//===- SetTest.cpp - Tests for PresburgerSet ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains tests for PresburgerSet. The tests for union, // intersection, subtract, and complement work by computing the operation on // two sets and checking, for a set of points, that the resulting set contains // the point iff the result is supposed to contain it. The test for isEqual just // checks if the result for two sets matches the expected result. // //===----------------------------------------------------------------------===// #include "Parser.h" #include "Utils.h" #include "mlir/Analysis/Presburger/PresburgerRelation.h" #include "mlir/IR/MLIRContext.h" #include #include #include using namespace mlir; using namespace presburger; /// Compute the union of s and t, and check that each of the given points /// belongs to the union iff it belongs to at least one of s and t. static void testUnionAtPoints(const PresburgerSet &s, const PresburgerSet &t, ArrayRef> points) { PresburgerSet unionSet = s.unionSet(t); for (const SmallVector &point : points) { bool inS = s.containsPoint(point); bool inT = t.containsPoint(point); bool inUnion = unionSet.containsPoint(point); EXPECT_EQ(inUnion, inS || inT); } } /// Compute the intersection of s and t, and check that each of the given points /// belongs to the intersection iff it belongs to both s and t. static void testIntersectAtPoints(const PresburgerSet &s, const PresburgerSet &t, ArrayRef> points) { PresburgerSet intersection = s.intersect(t); for (const SmallVector &point : points) { bool inS = s.containsPoint(point); bool inT = t.containsPoint(point); bool inIntersection = intersection.containsPoint(point); EXPECT_EQ(inIntersection, inS && inT); } } /// Compute the set difference s \ t, and check that each of the given points /// belongs to the difference iff it belongs to s and does not belong to t. static void testSubtractAtPoints(const PresburgerSet &s, const PresburgerSet &t, ArrayRef> points) { PresburgerSet diff = s.subtract(t); for (const SmallVector &point : points) { bool inS = s.containsPoint(point); bool inT = t.containsPoint(point); bool inDiff = diff.containsPoint(point); if (inT) EXPECT_FALSE(inDiff); else EXPECT_EQ(inDiff, inS); } } /// Compute the complement of s, and check that each of the given points /// belongs to the complement iff it does not belong to s. static void testComplementAtPoints(const PresburgerSet &s, ArrayRef> points) { PresburgerSet complement = s.complement(); complement.complement(); for (const SmallVector &point : points) { bool inS = s.containsPoint(point); bool inComplement = complement.containsPoint(point); if (inS) EXPECT_FALSE(inComplement); else EXPECT_TRUE(inComplement); } } /// Construct a PresburgerSet having `numDims` dimensions and no symbols from /// the given list of IntegerPolyhedron. Each Poly in `polys` should also have /// `numDims` dimensions and no symbols, although it can have any number of /// local ids. static PresburgerSet makeSetFromPoly(unsigned numDims, ArrayRef polys) { PresburgerSet set = PresburgerSet::getEmpty(PresburgerSpace::getSetSpace(numDims)); for (const IntegerPolyhedron &poly : polys) set.unionInPlace(poly); return set; } TEST(SetTest, containsPoint) { PresburgerSet setA = parsePresburgerSet( {"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"}); for (unsigned x = 0; x <= 21; ++x) { if ((2 <= x && x <= 8) || (10 <= x && x <= 20)) EXPECT_TRUE(setA.containsPoint({x})); else