; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt -S -passes=verify,iroutliner -ir-outlining-no-cost < %s | FileCheck %s ; This test checks that floating point commutative instructions are not treated ; as commutative. Even though an ffadd is technically commutative, the order ; of operands still needs to be enforced since the process of fadding floating ; point values requires the order to be the same. ; We make sure that we outline the identical regions from the first two ; functions, but not the third. this is because the operands are in a different ; order in a floating point instruction in this section. define void @outline_from_fadd1() { ; CHECK-LABEL: @outline_from_fadd1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[B:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[C:%.*]] = alloca double, align 4 ; CHECK-NEXT: call void @outlined_ir_func_0(ptr [[A]], ptr [[B]], ptr [[C]]) ; CHECK-NEXT: ret void ; entry: %a = alloca double, align 4 %b = alloca double, align 4 %c = alloca double, align 4 store double 2.0, ptr %a, align 4 store double 3.0, ptr %b, align 4 store double 4.0, ptr %c, align 4 %al = load double, ptr %a %bl = load double, ptr %b %cl = load double, ptr %c %0 = fadd double %al, %bl %1 = fadd double %al, %cl %2 = fadd double %bl, %cl ret void } define void @outline_from_fadd2.0() { ; CHECK-LABEL: @outline_from_fadd2.0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[B:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[C:%.*]] = alloca double, align 4 ; CHECK-NEXT: call void @outlined_ir_func_0(ptr [[A]], ptr [[B]], ptr [[C]]) ; CHECK-NEXT: ret void ; entry: %a = alloca double, align 4 %b = alloca double, align 4 %c = alloca double, align 4 store double 2.0, ptr %a, align 4 store double 3.0, ptr %b, align 4 store double 4.0, ptr %c, align 4 %al = load double, ptr %a %bl = load double, ptr %b %cl = load double, ptr %c %0 = fadd double %al, %bl %1 = fadd double %al, %cl %2 = fadd double %bl, %cl ret void } define void @outline_from_flipped_fadd3.0() { ; CHECK-LABEL: @outline_from_flipped_fadd3.0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[A:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[B:%.*]] = alloca double, align 4 ; CHECK-NEXT: [[C:%.*]] = alloca double, align 4 ; CHECK-NEXT: store double 2.000000e+00, ptr [[A]], align 4 ; CHECK-NEXT: store double 3.000000e+00, ptr [[B]], align 4 ; CHECK-NEXT: store double 4.000000e+00, ptr [[C]], align 4 ; CHECK-NEXT: [[AL:%.*]] = load double, ptr [[A]], align 8 ; CHECK-NEXT: [[BL:%.*]] = load double, ptr [[B]], align 8 ; CHECK-NEXT: [[CL:%.*]] = load double, ptr [[C]], align 8 ; CHECK-NEXT: [[TMP0:%.*]] = fadd double [[BL]], [[AL]] ; CHECK-NEXT: [[TMP1:%.*]] = fadd double [[CL]], [[AL]] ; CHECK-NEXT: [[TMP2:%.*]] = fadd double [[CL]], [[BL]] ; CHECK-NEXT: ret void ; entry: %a = alloca double, align 4 %b = alloca double, align 4 %c = alloca double, align 4 store double 2.0, ptr %a, align 4 store double 3.0, ptr %b, align 4 store double 4.0, ptr %c, align 4 %al = load double, ptr %a %bl = load double, ptr %b %cl = load double, ptr %c %0 = fadd double %bl, %al %1 = fadd double %cl, %al %2 = fadd double %cl, %bl ret void } ; CHECK: define internal void @outlined_ir_func_0(ptr [[ARG0:%.*]], ptr [[ARG1:%.*]], ptr [[ARG2:%.*]]) #0 { ; CHECK: entry_to_outline: ; CHECK-NEXT: store double 2.000000e+00, ptr [[ARG0]], align 4 ; CHECK-NEXT: store double 3.000000e+00, ptr [[ARG1]], align 4 ; CHECK-NEXT: store double 4.000000e+00, ptr [[ARG2]], align 4 ; CHECK-NEXT: [[AL:%.*]] = load double, ptr [[ARG0]], align 8 ; CHECK-NEXT: [[BL:%.*]] = load double, ptr [[ARG1]], align 8 ; CHECK-NEXT: [[CL:%.*]] = load double, ptr [[ARG2]], align 8 ; CHECK-NEXT: [[TMP0:%.*]] = fadd double [[AL]], [[BL]] ; CHECK-NEXT: [[TMP1:%.*]] = fadd double [[AL]], [[CL]] ; CHECK-NEXT: [[TMP2:%.*]] = fadd double [[BL]], [[CL]]