-DC-TT ) .
Awp KV (T = p) ik~ 1 401,05,0;  ¢° = unsolved(®,)

AIE VDT~ V{L(([0:]1)[¢° > ¢°1) 4 0,
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[QIA K D~

[Q]A, ¢S K VO.TT — p:k~> g

Awp K V(T = p) ik~ 1401, 00,0,

Awp, ¢S VAT — p) ik~ 14Oy, »p, ¢S, O,
A— Q

A, »D, ¢c e Q, PD,¢C

[Q, p 0, 1A, » 1, ) EKVPTT — p ik~ iy

O1,»p, 9,0, — Q1 A Q,pp, ¢ — Q

Q=Q»p, QA0 —m QA0 — QU AQ — Q

Lemma F.67 (Principality of Typing Datatype Declaration).

Given

By inversion
Given

By weakening
Given

By definition
By definition
By Lemma F.65
By Lemma F.29

Given A — Q, if [Q]A

and A M T~ T 4 ©, then there exists Q' such that ® — Q’, and Q — Q’.

Proor. We have

A-DT-TT

(T : V{§S}.VgE. w) € A

A ¢S, 85, @ik I [Alw

o I
42O T oge @gsah)

©j, 91, 9% @i - i

i
Dj~o p1j 4 Oji1, ¢S, $5, i = ;'
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O

Mt~

:i Aii
~ (@ — %) @1,¢§,¢§, i * = w;

—j€l..n

Al data Ta' = D;

[Q]A I—d“ D~ ,ul Given
(T: (V{¢C} V5. [Qlw)) € [Q]A Inversion
[Qlo = ] AN * Inversion
c 71 de o ,
[QIA, ¢S, ¢35, a; = ] I—(T 0 @gsT) Dj~> Inversion
A— Q Given
A, ¢35, @i : * — Sl?,géc,gé;, o % = w{l L By definition
[Q, ¢S, 85, @i % = 60,/1 Jo =[Q, ¢, ¢S, @i : x = w! J(@i — %) | By substitution
Q, 95, 95, @ik = 0] — By Lemma F.63
aa——
01, ¢§, ¢§, ik =w; — By Lemma F.63
Q=0 ABAQ— Q AO; — Qy By Lemma F.29
O1, ¢S, 45, @it i — Qo 5, 45, @ @i By definition
[QZ’ ¢‘1:’ ¢§, a; . Wi l](e)l’ ¢‘1:, ¢§, a; . Wi l)
—_—
= [Q2]01, ¢7, $5, ai [Qg]wi By definition
=[Q 2]@1,¢1,¢2, a: {l By Lemma F.30
is a well-formed permutation of [Q]A, ¢S, ¢35, a; : a)lfl By Lemma F.46
c dc . . i
[Q]A, ¢5, 85, ai : ] o @6 @45 Z)j ~ Given
[QZ’ ¢1’ ¢2’ L Wj ](@)1’ ¢1, ¢2, a; . Wi ) 'fi;. @431 @QSEEI .Z)j ~> llj FOHOWS
(02,91, 95, a; - w; ') — Q3 By Lemma F.66
(Qa, 95,85, i = ;') — Q3 By Lemma F.66
Repeating the process for each j, we can finally get (On+1, ¢1, ¢5, @i+ ; i) — Q7

and (Qu1, ¢, 65, @ ;') — Q.

—J
Dj : V{¢§}V¢§ Va,- : a)l-’.,uj 4 ®n+1
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Q" =Q" Qo AOpy; — Q' AQuy; — Q' | By Lemma F.29
Q— By Lemma F.32

i

Theorem F.68 (Principality of Typing a Datatype Declaration Group). If Q [P rec fi ~
mi :T;', then whenever [Q]Q P recfl ~ 17_1’.1 :W;" holds, we have [QIQ + [Q]n; < 7;.
Proor. Given

PGM-DT-TT
i

; ) — .
z, ¢f ela g, % . (S Q(a)i)l %, Ugs l, T; : a)il it 77~ ¥;
1 1

SUF L T BN %o ¥ STV g W WIT o T @4 | #ET pgm o

;P pem rec7,-"i ;pgm: o

A-PGM-DT-TT

i i i
®1=Q,(Zl*l,TiZa{\il ®i||'dt77’\/>ri-|®i+1

i

g’é\g = unsolved([®n+1]§i)l (T ﬁ?n ([®n+1](ri[fl’5\f = fﬁfl])) ~ I

i

Q, Ty : V{6 ([Ons @) ¢ — ¢¢ 1) T, T[T, = T @5 | IFPE™ pgm :
Q;T |pem rec?{la"n s pgm:

Our goal i to prove that [Q]A F V{¢¢}.(([Ons 1]@)[ §¢ — ¢ 1) < V{¢¢}.s.
Similar as the proofin Lemma F.67, we can weaken the context ©; by adding Ugé_f " By weakening

’

» . Which is exactly the same as O+ 1, except for the addition of U¢_§l.

— i = i — i

Let Q; be Q,U¢§l,ai tk=w;, T
According to the definition, our goal is equivalent to prove that for some Q’, we have @], , —
Q’, and [Q’]a; = w;. According to Lemma F.67, we can prove there is indeed a Q’, such that

Q; — Q' and @), , — Q. Moreover [Q']a; = [Q]a; = w; by Lemma F.41, so we are done.

we can get ©

i
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