// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion))' -split-input-file | FileCheck %s // RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{fusion-maximal}))' -split-input-file | FileCheck %s --check-prefix=MAXIMAL // Part I of fusion tests in mlir/test/Transforms/loop-fusion.mlir. // Part III of fusion tests in mlir/test/Transforms/loop-fusion-3.mlir // Part IV of fusion tests in mlir/test/Transforms/loop-fusion-4.mlir // ----- // CHECK-LABEL: func @should_fuse_at_depth_above_loop_carried_dependence(%{{.*}}: memref<64x4xf32>, %{{.*}}: memref<64x4xf32>) { func.func @should_fuse_at_depth_above_loop_carried_dependence(%arg0: memref<64x4xf32>, %arg1: memref<64x4xf32>) { %out = memref.alloc() : memref<64x4xf32> %0 = arith.constant 0.0 : f32 affine.for %i0 = 0 to 64 { affine.for %i1 = 0 to 4 { affine.store %0, %out[%i0, %i1] : memref<64x4xf32> } } affine.for %i2 = 0 to 4 { affine.for %i3 = 0 to 4 { affine.for %i4 = 0 to 16 { %v = affine.load %arg1[16 * %i3 - %i4 + 15, %i2] : memref<64x4xf32> "op0"(%v) : (f32) -> () } affine.for %i5 = 0 to 4 { affine.for %i6 = 0 to 16 { %v = affine.load %arg0[16 * %i5 - %i6 + 15, %i3] : memref<64x4xf32> "op1"(%v) : (f32) -> () } affine.for %i7 = 0 to 16 { %r = "op2"() : () -> (f32) %v = affine.load %out[16 * %i5 + %i7, %i2] : memref<64x4xf32> %s = arith.addf %v, %r : f32 affine.store %s, %out[16 * %i5 + %i7, %i2] : memref<64x4xf32> } } } } // We can fuse source loop nest '%i0' into dst loop nest '%i2', but the // depth at which we can insert the src loop nest slice into the dst loop // lest must be decreased because of a loop carried dependence on loop '%i3'. // As a result, the source loop nest is inserted at dst loop nest depth 1, // just above the loop with the carried dependence. In addition, the source // loop nest iteration bounds on its loop '%i1' are reduced to 1, so the // memref size can be reduced to 128x1xf32. // CHECK: memref.alloc() : memref<64x1xf32> // CHECK: affine.for %{{.*}} = 0 to 4 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 64 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, 0] : memref<64x1xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 4 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} * 16 - %{{.*}} + 15, %{{.*}}] : memref<64x4xf32> // CHECK-NEXT: "op0"(%{{.*}}) : (f32) -> () // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 4 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} * 16 - %{{.*}} + 15, %{{.*}}] : memref<64x4xf32> // CHECK-NEXT: "op1"(%{{.*}}) : (f32) -> () // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: %{{.*}} = "op2"() : () -> f32 // CHECK: affine.load %{{.*}}[%{{.*}} * 16 + %{{.*}}, 0] : memref<64x1xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK: affine.store %{{.*}}, %{{.*}}[%{{.*}} * 16 + %{{.*}}, 0] : memref<64x1xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- // CHECK-LABEL: func @should_fuse_only_two_loops_and_remove_producer() { func.func @should_fuse_only_two_loops_and_remove_producer() { %a = memref.alloc() : memref<10xf32> %b = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf7, %a[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v0 = affine.load %a[%i1] : memref<10xf32> affine.store %v0, %b[%i1] : memref<10xf32> } affine.for %i2 = 0 to 10 { %v1 = affine.load %a[%i2] : memref<10xf32> affine.store %v1, %b[%i2] : memref<10xf32> } // On the first visit to '%i2', the fusion