; NOTE: Assertions have been autogenerated by utils/update_test_checks.py ; RUN: opt < %s -passes=instcombine -S | FileCheck %s target datalayout = "E-p:64:64:64-p1:32:32:32-a0:0:8-f32:32:32-f64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-v64:64:64-v128:128:128" ; Instcombine should be able to prove vector alignment in the ; presence of a few mild address computation tricks. define void @test0(ptr %b, i64 %n, i64 %u, i64 %y) nounwind { ; CHECK-LABEL: @test0( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[C:%.*]] = ptrtoint ptr [[B:%.*]] to i64 ; CHECK-NEXT: [[D:%.*]] = and i64 [[C]], -16 ; CHECK-NEXT: [[E:%.*]] = inttoptr i64 [[D]] to ptr ; CHECK-NEXT: [[V:%.*]] = shl i64 [[U:%.*]], 1 ; CHECK-NEXT: [[Z:%.*]] = and i64 [[Y:%.*]], -2 ; CHECK-NEXT: [[T1421:%.*]] = icmp eq i64 [[N:%.*]], 0 ; CHECK-NEXT: br i1 [[T1421]], label [[RETURN:%.*]], label [[BB:%.*]] ; CHECK: bb: ; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[INDVAR_NEXT:%.*]], [[BB]] ], [ 20, [[ENTRY:%.*]] ] ; CHECK-NEXT: [[J:%.*]] = mul i64 [[I]], [[V]] ; CHECK-NEXT: [[TMP0:%.*]] = getelementptr double, ptr [[E]], i64 [[J]] ; CHECK-NEXT: [[T8:%.*]] = getelementptr double, ptr [[TMP0]], i64 [[Z]] ; CHECK-NEXT: store <2 x double> zeroinitializer, ptr [[T8]], align 8 ; CHECK-NEXT: [[INDVAR_NEXT]] = add i64 [[I]], 1 ; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[INDVAR_NEXT]], [[N]] ; CHECK-NEXT: br i1 [[EXITCOND]], label [[RETURN]], label [[BB]] ; CHECK: return: ; CHECK-NEXT: ret void ; entry: %c = ptrtoint ptr %b to i64 %d = and i64 %c, -16 %e = inttoptr i64 %d to ptr %v = mul i64 %u, 2 %z = and i64 %y, -2 %t1421 = icmp eq i64 %n, 0 br i1 %t1421, label %return, label %bb bb: %i = phi i64 [ %indvar.next, %bb ], [ 20, %entry ] %j = mul i64 %i, %v %h = add i64 %j, %z %t8 = getelementptr double, ptr %e, i64 %h store <2 x double>, ptr %t8, align 8 %indvar.next = add i64 %i, 1 %exitcond = icmp eq i64 %indvar.next, %n br i1 %exitcond, label %return, label %bb return: ret void } ; When we see a unaligned load from an insufficiently aligned global or ; alloca, increase the alignment of the load, turning it into an aligned load. @GLOBAL = internal global [4 x i32] zeroinitializer define <16 x i8> @test1(<2 x i64> %x) { ; CHECK-LABEL: @test1( ; CHECK-NEXT: entry: ; CHECK-NEXT: [[TMP:%.*]] = load <16 x i8>, ptr @GLOBAL, align 1 ; CHECK-NEXT: ret <16 x i8> [[TMP]] ; entry: %tmp = load <16 x i8>, ptr @GLOBAL, align 1 ret <16 x i8> %tmp } @GLOBAL_as1 = internal addrspace(1) global [4 x i32] zeroinitializer define <16 x i8> @test1_as1(<2 x i64> %x) { ; CHECK-LABEL: @test1_as1( ; CHECK-NEXT: [[TMP:%.*]] = load <16 x i8>, ptr addrspace(1) @GLOBAL_as1, align 1 ; CHECK-NEXT: ret <16 x i8> [[TMP]] ; %tmp = load <16 x i8>, ptr addrspace(1) @GLOBAL_as1, align 1 ret <16 x i8> %tmp } @GLOBAL_as1_gep = internal addrspace(1) global [8 x i32] zeroinitializer define <16 x i8> @test1_as1_gep(<2 x i64> %x) { ; CHECK-LABEL: @test1_as1_gep( ; CHECK-NEXT: [[TMP:%.*]] = load <16 x i8>, ptr addrspace(1) getelementptr inbounds ([8 x i32], ptr addrspace(1) @GLOBAL_as1_gep, i32 0, i32 4), align 1 ; CHECK-NEXT: ret <16 x i8> [[TMP]] ; %tmp = load <16 x i8>, ptr addrspace(1) getelementptr ([8 x i32], ptr addrspace(1) @GLOBAL_as1_gep, i16 0, i16 4), align 1 ret <16 x i8> %tmp } ; When a load or store lacks an explicit alignment, add one. define double @test2(ptr %p, double %n) nounwind { ; CHECK-LABEL: @test2( ; CHECK-NEXT: [[T:%.*]] = load double, ptr [[P:%.*]], align 8 ; CHECK-NEXT: store double [[N:%.