; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=aggressive-instcombine -mtriple x86_64-- -S | FileCheck %s declare float @sqrtf(float) declare double @sqrt(double) declare fp128 @sqrtl(fp128) declare float @llvm.fabs.f32(float) declare void @llvm.assume(i1 noundef) ; "nnan" implies no setting of errno and the target can lower this to an ; instruction, so transform to an intrinsic. define float @sqrt_call_nnan_f32(float %x) { ; CHECK-LABEL: @sqrt_call_nnan_f32( ; CHECK-NEXT: [[SQRT1:%.*]] = call nnan float @llvm.sqrt.f32(float [[X:%.*]]) ; CHECK-NEXT: ret float [[SQRT1]] ; %sqrt = call nnan float @sqrtf(float %x) ret float %sqrt } ; Verify that other FMF are propagated to the intrinsic call. ; We don't care about propagating 'tail' because this is not going to be a lowered as a call. define double @sqrt_call_nnan_f64(double %x) { ; CHECK-LABEL: @sqrt_call_nnan_f64( ; CHECK-NEXT: [[SQRT1:%.*]] = call nnan ninf double @llvm.sqrt.f64(double [[X:%.*]]) ; CHECK-NEXT: ret double [[SQRT1]] ; %sqrt = tail call nnan ninf double @sqrt(double %x) ret double %sqrt } ; We don't change this because it will be lowered to a call that could ; theoretically still change errno and affect other accessors of errno. define fp128 @sqrt_call_nnan_f128(fp128 %x) { ; CHECK-LABEL: @sqrt_call_nnan_f128( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan fp128 @sqrtl(fp128 [[X:%.*]]) ; CHECK-NEXT: ret fp128 [[SQRT]] ; %sqrt = call nnan fp128 @sqrtl(fp128 %x) ret fp128 %sqrt } ; Don't alter a no-builtin libcall. define float @sqrt_call_nnan_f32_nobuiltin(float %x) { ; CHECK-LABEL: @sqrt_call_nnan_f32_nobuiltin( ; CHECK-NEXT: [[SQRT:%.*]] = call nnan float @sqrtf(float [[X:%.*]]) #[[ATTR2:[0-9]+]] ; CHECK-NEXT: ret float [[SQRT]] ; %sqrt = call nnan float @sqrtf(float %x) nobuiltin ret float %sqrt } define float @sqrt_call_f32_squared(float %x) { ; CHECK-LABEL: @sqrt_call_f32_squared( ; CHECK-NEXT: [[X2:%.*]] = fmul float [[X:%.*]], [[X]] ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X2]]) ; CHECK-NEXT: ret float [[SQRT1]] ; %x2 = fmul float %x, %x %sqrt = call float @sqrtf(float %x2) ret float %sqrt } define float @sqrt_call_f32_fabs(float %x) { ; CHECK-LABEL: @sqrt_call_f32_fabs( ; CHECK-NEXT: [[A:%.*]] = call float @llvm.fabs.f32(float [[X:%.*]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[A]]) ; CHECK-NEXT: ret float [[SQRT1]] ; %a = call float @llvm.fabs.f32(float %x) %sqrt = call float @sqrtf(float %a) ret float %sqrt } define float @sqrt_call_f32_assume_oge_n0(float %x) { ; CHECK-LABEL: @sqrt_call_f32_assume_oge_n0( ; CHECK-NEXT: [[IS_POS:%.*]] = fcmp oge float [[X:%.*]], -0.000000e+00 ; CHECK-NEXT: call void @llvm.assume(i1 [[IS_POS]]) ; CHECK-NEXT: [[SQRT1:%.*]] = call float @llvm.sqrt.f32(float [[X]]) ; CHECK-NEXT: ret float [[SQRT1]] ; %is.pos = fcmp oge float %x, -0.0 call void @llvm.assume(i1 %is.pos) %sqrt = call float @sqrtf(float %x) ret float %sqrt }