EXPECT_FALSE(setA.containsPoint({x})); } // A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} union // a square with opposite corners (2, 2) and (10, 10). PresburgerSet setB = parsePresburgerSet( {"(x,y) : (x + y - 4 >= 0, -x - y + 32 >= 0, " "x - y - 2 >= 0, -x + y + 16 >= 0)", "(x,y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}); for (unsigned x = 1; x <= 25; ++x) { for (unsigned y = -6; y <= 16; ++y) { if (4 <= x + y && x + y <= 32 && 2 <= x - y && x - y <= 16) EXPECT_TRUE(setB.containsPoint({x, y})); else if (2 <= x && x <= 10 && 2 <= y && y <= 10) EXPECT_TRUE(setB.containsPoint({x, y})); else EXPECT_FALSE(setB.containsPoint({x, y})); } } // The PresburgerSet has only one id, x, so we supply one value. EXPECT_TRUE( PresburgerSet(parseIntegerPolyhedron("(x) : (x - 2*(x floordiv 2) == 0)")) .containsPoint({0})); } TEST(SetTest, Union) { PresburgerSet set = parsePresburgerSet( {"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"}); // Universe union set. testUnionAtPoints(PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(1)), set, {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // empty set union set. testUnionAtPoints(PresburgerSet::getEmpty(PresburgerSpace::getSetSpace(1)), set, {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // empty set union Universe. testUnionAtPoints(PresburgerSet::getEmpty(PresburgerSpace::getSetSpace(1)), PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(1)), {{1}, {2}, {0}, {-1}}); // Universe union empty set. testUnionAtPoints(PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(1)), PresburgerSet::getEmpty(PresburgerSpace::getSetSpace(1)), {{1}, {2}, {0}, {-1}}); // empty set union empty set. testUnionAtPoints(PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), {{1}, {2}, {0}, {-1}}); } TEST(SetTest, Intersect) { PresburgerSet set = parsePresburgerSet( {"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"}); // Universe intersection set. testIntersectAtPoints( PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), set, {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // empty set intersection set. testIntersectAtPoints( PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), set, {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // empty set intersection Universe. testIntersectAtPoints( PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), {{1}, {2}, {0}, {-1}}); // Universe intersection empty set. testIntersectAtPoints( PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), {{1}, {2}, {0}, {-1}}); // Universe intersection Universe. testIntersectAtPoints( PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), {{1}, {2}, {0}, {-1}}); } TEST(SetTest, Subtract) { // The interval [2, 8] minus the interval [10, 20]. testSubtractAtPoints( parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)"}), parsePresburgerSet({"(x) : (x - 10 >= 0, -x + 20 >= 0)"}), {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // Universe minus [2, 8] U [10, 20] testSubtractAtPoints( parsePresburgerSet({"(x) : ()"}), parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"}), {{1}, {2}, {8}, {9}, {10}, {20}, {21}}); // ((-infinity, 0] U [3, 4] U [6, 7]) - ([2, 3] U [5, 6]) testSubtractAtPoints( parsePresburgerSet({"(x) : (-x >= 0)", "(x) : (x - 3 >= 0, -x + 4 >= 0)", "(x) : (x - 6 >= 0, -x + 7 >= 0)"}), parsePresburgerSet({"(x) : (x - 2 >= 0, -x + 3 >= 0)", "(x) : (x - 5 >= 0, -x + 6 >= 0)"}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}); // Expected