*]], ptr [[P]], align 8 ; CHECK-NEXT: ret double [[T]] ; %t = load double, ptr %p store double %n, ptr %p ret double %t } declare void @llvm.memset.p0.i64(ptr nocapture, i8, i64, i1) nounwind declare void @use(ptr) %struct.s = type { i32, i32, i32, i32 } define void @test3(ptr sret(%struct.s) %a4) { ; Check that the alignment is bumped up the alignment of the sret type. ; CHECK-LABEL: @test3( ; CHECK-NEXT: call void @llvm.memset.p0.i64(ptr noundef nonnull align 4 dereferenceable(16) [[A4:%.*]], i8 0, i64 16, i1 false) ; CHECK-NEXT: call void @use(ptr [[A4]]) ; CHECK-NEXT: ret void ; call void @llvm.memset.p0.i64(ptr %a4, i8 0, i64 16, i1 false) call void @use(ptr %a4) ret void } declare ptr @llvm.ptrmask.p0.i64(ptr, i64) define <16 x i8> @ptrmask_align_unknown_ptr_align1(ptr align 1 %ptr, i64 %mask) { ; CHECK-LABEL: @ptrmask_align_unknown_ptr_align1( ; CHECK-NEXT: [[ALIGNED:%.*]] = call ptr @llvm.ptrmask.p0.i64(ptr [[PTR:%.*]], i64 [[MASK:%.*]]) ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[ALIGNED]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 %mask) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } define <16 x i8> @ptrmask_align_unknown_ptr_align8(ptr align 8 %ptr, i64 %mask) { ; CHECK-LABEL: @ptrmask_align_unknown_ptr_align8( ; CHECK-NEXT: [[ALIGNED:%.*]] = call align 8 ptr @llvm.ptrmask.p0.i64(ptr [[PTR:%.*]], i64 [[MASK:%.*]]) ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[ALIGNED]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 %mask) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } ; Increase load align from 1 to 2 define <16 x i8> @ptrmask_align2_ptr_align1(ptr align 1 %ptr) { ; CHECK-LABEL: @ptrmask_align2_ptr_align1( ; CHECK-NEXT: [[ALIGNED:%.*]] = call align 2 ptr @llvm.ptrmask.p0.i64(ptr [[PTR:%.*]], i64 -2) ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[ALIGNED]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 -2) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } ; Increase load align from 1 to 4 define <16 x i8> @ptrmask_align4_ptr_align1(ptr align 1 %ptr) { ; CHECK-LABEL: @ptrmask_align4_ptr_align1( ; CHECK-NEXT: [[ALIGNED:%.*]] = call align 4 ptr @llvm.ptrmask.p0.i64(ptr [[PTR:%.*]], i64 -4) ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[ALIGNED]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 -4) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } ; Increase load align from 1 to 8 define <16 x i8> @ptrmask_align8_ptr_align1(ptr align 1 %ptr) { ; CHECK-LABEL: @ptrmask_align8_ptr_align1( ; CHECK-NEXT: [[ALIGNED:%.*]] = call align 8 ptr @llvm.ptrmask.p0.i64(ptr [[PTR:%.*]], i64 -8) ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[ALIGNED]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 -8) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } ; Underlying alignment already the same as forced alignment by ptrmask define <16 x i8> @ptrmask_align8_ptr_align8(ptr align 8 %ptr) { ; CHECK-LABEL: @ptrmask_align8_ptr_align8( ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[PTR:%.*]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 -8) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load } ; Underlying alignment greater than alignment forced by ptrmask define <16 x i8> @ptrmask_align8_ptr_align16(ptr align 16 %ptr) { ; CHECK-LABEL: @ptrmask_align8_ptr_align16( ; CHECK-NEXT: [[LOAD:%.*]] = load <16 x i8>, ptr [[PTR:%.*]], align 1 ; CHECK-NEXT: ret <16 x i8> [[LOAD]] ; %aligned = call ptr @llvm.ptrmask.p0.i64(ptr %ptr, i64 -8) %load = load <16 x i8>, ptr %aligned, align 1 ret <16 x i8> %load }