algorithm can not fuse loop nest // '%i0' into '%i2' because of the dependences '%i0' and '%i2' each have on // '%i1'. Then, '%i0' is fused into '%i1' and no private memref is created for // memref '%a' to be able to remove '%i0' and still preserve the depencence on // '%a' with '%i2'. // TODO: Alternatively, we could fuse '%i0' into '%i1' with a private memref, // the dependence between '%i0' and '%i1' on memref '%a' would no longer exist, // and '%i0' could be fused into '%i2' as well. Note that this approach would // duplicate the computation in loop nest '%i0' to loop nests '%i1' and '%i2', // which would limit its profitability. // CHECK: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- // CHECK-LABEL: func @should_fuse_after_one_loop_interchange() { func.func @should_fuse_after_one_loop_interchange() { %a = memref.alloc() : memref<10xf32> %cf0 = arith.constant 0.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf0, %a[%i0] : memref<10xf32> } affine.for %i1 = 0 to 5 { affine.for %i2 = 0 to 10 { %v0 = affine.load %a[%i2] : memref<10xf32> affine.store %v0, %a[%i2] : memref<10xf32> } } // The dependence between the load and affine.store is carried on loop '%i1', and // cannot be fused with loop '%i0' without violating this dependence. // Once loops '%i1' and %i2' are interchanged, loop '%i0' can be fused // at loop depth 1, because the loop carrying the dependence has been // interchanged and is now at depth 2. // CHECK: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 5 { // CHECK-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- // CHECK-LABEL: func @should_fuse_after_two_loop_interchanges() { func.func @should_fuse_after_two_loop_interchanges() { %a = memref.alloc() : memref<6x8xf32> %cf0 = arith.constant 0.0 : f32 affine.for %i0 = 0 to 6 { affine.for %i1 = 0 to 8 { affine.store %cf0, %a[%i0, %i1] : memref<6x8xf32> } } affine.for %i2 = 0 to 4 { affine.for %i3 = 0 to 6 { affine.for %i4 = 0 to 2 { affine.for %i5 = 0 to 8 { %v0 = affine.load %a[%i3, %i5] : memref<6x8xf32> %v1 = arith.addf %v0, %v0 : f32 affine.store %v1, %a[%i3, %i5] : memref<6x8xf32> } } } } // The dependence between the load and affine.store is carried on loops '%i2' and // '%i4', and cannot be fused with loop '%i0' without violating this // dependence. // Once loop '%i2' is interchanged with loop '%i3', and again with loop // '%i5', then loop '%i0' can be fused at loop depth 2, because the loop // carrying the dependences have been interchanged with loops at depth > 2. // CHECK: affine.for %{{.*}} = 0 to 6 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 8 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 4 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 2 { // CHECK-NEXT: affine.load %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- func.func @should_fuse_live_out_writer(%arg0 : memref<10xf32>) -> memref<10xf32> { %cst = arith.constant 0.000000e+00 : f32 affine.for %i0 = 0 to 10 { affine.store %cst, %arg0[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %1 = affine.load %arg0[%i1] : memref<10xf32> affine.store %1, %arg0[%i1] : memref<10xf32> } return %arg0 : memref<10xf32> // CHECK: %{{.*}} = arith.constant 0.000000e+00 : f32 // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: return %{{.