//===- MatrixTest.cpp - Tests for Matrix ----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Matrix.h" #include "./Utils.h" #include "mlir/Analysis/Presburger/Fraction.h" #include #include using namespace mlir; using namespace presburger; TEST(MatrixTest, ReadWrite) { IntMatrix mat(5, 5); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = 10 * row + col; for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), int(10 * row + col)); } TEST(MatrixTest, SwapColumns) { IntMatrix mat(5, 5); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = col == 3 ? 1 : 0; mat.swapColumns(3, 1); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0); // swap around all the other columns, swap (1, 3) twice for no effect. mat.swapColumns(3, 1); mat.swapColumns(2, 4); mat.swapColumns(1, 3); mat.swapColumns(0, 4); mat.swapColumns(2, 2); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), col == 1 ? 1 : 0); } TEST(MatrixTest, SwapRows) { IntMatrix mat(5, 5); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = row == 2 ? 1 : 0; mat.swapRows(2, 0); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0); // swap around all the other rows, swap (2, 0) twice for no effect. mat.swapRows(3, 4); mat.swapRows(1, 4); mat.swapRows(2, 0); mat.swapRows(1, 1); mat.swapRows(0, 2); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), row == 0 ? 1 : 0); } TEST(MatrixTest, resizeVertically) { IntMatrix mat(5, 5); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = 10 * row + col; mat.resizeVertically(3); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 3u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 3; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), int(10 * row + col)); mat.resizeVertically(5); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), row >= 3 ? 0 : int(10 * row + col)); } TEST(MatrixTest, insertColumns) { IntMatrix mat(5, 5, 5, 10); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = 10 * row + col; mat.insertColumns(3, 100); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 105u); for (unsigned row = 0; row < 5; ++row) { for (unsigned col = 0; col < 105; ++col) { if (col < 3) EXPECT_EQ(mat(row, col), int(10 * row + col)); else if (3 <= col && col <= 102) EXPECT_EQ(mat(row, col), 0); else EXPECT_EQ(mat(row, col), int(10 * row + col - 100)); } } mat.removeColumns(3, 100); ASSERT_TRUE(mat.hasConsistentState()); mat.insertColumns(0, 0); ASSERT_TRUE(mat.hasConsistentState()); mat.insertColumn(5); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 6u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 6; ++col) EXPECT_EQ(mat(row, col), col == 5 ? 0 : 10 * row + col); } TEST(MatrixTest, insertRows) { IntMatrix mat(5, 5, 5, 10); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = 10 * row + col; mat.insertRows(3, 100); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 105u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 105; ++row) { for (unsigned col = 0; col < 5; ++col) { if (row < 3) EXPECT_EQ(mat(row, col), int(10 * row + col)); else if (3 <= row && row <= 102) EXPECT_EQ(mat(row, col), 0); else EXPECT_EQ(mat(row, col), int(10 * (row - 100) + col)); } } mat.removeRows(3, 100); ASSERT_TRUE(mat.hasConsistentState()); mat.insertRows(0, 0); ASSERT_TRUE(mat.hasConsistentState()); mat.insertRow(5); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 6u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 6; ++row) for (unsigned col = 0; col < 5; ++col) EXPECT_EQ(mat(row, col), row == 5 ? 