result is {[x, y] : x > y}, i.e., {[x, y] : x >= y + 1}. testSubtractAtPoints(parsePresburgerSet({"(x, y) : (x - y >= 0)"}), parsePresburgerSet({"(x, y) : (x + y >= 0)"}), {{0, 1}, {1, 1}, {1, 0}, {1, -1}, {0, -1}}); // A rectangle with corners at (2, 2) and (10, 10), minus // a rectangle with corners at (5, -10) and (7, 100). // This splits the former rectangle into two halves, (2, 2) to (5, 10) and // (7, 2) to (10, 10). testSubtractAtPoints( parsePresburgerSet({ "(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, -y + 10 >= 0)", }), parsePresburgerSet({ "(x, y) : (x - 5 >= 0, y + 10 >= 0, -x + 7 >= 0, -y + 100 >= 0)", }), {{1, 2}, {2, 2}, {4, 2}, {5, 2}, {7, 2}, {8, 2}, {11, 2}, {1, 1}, {2, 1}, {4, 1}, {5, 1}, {7, 1}, {8, 1}, {11, 1}, {1, 10}, {2, 10}, {4, 10}, {5, 10}, {7, 10}, {8, 10}, {11, 10}, {1, 11}, {2, 11}, {4, 11}, {5, 11}, {7, 11}, {8, 11}, {11, 11}}); // A rectangle with corners at (2, 2) and (10, 10), minus // a rectangle with corners at (5, 4) and (7, 8). // This creates a hole in the middle of the former rectangle, and the // resulting set can be represented as a union of four rectangles. testSubtractAtPoints( parsePresburgerSet( {"(x, y) : (x - 2 >= 0, y -2 >= 0, -x + 10 >= 0, -y + 10 >= 0)"}), parsePresburgerSet({ "(x, y) : (x - 5 >= 0, y - 4 >= 0, -x + 7 >= 0, -y + 8 >= 0)", }), {{1, 1}, {2, 2}, {10, 10}, {11, 11}, {5, 4}, {7, 4}, {5, 8}, {7, 8}, {4, 4}, {8, 4}, {4, 8}, {8, 8}}); // The second set is a superset of the first one, since on the line x + y = 0, // y <= 1 is equivalent to x >= -1. So the result is empty. testSubtractAtPoints( parsePresburgerSet({"(x, y) : (x >= 0, x + y == 0)"}), parsePresburgerSet({"(x, y) : (-y + 1 >= 0, x + y == 0)"}), {{0, 0}, {1, -1}, {2, -2}, {-1, 1}, {-2, 2}, {1, 1}, {-1, -1}, {-1, 1}, {1, -1}}); // The result should be {0} U {2}. testSubtractAtPoints(parsePresburgerSet({"(x) : (x >= 0, -x + 2 >= 0)"}), parsePresburgerSet({"(x) : (x - 1 == 0)"}), {{-1}, {0}, {1}, {2}, {3}}); // Sets with lots of redundant inequalities to test the redundancy heuristic. // (the heuristic is for the subtrahend, the second set which is the one being // subtracted) // A parallelogram with vertices {(3, 1), (10, -6), (24, 8), (17, 15)} minus // a triangle with vertices {(2, 2), (10, 2), (10, 10)}. testSubtractAtPoints( parsePresburgerSet({ "(x, y) : (x + y - 4 >= 0, -x - y + 32 >= 0, x - y - 2 >= 0, " "-x + y + 16 >= 0)", }), parsePresburgerSet( {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 10 >= 0, " "-y + 10 >= 0, x + y - 2 >= 0, -x - y + 30 >= 0, x - y >= 0, " "-x + y + 10 >= 0)"}), {{1, 2}, {2, 2}, {3, 2}, {4, 2}, {1, 1}, {2, 1}, {3, 1}, {4, 1}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {10, 2}, {11, 2}, {10, 1}, {10, 10}, {10, 11}, {10, 9}, {11, 10}, {10, -6}, {11, -6}, {24, 8}, {24, 7}, {17, 15}, {16, 15}}); // ((-infinity, -5] U [3, 3] U [4, 4] U [5, 5]) - ([-2, -10] U [3, 4] U [6, // 7]) testSubtractAtPoints( parsePresburgerSet({"(x) : (-x - 5 >= 0)", "(x) : (x - 3 == 0)", "(x) : (x - 4 == 0)", "(x) : (x - 5 == 0)"}), parsePresburgerSet( {"(x) : (-x - 2 >= 0, x - 10 >= 0, -x >= 0, -x + 10 >= 0, " "x - 100 >= 0, x - 50 >= 0)", "(x) : (x - 3 >= 0, -x + 4 >= 0, x + 1 >= 0, " "x + 7 >= 0, -x + 10 >= 0)", "(x) : (x - 6 >= 0, -x + 7 >= 0, x + 1 >= 0, x - 3 >= 0, " "-x + 5 >= 0)"}), {{-6}, {-5}, {-4}, {-9}, {-10}, {-11}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}); } TEST(SetTest, Complement) { // Complement