*}} : memref<10xf32> } // ----- // The fused slice has 16 iterations from along %i0. // CHECK-DAG: [[$MAP_LB:#map[0-9]*]] = affine_map<(d0) -> (d0 * 16)> // CHECK-DAG: [[$MAP_UB:#map[0-9]*]] = affine_map<(d0) -> (d0 * 16 + 16)> // CHECK-LABEL: slice_tile func.func @slice_tile(%arg0: memref<128x8xf32>, %arg1: memref<32x8xf32>, %0 : f32) -> memref<32x8xf32> { affine.for %i0 = 0 to 32 { affine.for %i1 = 0 to 8 { affine.store %0, %arg1[%i0, %i1] : memref<32x8xf32> } } affine.for %i = 0 to 2 { affine.for %j = 0 to 8 { affine.for %k = 0 to 8 { affine.for %kk = 0 to 16 { %v = affine.load %arg0[16 * %k + %kk, %j] : memref<128x8xf32> %r = "foo"(%v) : (f32) -> f32 } affine.for %ii = 0 to 16 { %v = affine.load %arg1[16 * %i + %ii, %j] : memref<32x8xf32> %s = arith.addf %v, %v : f32 affine.store %s, %arg1[16 * %i + %ii, %j] : memref<32x8xf32> } } } } return %arg1 : memref<32x8xf32> } // CHECK: affine.for %{{.*}} = 0 to 2 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 8 { // CHECK-NEXT: affine.for %{{.*}} = [[$MAP_LB]](%{{.*}}) to [[$MAP_UB]](%{{.*}}) { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<32x8xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 8 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<128x8xf32> // CHECK-NEXT: "foo"(%{{.*}}) : (f32) -> f32 // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<32x8xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} * 16 + %{{.*}}, %{{.*}}] : memref<32x8xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return %{{.*}} : memref<32x8xf32> // CHECK-NEXT:} // ----- // Test case which illustrates fix for b/126454413 func.func @test_add_slice_bounds() { %a = memref.alloc() : memref<10xf32> %b = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 %c0 = arith.constant 0 : index affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { affine.for %i2 = 0 to 10 { %a0 = affine.apply affine_map<(d0) -> (d0)> (%i0) %a1 = affine.apply affine_map<(d0) -> (d0)> (%i0) %a2 = affine.apply affine_map<(d0, d1) -> (d0 - d1)> (%a0, %a1) affine.store %cf7, %a[%a2] : memref<10xf32> } } } affine.for %i3 = 0 to 10 { affine.for %i4 = 0 to 10 { affine.for %i5 = 0 to 10 { %v0 = affine.load %a[%c0] : memref<10xf32> } } } // CHECK: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.apply #map(%{{.*}}) // CHECK-NEXT: affine.apply #map(%{{.*}}) // CHECK-NEXT: affine.apply #map1(%{{.*}}, %{{.*}}) // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } return } // ----- func.func @should_fuse_init_loops_siblings_then_shared_producer(%arg0: memref<10x10xf32>, %arg1: memref<10x10xf32>) { %0 = memref.alloc() : memref<10x10xf32> %cst = arith.constant 0.000000e+00 : f32 %cst_0 = arith.constant 1.000000e+00 : f32 %cst_1 = arith.constant 7.000000e+00 : f32 affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { affine.store %cst_1, %0[%i0, %i1] : memref<10x10xf32> } } affine.for %i2 = 0 to 3 { affine.for %i3 = 0 to 3 { affine.store %cst, %arg0[%i2, %i3] : memref<10x10xf32> } } affine.for %i4 = 0 to 3 { affine.for %i5 = 0 to 3 { %1 = affine.load %0[%i4, %i5] : memref<10x10xf32> %2 = affine.load %arg0[%i4, %i5] : memref<10x10xf32> %3 = arith.mulf %1, %2 : f32 affine.store %3, %arg0[%i4, %i5] : memref<10x10xf32> } } affine.for %i6 = 0 to 3 { affine.for %i7 = 0 to 3 { affine.store %cst_0, %arg1[%i6, %i7] : memref<10x10xf32> } } affine.for %i8 = 0 to 3 { affine.for %i9 = 0 to 3 { %4 = affine.load %0[%i8, %i9] : memref<10x10xf32> %5 = affine.load %arg1[%i8, %i9] : memref<10x10xf32> %6 = arith.addf %4, %5 : f32 affine.store %6, %arg1[%i8, %i9] : memref<10x10xf32> } } // Pass 1: should fuse single-use producer loop nests into their unique user, // so '%i2' will fuse into '%i4' and '%i6' will fuse into '%i8'. // Pass 2: should fuse sibling loop nests which share no dependence edges, // so should fuse '%i4' into '%i8'. // Pass 3: should fuse single-use producer loop nest '%i0' into '%i8'. Note // that loop nest '%i0' now has a single user after Pass 2 fused its // two users together). // CHECK: affine.for %{{.