0 : 10 * row + col); } TEST(MatrixTest, resize) { IntMatrix mat(5, 5); EXPECT_EQ(mat.getNumRows(), 5u); EXPECT_EQ(mat.getNumColumns(), 5u); for (unsigned row = 0; row < 5; ++row) for (unsigned col = 0; col < 5; ++col) mat(row, col) = 10 * row + col; mat.resize(3, 3); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 3u); EXPECT_EQ(mat.getNumColumns(), 3u); for (unsigned row = 0; row < 3; ++row) for (unsigned col = 0; col < 3; ++col) EXPECT_EQ(mat(row, col), int(10 * row + col)); mat.resize(7, 7); ASSERT_TRUE(mat.hasConsistentState()); EXPECT_EQ(mat.getNumRows(), 7u); EXPECT_EQ(mat.getNumColumns(), 7u); for (unsigned row = 0; row < 7; ++row) for (unsigned col = 0; col < 7; ++col) EXPECT_EQ(mat(row, col), row >= 3 || col >= 3 ? 0 : int(10 * row + col)); } template static void checkMatEqual(const Matrix m1, const Matrix m2) { EXPECT_EQ(m1.getNumRows(), m2.getNumRows()); EXPECT_EQ(m1.getNumColumns(), m2.getNumColumns()); for (unsigned row = 0, rows = m1.getNumRows(); row < rows; ++row) for (unsigned col = 0, cols = m1.getNumColumns(); col < cols; ++col) EXPECT_EQ(m1(row, col), m2(row, col)); } static void checkHermiteNormalForm(const IntMatrix &mat, const IntMatrix &hermiteForm) { auto [h, u] = mat.computeHermiteNormalForm(); checkMatEqual(h, hermiteForm); } TEST(MatrixTest, computeHermiteNormalForm) { // TODO: Add a check to test the original statement of hermite normal form // instead of using a precomputed result. { // Hermite form of a unimodular matrix is the identity matrix. IntMatrix mat = makeIntMatrix(3, 3, {{2, 3, 6}, {3, 2, 3}, {17, 11, 16}}); IntMatrix hermiteForm = makeIntMatrix(3, 3, {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}); checkHermiteNormalForm(mat, hermiteForm); } { // Hermite form of a unimodular is the identity matrix. IntMatrix mat = makeIntMatrix( 4, 4, {{-6, -1, -19, -20}, {0, 1, 0, 0}, {-5, 0, -15, -16}, {6, 0, 18, 19}}); IntMatrix hermiteForm = makeIntMatrix( 4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}); checkHermiteNormalForm(mat, hermiteForm); } { IntMatrix mat = makeIntMatrix( 4, 4, {{3, 3, 1, 4}, {0, 1, 0, 0}, {0, 0, 19, 16}, {0, 0, 0, 3}}); IntMatrix hermiteForm = makeIntMatrix( 4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 3, 0}, {18, 0, 54, 57}}); checkHermiteNormalForm(mat, hermiteForm); } { IntMatrix mat = makeIntMatrix( 4, 4, {{3, 3, 1, 4}, {0, 1, 0, 0}, {0, 0, 19, 16}, {0, 0, 0, 3}}); IntMatrix hermiteForm = makeIntMatrix( 4, 4, {{1, 0, 0, 0}, {0, 1, 0, 0}, {1, 0, 3, 0}, {18, 0, 54, 57}}); checkHermiteNormalForm(mat, hermiteForm); } { IntMatrix mat = makeIntMatrix( 3, 5, {{0, 2, 0, 7, 1}, {-1, 0, 0, -3, 0}, {0, 4, 1, 0, 8}}); IntMatrix