of universe. testComplementAtPoints( PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))), {{-1}, {-2}, {-8}, {1}, {2}, {8}, {9}, {10}, {20}, {21}}); // Complement of empty set. testComplementAtPoints( PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))), {{-1}, {-2}, {-8}, {1}, {2}, {8}, {9}, {10}, {20}, {21}}); testComplementAtPoints(parsePresburgerSet({"(x,y) : (x - 2 >= 0, y - 2 >= 0, " "-x + 10 >= 0, -y + 10 >= 0)"}), {{1, 1}, {2, 1}, {1, 2}, {2, 2}, {2, 3}, {3, 2}, {10, 10}, {10, 11}, {11, 10}, {2, 10}, {2, 11}, {1, 10}}); } TEST(SetTest, isEqual) { // set = [2, 8] U [10, 20]. PresburgerSet universe = PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1))); PresburgerSet emptySet = PresburgerSet::getEmpty(PresburgerSpace::getSetSpace((1))); PresburgerSet set = parsePresburgerSet( {"(x) : (x - 2 >= 0, -x + 8 >= 0)", "(x) : (x - 10 >= 0, -x + 20 >= 0)"}); // universe != emptySet. EXPECT_FALSE(universe.isEqual(emptySet)); // emptySet != universe. EXPECT_FALSE(emptySet.isEqual(universe)); // emptySet == emptySet. EXPECT_TRUE(emptySet.isEqual(emptySet)); // universe == universe. EXPECT_TRUE(universe.isEqual(universe)); // universe U emptySet == universe. EXPECT_TRUE(universe.unionSet(emptySet).isEqual(universe)); // universe U universe == universe. EXPECT_TRUE(universe.unionSet(universe).isEqual(universe)); // emptySet U emptySet == emptySet. EXPECT_TRUE(emptySet.unionSet(emptySet).isEqual(emptySet)); // universe U emptySet != emptySet. EXPECT_FALSE(universe.unionSet(emptySet).isEqual(emptySet)); // universe U universe != emptySet. EXPECT_FALSE(universe.unionSet(universe).isEqual(emptySet)); // emptySet U emptySet != universe. EXPECT_FALSE(emptySet.unionSet(emptySet).isEqual(universe)); // set \ set == emptySet. EXPECT_TRUE(set.subtract(set).isEqual(emptySet)); // set == set. EXPECT_TRUE(set.isEqual(set)); // set U (universe \ set) == universe. EXPECT_TRUE(set.unionSet(set.complement()).isEqual(universe)); // set U (universe \ set) != set. EXPECT_FALSE(set.unionSet(set.complement()).isEqual(set)); // set != set U (universe \ set). EXPECT_FALSE(set.isEqual(set.unionSet(set.complement()))); // square is one unit taller than rect. PresburgerSet square = parsePresburgerSet( {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 9 >= 0)"}); PresburgerSet rect = parsePresburgerSet( {"(x, y) : (x - 2 >= 0, y - 2 >= 0, -x + 9 >= 0, -y + 8 >= 0)"}); EXPECT_FALSE(square.isEqual(rect)); PresburgerSet universeRect = square.unionSet(square.complement()); PresburgerSet universeSquare = rect.unionSet(rect.complement()); EXPECT_TRUE(universeRect.isEqual(universeSquare)); EXPECT_FALSE(universeRect.isEqual(rect)); EXPECT_FALSE(universeSquare.isEqual(square)); EXPECT_FALSE(rect.complement().isEqual(square.complement())); } void expectEqual(const PresburgerSet &s, const PresburgerSet &t) { EXPECT_TRUE(s.isEqual(t)); } void expectEqual(const IntegerPolyhedron &s, const IntegerPolyhedron &t) { EXPECT_TRUE(s.isEqual(t)); } void expectEmpty(const PresburgerSet &s) { EXPECT_TRUE(s.isIntegerEmpty()); } TEST(SetTest, divisions) { // evens = {x : exists q, x = 2q}. PresburgerSet evens{ parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")}; // odds = {x : exists q, x = 2q + 1}. PresburgerSet odds{ parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) - 1 == 0)")}; // multiples3 = {x : exists q, x = 3q}. PresburgerSet multiples3{ parseIntegerPolyhedron("(x) : (x - 3 * (x floordiv 3) == 0)")}; // multiples6 = {x : exists q, x = 6q}. PresburgerSet multiples6{ parseIntegerPolyhedron("(x) : (x - 6 * (x floordiv 6) == 0)")}; // evens /\ odds = empty. expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds))); // evens U odds = universe. expectEqual(evens.unionSet(odds), PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1)))); expectEqual(evens.complement(), odds); expectEqual(odds.complement(), evens); // even multiples of 3 = multiples of 6. expectEqual(multiples3.intersect(evens), multiples6); PresburgerSet setA{parseIntegerPolyhedron("(x) : (-x >= 0)")}; PresburgerSet setB{parseIntegerPolyhedron("(x) : (x floordiv 2 - 4 >= 0)")}; EXPECT_TRUE(setA.subtract(setB).isEqual(setA)); } void convertSuffixDimsToLocals(IntegerPolyhedron &poly, unsigned numLocals) { poly.convertVarKind(VarKind::SetDim, poly.getNumDimVars() - numLocals, poly.getNumDimVars(), VarKind::Local); } inline IntegerPolyhedron parseIntegerPolyhedronAndMakeLocals(StringRef str, unsigned numLocals) { IntegerPolyhedron poly = parseIntegerPolyhedron(str); convertSuffixDimsToLocals(poly, numLocals); return poly; } TEST(SetTest, divisionsDefByEq) { // evens = {x : exists q, x = 2q}. PresburgerSet evens{parseIntegerPolyhedronAndMakeLocals( "(x, y) : (x - 2 * y == 0)", /*numLocals=*/1)}; // odds = {x : exists q, x = 2q + 1}. PresburgerSet odds{parseIntegerPolyhedronAndMakeLocals( "(x, y) : (x - 2 * y - 1 == 0)", /*numLocals=*/1)}; // multiples3 = {x : exists q, x = 3q}. PresburgerSet multiples3{parseIntegerPolyhedronAndMakeLocals( "(x, y) : (x - 3 * y == 0)", /*numLocals=*/1)}; // multiples6 = {x : exists q, x = 6q}. PresburgerSet multiples6{parseIntegerPolyhedronAndMakeLocals( "(x, y) : (x - 6 * y == 0)", /*numLocals=*/1)}; // evens /\ odds = empty. expectEmpty(PresburgerSet(evens).intersect(PresburgerSet(odds))); // evens U odds = universe. expectEqual(evens.unionSet(odds), PresburgerSet::getUniverse(PresburgerSpace::getSetSpace((1)))); expectEqual(evens.complement(), odds); expectEqual(odds.complement(), evens); // even multiples of 3 = multiples of 6. expectEqual(multiples3.intersect(evens), multiples6); PresburgerSet evensDefByIneq{ parseIntegerPolyhedron("(x) : (x - 2 * (x floordiv 2) == 0)")}; expectEqual(evens, PresburgerSet(evensDefByIneq)); } TEST(SetTest, divisionNonDivLocals) { // This is a tetrahedron with vertices at // (1/3, 0, 0), (2/3, 0, 0), (2/3, 0, 1000), and (1000, 1000, 1000). // // The only integer point in this is at (1000, 1000, 1000). // We project this to the xy plane. IntegerPolyhedron tetrahedron = parseIntegerPolyhedronAndMakeLocals( "(x, y, z) : (y >= 0, z - y >= 0, 3000*x - 2998*y " "- 1000 - z >= 0, -1500*x + 1499*y + 1000 >= 0)", /*numLocals=*/1); // This is a triangle with vertices at (1/3, 0), (2/3, 0) and (1000, 1000). // The only integer point in this is at (1000, 1000). // // It also happens to be the projection of the above onto the xy plane. IntegerPolyhedron triangle = parseIntegerPolyhedron("(x,y) : (y >= 0, 3000 * x - 2999 * y - 1000 >= " "0, -3000 * x + 2998 * y + 2000 >= 0)"); EXPECT_TRUE(triangle.containsPoint({1000, 1000})); EXPECT_FALSE(triangle.containsPoint({1001, 1001})); expectEqual(triangle, tetrahedron); convertSuffixDimsToLocals(triangle, 1); IntegerPolyhedron line = parseIntegerPolyhedron("(x) : (x - 1000 == 0)"); expectEqual(line, triangle); // Triangle with vertices (0, 0), (5, 0), (15, 5). // Projected on x, it becomes [0, 13] U {15} as it becomes too narrow towards // the