*}} = 0 to 3 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 3 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: affine.load %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: affine.load %{{.*}}[0, 0] : memref<1x1xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- func.func @two_matrix_vector_products() { %in_matrix = memref.alloc() : memref<10x10xf32> %in_vec0 = memref.alloc() : memref<10xf32> %in_vec1 = memref.alloc() : memref<10xf32> %out_vec0 = memref.alloc() : memref<10xf32> %out_vec1 = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 // Populate input matrix. affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { affine.store %cf7, %in_matrix[%i0, %i1] : memref<10x10xf32> } } // out_vec0 = in_matrix x in_vec0 affine.for %i2 = 0 to 10 { affine.for %i3 = 0 to 10 { %v0 = affine.load %in_matrix[%i2, %i3] : memref<10x10xf32> %v1 = affine.load %in_vec0[%i3] : memref<10xf32> %v2 = arith.mulf %v0, %v1 : f32 %v3 = affine.load %out_vec0[%i3] : memref<10xf32> %v4 = arith.addf %v2, %v3 : f32 affine.store %v4, %out_vec0[%i3] : memref<10xf32> } } // out_vec1 = in_matrix x in_vec1 affine.for %i4 = 0 to 10 { affine.for %i5 = 0 to 10 { %v5 = affine.load %in_matrix[%i4, %i5] : memref<10x10xf32> %v6 = affine.load %in_vec1[%i5] : memref<10xf32> %v7 = arith.mulf %v5, %v6 : f32 %v8 = affine.load %out_vec1[%i5] : memref<10xf32> %v9 = arith.addf %v7, %v8 : f32 affine.store %v9, %out_vec1[%i5] : memref<10xf32> } } // CHECK: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, 0] : memref<10x1xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, 0] : memref<10x1xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, 0] : memref<10x1xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- func.func @should_not_slice_past_slice_barrier() { %0 = memref.alloc() : memref<100x16xf32> affine.for %i0 = 0 to 100 { affine.for %i1 = 0 to 16 { %1 = "op1"() : () -> f32 affine.store %1, %0[%i0, %i1] : memref<100x16xf32> } {slice_fusion_barrier = true} } affine.for %i2 = 0 to 100 { affine.for %i3 = 0 to 16 { %2 = affine.load %0[%i2, %i3] : memref<100x16xf32> "op2"(%2) : (f32) -> () } } // The 'slice_fusion_barrier' attribute on '%i1' prevents slicing the // iteration space of '%i1' and any enclosing loop nests. // CHECK: affine.for %{{.*}} = 0 to 100 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: %{{.*}} = "op1"() : () -> f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0, %{{.*}}] : memref<1x16xf32> // CHECK-NEXT: } {slice_fusion_barrier = true} // CHECK-NEXT: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: affine.load %{{.*}}[0, %{{.*}}] : memref<1x16xf32> // CHECK-NEXT: "op2"(%{{.