// RUN: mlir-opt %s -test-affine-reify-value-bounds -verify-diagnostics \ // RUN: -split-input-file | FileCheck %s // CHECK: #[[$map:.*]] = affine_map<()[s0, s1] -> (s0 + s1)> // CHECK-LABEL: func @affine_apply( // CHECK-SAME: %[[a:.*]]: index, %[[b:.*]]: index // CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]] // CHECK: %[[apply:.*]] = affine.apply #[[$map]]()[%[[a]], %[[b]]] // CHECK: return %[[apply]] func.func @affine_apply(%a: index, %b: index) -> index { %0 = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%a, %b] %1 = "test.reify_bound"(%0) : (index) -> (index) return %1 : index } // ----- // CHECK-LABEL: func @affine_max_lb( // CHECK-SAME: %[[a:.*]]: index // CHECK: %[[c2:.*]] = arith.constant 2 : index // CHECK: return %[[c2]] func.func @affine_max_lb(%a: index) -> (index) { // Note: There are two LBs: s0 and 2. FlatAffineValueConstraints always // returns the constant one at the moment. %1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a] %2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index) return %2 : index } // ----- func.func @affine_max_ub(%a: index) -> (index) { %1 = affine.max affine_map<()[s0] -> (s0, 2)>()[%a] // expected-error @below{{could not reify bound}} %2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index) return %2 : index } // ----- // CHECK-LABEL: func @affine_min_ub( // CHECK-SAME: %[[a:.*]]: index // CHECK: %[[c3:.*]] = arith.constant 3 : index // CHECK: return %[[c3]] func.func @affine_min_ub(%a: index) -> (index) { // Note: There are two UBs: s0 + 1 and 3. FlatAffineValueConstraints always // returns the constant one at the moment. %1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a] %2 = "test.reify_bound"(%1) {type = "UB"}: (index) -> (index) return %2 : index } // ----- func.func @affine_min_lb(%a: index) -> (index) { %1 = affine.min affine_map<()[s0] -> (s0, 2)>()[%a] // expected-error @below{{could not reify bound}} %2 = "test.reify_bound"(%1) {type = "LB"}: (index) -> (index) return %2 : index } // ----- // CHECK-LABEL: func @composed_affine_apply( // CHECK: %[[cst:.*]] = arith.constant -8 : index // CHECK: return %[[cst]] func.func @composed_affine_apply(%i1 : index) -> (index) { // The ValueBoundsOpInterface implementation of affine.apply fully composes // the affine map (and its operands) with other affine.apply ops drawn from // its operands before adding it to the constraint set. This is to work // around a limitation in `FlatLinearConstraints`, which can currently not // compute a constant bound for %s. (The affine map simplification logic can // simplify %s to -8.) %i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1) %i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1) %s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3] %reified = "test.reify_constant_bound"(%s) {type = "EQ"} : (index) -> (index) return %reified : index } // ----- // Test for affine::fullyComposeAndCheckIfEqual func.func @composed_are_equal(%i1 : index) { %i2 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16)>(%i1) %i3 = affine.apply affine_map<(d0) -> ((d0 floordiv 32) * 16 + 8)>(%i1) %s = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%i2, %i3] // expected-remark @below{{different}} "test.are_equal"(%i2, %i3) {compose} : (index, index) -> () return }