apex and so does not have any integer point at x = 14. // At x = 15, the apex is an integer point. PresburgerSet triangle2{ parseIntegerPolyhedronAndMakeLocals("(x,y) : (y >= 0, " "x - 3*y >= 0, " "2*y - x + 5 >= 0)", /*numLocals=*/1)}; PresburgerSet zeroToThirteen{ parseIntegerPolyhedron("(x) : (13 - x >= 0, x >= 0)")}; PresburgerSet fifteen{parseIntegerPolyhedron("(x) : (x - 15 == 0)")}; expectEqual(triangle2.subtract(zeroToThirteen), fifteen); } TEST(SetTest, subtractDuplicateDivsRegression) { // Previously, subtracting sets with duplicate divs might result in crashes // due to existing divs being removed when merging local ids, due to being // identified as being duplicates for the first time. IntegerPolyhedron setA(PresburgerSpace::getSetSpace(1)); setA.addLocalFloorDiv({1, 0}, 2); setA.addLocalFloorDiv({1, 0, 0}, 2); EXPECT_TRUE(setA.isEqual(setA)); } /// Coalesce `set` and check that the `newSet` is equal to `set` and that /// `expectedNumPoly` matches the number of Poly in the coalesced set. void expectCoalesce(size_t expectedNumPoly, const PresburgerSet &set) { PresburgerSet newSet = set.coalesce(); EXPECT_TRUE(set.isEqual(newSet)); EXPECT_TRUE(expectedNumPoly == newSet.getNumDisjuncts()); } TEST(SetTest, coalesceNoPoly) { PresburgerSet set = makeSetFromPoly(0, {}); expectCoalesce(0, set); } TEST(SetTest, coalesceContainedOneDim) { PresburgerSet set = parsePresburgerSet( {"(x) : (x >= 0, -x + 4 >= 0)", "(x) : (x - 1 >= 0, -x + 2 >= 0)"}); expectCoalesce(1, set); } TEST(SetTest, coalesceFirstEmpty) { PresburgerSet set = parsePresburgerSet( {"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ( x - 1 >= 0, -x + 2 >= 0)"}); expectCoalesce(1, set); } TEST(SetTest, coalesceSecondEmpty) { PresburgerSet set = parsePresburgerSet( {"(x) : (x - 1 >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"}); expectCoalesce(1, set); } TEST(SetTest, coalesceBothEmpty) { PresburgerSet set = parsePresburgerSet( {"(x) : (x - 3 >= 0, -x - 1 >= 0)", "(x) : (x >= 0, -x - 1 >= 0)"}); expectCoalesce(0, set); } TEST(SetTest, coalesceFirstUniv) { PresburgerSet set = parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x + 1 >= 0)"}); expectCoalesce(1, set); } TEST(SetTest, coalesceSecondUniv) { PresburgerSet set = parsePresburgerSet({"(x) : ( x >= 0, -x + 1 >= 0)", "(x) : ()"}); expectCoalesce(1, set); } TEST(SetTest, coalesceBothUniv) { PresburgerSet set = parsePresburgerSet({"(x) : ()", "(x) : ()"}); expectCoalesce(1, set); } TEST(SetTest, coalesceFirstUnivSecondEmpty) { PresburgerSet set = parsePresburgerSet({"(x) : ()", "(x) : ( x >= 0, -x - 1 >= 0)"}); expectCoalesce(1, set); } TEST(SetTest, coalesceFirstEmptySecondUniv) { PresburgerSet set = parsePresburgerSet({"(x) : ( x >= 0, -x - 1 >= 0)", "(x) : ()"}); expectCoalesce(1, set); } TEST(SetTest, coalesceCutOneDim) { PresburgerSet set = parsePresburgerSet({ "(x) : ( x >= 0, -x + 3 >= 0)", "(x) : ( x - 2 >= 0, -x + 4 >= 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceSeparateOneDim) { PresburgerSet set = parsePresburgerSet( {"(x) : ( x >= 0, -x + 2 >= 0)", "(x) : ( x - 3 >= 0, -x + 4 >= 0)"}); expectCoalesce(2, set); } TEST(SetTest, coalesceAdjEq) { PresburgerSet set = parsePresburgerSet({"(x) : ( x == 0)", "(x) : ( x - 1 == 0)"}); expectCoalesce(2, set); } TEST(SetTest, coalesceContainedTwoDim) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 3 >= 0)", "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceCutTwoDim) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 