hermiteForm = makeIntMatrix( 3, 5, {{1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}}); checkHermiteNormalForm(mat, hermiteForm); } } TEST(MatrixTest, inverse) { IntMatrix mat1 = makeIntMatrix(2, 2, {{2, 1}, {7, 0}}); EXPECT_EQ(mat1.determinant(), -7); FracMatrix mat = makeFracMatrix( 2, 2, {{Fraction(2), Fraction(1)}, {Fraction(7), Fraction(0)}}); FracMatrix inverse = makeFracMatrix( 2, 2, {{Fraction(0), Fraction(1, 7)}, {Fraction(1), Fraction(-2, 7)}}); FracMatrix inv(2, 2); mat.determinant(&inv); EXPECT_EQ_FRAC_MATRIX(inv, inverse); mat = makeFracMatrix( 2, 2, {{Fraction(0), Fraction(1)}, {Fraction(0), Fraction(2)}}); Fraction det = mat.determinant(nullptr); EXPECT_EQ(det, Fraction(0)); mat = makeFracMatrix(3, 3, {{Fraction(1), Fraction(2), Fraction(3)}, {Fraction(4), Fraction(8), Fraction(6)}, {Fraction(7), Fraction(8), Fraction(6)}}); inverse = makeFracMatrix(3, 3, {{Fraction(0), Fraction(-1, 3), Fraction(1, 3)}, {Fraction(-1, 2), Fraction(5, 12), Fraction(-1, 6)}, {Fraction(2, 3), Fraction(-1, 6), Fraction(0)}}); mat.determinant(&inv); EXPECT_EQ_FRAC_MATRIX(inv, inverse); mat = makeFracMatrix(0, 0, {}); mat.determinant(&inv); } TEST(MatrixTest, intInverse) { IntMatrix mat = makeIntMatrix(2, 2, {{2, 1}, {7, 0}}); IntMatrix inverse = makeIntMatrix(2, 2, {{0, -1}, {-7, 2}}); IntMatrix inv(2, 2); mat.determinant(&inv); EXPECT_EQ_INT_MATRIX(inv, inverse); mat = makeIntMatrix( 4, 4, {{4, 14, 11, 3}, {13, 5, 14, 12}, {13, 9, 7, 14}, {2, 3, 12, 7}}); inverse = makeIntMatrix(4, 4, {{155, 1636, -579, -1713}, {725, -743, 537, -111}, {210, 735, -855, 360}, {-715, -1409, 1401, 1482}}); mat.determinant(&inv); EXPECT_EQ_INT_MATRIX(inv, inverse); mat = makeIntMatrix(2, 2, {{0, 0}, {1, 2}}); MPInt det = mat.determinant(&inv); EXPECT_EQ(det, 0); } TEST(MatrixTest, gramSchmidt) { FracMatrix mat = makeFracMatrix(3, 5, {{Fraction(3, 1), Fraction(4, 1), Fraction(5, 1), Fraction(12, 1), Fraction(19, 1)}, {Fraction(4, 1), Fraction(5, 1), Fraction(6, 1), Fraction(13, 1), Fraction(20, 1)}, {Fraction(7, 1), Fraction(8, 1), Fraction(9, 1), Fraction(16, 1), Fraction(24, 1)}}); FracMatrix gramSchmidt = makeFracMatrix( 3, 5, {{Fraction(3, 1), Fraction(4, 1), Fraction(5, 1), Fraction(12, 1), Fraction(19, 1)}, {Fraction(142, 185), Fraction(383, 555), Fraction(68, 111), Fraction(13, 185), Fraction(-262, 555)}, {Fraction(53, 463), Fraction(27, 463), Fraction(1, 463), Fraction(-181, 463), Fraction(100, 463)}}); FracMatrix gs = mat.gramSchmidt(); EXPECT_EQ_FRAC_MATRIX(gs, gramSchmidt); for (unsigned i = 0; i < 3u; i++) for (unsigned j = i + 1; j < 3u; j++) EXPECT_EQ(dotProduct(gs.getRow(i), gs.getRow(j)), 0); mat = makeFracMatrix(3, 3, {{Fraction(20, 1), Fraction(17, 1), Fraction(10, 1)}, {Fraction(20, 1), Fraction(18, 1), Fraction(6, 1)}, {Fraction(15, 1), Fraction(14, 1), Fraction(10, 1)}}); gramSchmidt = makeFracMatrix( 3, 3, {{Fraction(20, 1), Fraction(17, 1), Fraction(10, 1)}, {Fraction(460, 789), Fraction(1180, 789), Fraction(-2926, 789)}, {Fraction(-2925, 3221), Fraction(3000, 3221), Fraction(750, 3221)}}); gs = mat.gramSchmidt(); EXPECT_EQ_FRAC_MATRIX(gs, gramSchmidt); for (unsigned i = 0; i < 3u; i++) for (unsigned j = i + 1; j < 3u; j++) EXPECT_EQ(dotProduct(gs.getRow(i), gs.getRow(j)), 0); mat = makeFracMatrix( 4, 4, {{Fraction(1, 26), Fraction(13, 12), Fraction(34, 13), Fraction(7, 10)}, {Fraction(40, 23), Fraction(34, 1), Fraction(11, 19), Fraction(15, 1)}, {Fraction(21, 22), Fraction(10, 9), Fraction(4, 11), Fraction(14, 11)}, {Fraction(35, 22), Fraction(1, 15), Fraction(5, 8), Fraction(30, 1)}}); gs = mat.gramSchmidt(); // The integers involved are too big to construct the actual matrix. // but we can check that the result is linearly independent. ASSERT_FALSE(mat.determinant(nullptr) == 0); for (unsigned i = 0; i < 4u; i++) for (unsigned j = i + 1; j < 4u; j++) EXPECT_EQ(dotProduct(gs.getRow(i), gs.getRow(j)), 0); mat = FracMatrix::identity(/*dim=*/10); gs = mat.gramSchmidt(); EXPECT_EQ_FRAC_MATRIX(gs, FracMatrix::identity(10)); } void checkReducedBasis(FracMatrix mat, Fraction delta) { FracMatrix gsOrth = mat.gramSchmidt(); // Size-reduced check. for (unsigned i = 0, e = mat.getNumRows(); i < e; i++) { for (unsigned j = 0; j < i; j++) { Fraction mu = dotProduct(mat.getRow(i), gsOrth.getRow(j)) / dotProduct(gsOrth.getRow(j), gsOrth.getRow(j)); EXPECT_TRUE(abs(mu) <= Fraction(1, 2)); } } // Lovasz condition check. for (unsigned i = 1, e = mat.getNumRows(); i < e; i++) { Fraction mu = dotProduct(mat.getRow(i), gsOrth.getRow(i - 1)) / dotProduct(gsOrth.getRow(i - 1), gsOrth.getRow(i - 1)); EXPECT_TRUE(dotProduct(mat.getRow(i), mat.getRow(i)) > (delta - mu * mu) * dotProduct(gsOrth.getRow(i - 1), gsOrth.getRow(i - 1))); } } TEST(MatrixTest, LLL) { FracMatrix mat = makeFracMatrix(3, 3, {{Fraction(1, 1), Fraction(1, 1), Fraction(1, 1)}, {Fraction(-1, 1), Fraction(0, 1), Fraction(2, 1)}, {Fraction(3, 1), Fraction(5, 1), Fraction(6, 1)}}); mat.LLL(Fraction(3, 4)); checkReducedBasis(mat, Fraction(3, 4)); mat = makeFracMatrix( 2, 2, {{Fraction(12, 1), Fraction(2, 1)}, {Fraction(13, 1), Fraction(4, 1)}}); mat.LLL(Fraction(3, 4)); checkReducedBasis(mat, Fraction(3, 4)); mat = makeFracMatrix(3, 3, {{Fraction(1, 1), Fraction(0, 1), Fraction(2, 1)}, {Fraction(0, 1), Fraction(1, 3), -Fraction(5, 3)}, {Fraction(0, 1), Fraction(0, 1), Fraction(1, 1)}}); mat.LLL(Fraction(3, 4)); checkReducedBasis(mat, Fraction(3, 4)); } TEST(MatrixTest, moveColumns) { IntMatrix mat = makeIntMatrix(3, 4, {{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 4, 2}}); { IntMatrix movedMat = makeIntMatrix(3, 4, {{0, 3, 1, 2}, {4, 7, 5, 6}, {8, 2, 9, 4}}); movedMat.moveColumns(2, 2, 1); checkMatEqual(mat, movedMat); } { IntMatrix movedMat = makeIntMatrix(3, 4, {{0, 3, 1, 2}, {4, 7, 5, 6}, {8, 2, 9, 4}}); movedMat.moveColumns(1, 1, 3); checkMatEqual(mat, movedMat); } { IntMatrix movedMat = makeIntMatrix(3, 4, {{1, 2, 0, 3}, {5, 6, 4, 7}, {9, 4, 8, 2}}); movedMat.moveColumns(0, 2, 1); checkMatEqual(mat, movedMat); } { IntMatrix movedMat = makeIntMatrix(3, 4, {{1, 0, 2, 3}, {5, 4, 6, 7}, {9, 8, 4, 2}}); movedMat.moveColumns(0, 1, 1); checkMatEqual(mat, movedMat); } }