2 >= 0)", "(x,y) : (x >= 0, -x + 3 >= 0, y - 1 >= 0, -y + 3 >= 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceEqStickingOut) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 2 >= 0, y >= 0, -y + 2 >= 0)", "(x,y) : (y - 1 == 0, x >= 0, -x + 3 >= 0)", }); expectCoalesce(2, set); } TEST(SetTest, coalesceSeparateTwoDim) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 3 >= 0, y >= 0, -y + 1 >= 0)", "(x,y) : (x >= 0, -x + 3 >= 0, y - 2 >= 0, -y + 3 >= 0)", }); expectCoalesce(2, set); } TEST(SetTest, coalesceContainedEq) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 3 >= 0, x - y == 0)", "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceCuttingEq) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x + 1 >= 0, -x + 1 >= 0, x - y == 0)", "(x,y) : (x >= 0, -x + 2 >= 0, x - y == 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceSeparateEq) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x - 3 >= 0, -x + 4 >= 0, x - y == 0)", "(x,y) : (x >= 0, -x + 1 >= 0, x - y == 0)", }); expectCoalesce(2, set); } TEST(SetTest, coalesceContainedEqAsIneq) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x >= 0, -x + 3 >= 0, x - y >= 0, -x + y >= 0)", "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceContainedEqComplex) { PresburgerSet set = parsePresburgerSet({ "(x,y) : (x - 2 == 0, x - y == 0)", "(x,y) : (x - 1 >= 0, -x + 2 >= 0, x - y == 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceThreeContained) { PresburgerSet set = parsePresburgerSet({ "(x) : (x >= 0, -x + 1 >= 0)", "(x) : (x >= 0, -x + 2 >= 0)", "(x) : (x >= 0, -x + 3 >= 0)", }); expectCoalesce(1, set); } TEST(SetTest, coalesceDoubleIncrement) { PresburgerSet set = parsePresburgerSet({ "(x) : (x == 0)", "(x) : (x - 2 == 0)", "(x) : (x + 2 == 0)", "(x) : (x - 2 >= 0, -x + 3 >= 0)", }); expectCoalesce(3, set); } TEST(SetTest, coalesceLastCoalesced) { PresburgerSet set = parsePresburgerSet({ "(x) : (x == 0)", "(x) : (x - 1 >= 0, -x + 3 >= 0)", "(x) : (x + 2 == 0)", "(x) : (x - 2 >= 0, -x + 4 >= 0)", }); expectCoalesce(3, set); } TEST(SetTest, coalesceDiv) { PresburgerSet set = parsePresburgerSet({ "(x) : (x floordiv 2 == 0)", "(x) : (x floordiv 2 - 1 == 0)", }); expectCoalesce(2, set); } TEST(SetTest, coalesceDivOtherContained) { PresburgerSet set = parsePresburgerSet({ "(x) : (x floordiv 2 == 0)", "(x) : (x == 0)", "(x) : (x >= 0, -x + 1 >= 0)", }); expectCoalesce(2, set); } static void expectComputedVolumeIsValidOverapprox(const PresburgerSet &set, std::optional trueVolume, std::optional resultBound) { expectComputedVolumeIsValidOverapprox(set.computeVolume(), trueVolume, resultBound); } TEST(SetTest, computeVolume) { // Diamond with vertices at (0, 0), (5, 5), (5, 5), (10, 0). PresburgerSet diamond(parseIntegerPolyhedron( "(x, y) : (x + y >= 0, -x - y + 10 >= 0, x - y >= 0, -x + y + " "10 >= 0)")); expectComputedVolumeIsValidOverapprox(diamond, /*trueVolume=*/61ull, /*resultBound=*/121ull); // Diamond with vertices at (-5, 0), (0, -5), (0, 5), (5, 0). PresburgerSet shiftedDiamond(parseIntegerPolyhedron( "(x, y) : (x + y + 5 >= 0, -x - y + 5 >= 0, x - y + 5 >= 0, -x + y + " "5 >= 0)")); expectComputedVolumeIsValidOverapprox(shiftedDiamond, /*trueVolume=*/61ull, /*resultBound=*/121ull); // Diamond with vertices at (-5, 0), (5, -10), (5, 10), (15, 0). PresburgerSet biggerDiamond(parseIntegerPolyhedron( "(x, y) : (x + y + 5 >= 0, -x - y + 15 >= 0, x - y + 5 >= 0, -x + y + " "15 >= 0)")); expectComputedVolumeIsValidOverapprox(biggerDiamond, /*trueVolume=*/221ull, /*resultBound=*/441ull); // There is some overlap between diamond and shiftedDiamond. expectComputedVolumeIsValidOverapprox(diamond.unionSet(shiftedDiamond), /*trueVolume=*/104ull, /*resultBound=*/242ull); // biggerDiamond subsumes both the small ones. expectComputedVolumeIsValidOverapprox( diamond.unionSet(shiftedDiamond).unionSet(biggerDiamond), /*trueVolume=*/221ull, /*resultBound=*/683ull); // Unbounded polytope. PresburgerSet unbounded( parseIntegerPolyhedron("(x, y) : (2*x - y >= 0, y - 3*x >= 0)")); expectComputedVolumeIsValidOverapprox(unbounded, /*trueVolume=*/{}, /*resultBound=*/{}); // Union of unbounded with bounded is unbounded. expectComputedVolumeIsValidOverapprox(unbounded.unionSet(diamond), /*trueVolume=*/{}, /*resultBound=*/{}); } // The last `numToProject` dims will be projected out, i.e., converted to // locals. void testComputeReprAtPoints(IntegerPolyhedron poly, ArrayRef> points, unsigned numToProject) { poly.convertVarKind(VarKind::SetDim, poly.getNumDimVars() - numToProject, poly.getNumDimVars(), VarKind::Local); PresburgerRelation repr = poly.computeReprWithOnlyDivLocals(); EXPECT_TRUE(repr.hasOnlyDivLocals()); EXPECT_TRUE(repr.getSpace().isCompatible(poly.getSpace())); for (const SmallVector &point : points) { EXPECT_EQ(poly.containsPointNoLocal(point).has_value(), repr.containsPoint(point)); } } void testComputeRepr(IntegerPolyhedron poly, const PresburgerSet &expected, unsigned numToProject) { poly.convertVarKind(VarKind::SetDim, poly.getNumDimVars() - numToProject, poly.getNumDimVars(), VarKind::Local); PresburgerRelation repr = poly.computeReprWithOnlyDivLocals(); EXPECT_TRUE(repr.hasOnlyDivLocals()); EXPECT_TRUE(repr.getSpace().isCompatible(poly.getSpace())); EXPECT_TRUE(repr.isEqual(expected)); } TEST(SetTest, computeReprWithOnlyDivLocals) { testComputeReprAtPoints(parseIntegerPolyhedron("(x, y) : (x - 2*y == 0)"), {{1, 0}, {2, 1}, {3, 0}, {4, 2}, {5, 3}}, /*numToProject=*/0); testComputeReprAtPoints(parseIntegerPolyhedron("(x, e) : (x - 2*e == 0)"), {{1}, {2}, {3}, {4}, {5}}, /*numToProject=*/1); // Tests to check that the space is preserved. testComputeReprAtPoints(parseIntegerPolyhedron("(x, y)[z, w] : ()"), {}, /*numToProject=*/1); testComputeReprAtPoints( parseIntegerPolyhedron("(x, y)[z, w] : (z - (w floordiv 2) == 0)"), {}, /*numToProject=*/1); // Bezout's lemma: if a, b are constants, // the set of values that ax + by can take is all multiples of gcd(a, b). testComputeRepr(parseIntegerPolyhedron("(x, e, f) : (x - 15*e - 21*f == 0)"), PresburgerSet(parseIntegerPolyhedron( {"(x) : (x - 3*(x floordiv 3) == 0)"})), /*numToProject=*/2); } TEST(SetTest, subtractOutputSizeRegression) { PresburgerSet set1 = parsePresburgerSet({"(i) : (i >= 0, 10 - i >= 0)"}); PresburgerSet set2 = parsePresburgerSet({"(i) : (i - 5 >= 0)"}); PresburgerSet set3 = parsePresburgerSet({"(i) : (i >= 0, 4 - i >= 0)"}); PresburgerSet result = set1.subtract(set2); EXPECT_TRUE(result.isEqual(set3)); // Previously, the subtraction result was producing an extra empty set, which // is correct, but bad for output size. EXPECT_EQ(result.getNumDisjuncts(), 1u); PresburgerSet subtractSelf = set1.subtract(set1); EXPECT_TRUE(subtractSelf.isIntegerEmpty()); // Previously, the subtraction result was producing several unnecessary empty // sets, which is correct, but bad for output size. EXPECT_EQ(subtractSelf.getNumDisjuncts(), 0u); }