*}}) : (f32) -> () // CHECK-NEXT: } // CHECK-NEXT: } return } // ----- #map = affine_map<(d0, d1) -> (d0 * 16 + d1)> func.func @fuse_across_dim_mismatch(%arg0: memref<4x4x16x1xf32>, %arg1: memref<144x9xf32>, %arg2: memref<9xf32>) { %1 = memref.alloc() : memref<144x4xf32> %2 = arith.constant 0.0 : f32 affine.for %i2 = 0 to 9 { affine.for %i3 = 0 to 4 { affine.for %i5 = 0 to 16 { %7 = affine.apply #map(%i2, %i5) affine.store %2, %1[%7, %i3] : memref<144x4xf32> } } } affine.for %i6 = 0 to 9 { affine.for %i7 = 0 to 9 { affine.for %i8 = 0 to 4 { affine.for %i10 = 0 to 16 { %10 = affine.apply #map(%i6, %i10) %11 = affine.load %1[%10, %i8] : memref<144x4xf32> } } } } return } // MAXIMAL: #[[$MAP:.*]] = affine_map<(d0, d1) -> (d0 * 16 + d1)> // MAXIMAL-LABEL: func @fuse_across_dim_mismatch // MAXIMAL: memref.alloc() : memref<1x1xf32> // MAXIMAL: affine.for %{{.*}} = 0 to 9 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 9 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 4 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 16 { // MAXIMAL-NEXT: affine.apply #[[$MAP]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.store %{{.*}}, %{{.*}}[0, 0] : memref<1x1xf32> // MAXIMAL-NEXT: affine.apply #[[$MAP]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.load %{{.*}}[0, 0] : memref<1x1xf32> // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // ----- #map3 = affine_map<(d0, d1) -> ((d0 * 72 + d1) floordiv 2304)> #map4 = affine_map<(d0, d1) -> (((d0 * 72 + d1) mod 2304) floordiv 1152)> #map5 = affine_map<(d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) floordiv 9) floordiv 8)> #map6 = affine_map<(d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) floordiv 3)> #map7 = affine_map<(d0, d1) -> (((((d0 * 72 + d1) mod 2304) mod 1152) mod 9) mod 3)> #map10 = affine_map<(d0, d1) -> (d0 * 16 + d1)> #map11 = affine_map<(d0, d1) -> (d0 * 16 + d1)> #map12 = affine_map<(d0, d1) -> (d0 * 16 - d1 + 15)> func.func @fuse_across_varying_dims_complex(%arg0: f32) { %c0 = arith.constant 0 : index %0 = memref.alloc() : memref<2x2x3x3x16x1xf32> %1 = memref.alloc() : memref<64x9xf32> %2 = memref.alloc() : memref<144x4xf32> affine.for %i0 = 0 to 64 { affine.for %i1 = 0 to 9 { %4 = affine.apply #map3(%i0, %i1) %5 = affine.apply #map4(%i0, %i1) %6 = affine.apply #map5(%i0, %i1) %7 = affine.apply #map6(%i0, %i1) %8 = affine.apply #map7(%i0, %i1) %9 = affine.load %0[%4, %5, %7, %8, %6, %c0] : memref<2x2x3x3x16x1xf32> affine.store %9, %1[%i0, %i1] : memref<64x9xf32> } } affine.for %i2 = 0 to 9 { affine.for %i3 = 0 to 4 { affine.for %i4 = 0 to 16 { %10 = affine.apply #map10(%i3, %i4) %11 = affine.load %1[%10, %i2] : memref<64x9xf32> } affine.for %i5 = 0 to 16 { %14 = affine.apply #map11(%i2, %i5) affine.store %arg0, %2[%14, %i3] : memref<144x4xf32> } } } affine.for %i6 = 0 to 9 { affine.for %i7 = 0 to 9 { affine.for %i8 = 0 to 4 { affine.for %i9 = 0 to 16 { %15 = affine.apply #map12(%i8, %i9) %16 = affine.load %1[%15, %i7] : memref<64x9xf32> } } } } return } // MAXIMAL-DAG: [[$MAP0:#map[0-9]*]] = affine_map<(d0, d1) -> ((d0 * 72 + d1) floordiv 2304)> // MAXIMAL-DAG: [[$MAP1:#map[0-9]*]] = affine_map<(d0, d1) -> (((d0 * 72 + d1) mod 2304) floordiv 1152)> // MAXIMAL-DAG: [[$MAP2:#map[0-9]*]] = affine_map<(d0, d1) -> ((((d0 * 72 + d1) mod 1152) floordiv 9) floordiv 8)> // MAXIMAL-DAG: [[$MAP3:#map[0-9]*]] = affine_map<(d0, d1) -> ((d1 mod 9) floordiv 3)> // MAXIMAL-DAG: [[$MAP4:#map[0-9]*]] = affine_map<(d0, d1) -> (d1 mod 3)> // MAXIMAL-DAG: [[$MAP7:#map[0-9]*]] = affine_map<(d0, d1) -> (d0 * 16 + d1)> // MAXIMAL-DAG: [[$MAP8:#map[0-9]*]] = affine_map<(d0, d1) -> (d0 * 16 - d1 + 15)> // MAXIMAL-LABEL: func @fuse_across_varying_dims_complex // MAXIMAL-NEXT: memref.alloc() : memref<64x1xf32> // MAXIMAL-NEXT: arith.constant 0 : index // MAXIMAL-NEXT: memref.alloc() : memref<2x2x3x3x16x1xf32> // MAXIMAL-NEXT: memref.alloc() : memref<144x4xf32> // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 9 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 4 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 16 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 64 { // MAXIMAL-NEXT: affine.apply [[$MAP0]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.apply [[$MAP1]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.apply [[$MAP2]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.apply [[$MAP3]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.apply [[$MAP4]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] : memref<2x2x3x3x16x1xf32> // MAXIMAL-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, 0] : memref<64x1xf32> // MAXIMAL-NEXT: } // MAXIMAL-NEXT: affine.apply [[$MAP7]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.load %{{.*}}[%{{.*}} * 16 + %{{.*}}, 0] : memref<64x1xf32> // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 9 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 4 { // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 16 { // MAXIMAL-NEXT: affine.apply [[$MAP8]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.load %{{.*}}[%{{.*}} * 16 - %{{.*}} + 15, 0] : memref<64x1xf32> // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: affine.for %{{.*}} = 0 to 16 { // MAXIMAL-NEXT: affine.apply [[$MAP7]](%{{.*}}, %{{.*}}) // MAXIMAL-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<144x4xf32> // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // MAXIMAL-NEXT: } // ----- func.func @should_fuse_with_slice_union() { %a = memref.alloc() : memref<100xf32> %c0 = arith.constant 0 : index %cf0 = arith.constant 0.0 : f32 affine.for %i0 = 0 to 100 { affine.store %cf0, %a[%i0]: memref<100xf32> } affine.for %i1 = 10 to 20 { %v0 = affine.load %a[%i1]: memref<100xf32> affine.for %i2 = 15 to 25 { %v1 = affine.load %a[%i2]: memref<100xf32> } } // The union of two slice bounds (calculated between the store and each of // the loads) is computed and used in the fusion cost calculation, index // remapping, and private memref size. The result is that the temporary // memref is reduced from 100xf32 to 15xf32 and properly indexed by // the fused loops based on the union calculation. // CHECK: affine.for %{{.*}} = 10 to 20 { // CHECK-NEXT: affine.for %{{.*}} = 10 to 25 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} - 10] : memref<15xf32> // CHECK-NEXT: } // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} - 10] : memref<15xf32> // CHECK-NEXT: affine.for %{{.*}} = 15 to 25 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} - 10] : memref<15xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- func.func @affine_add_mm_fused(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>, %arg2: memref<1024x1024xf32>, %arg3: memref<1024x1024xf32>) { affine.for %i2 = 0 to 1024 { affine.for %i3 = 0 to 1024 { %0 = affine.load %arg3[%i2, %i3] : memref<1024x1024xf32> %1 = affine.load %arg2[%i2, %i3] : memref<1024x1024xf32> %2 = arith.addf %1, %0 : f32 affine.store %2, %arg2[%i2, %i3] : memref<1024x1024xf32> } } affine.for %i4 = 0 to 1024 { affine.for %i5 = 0 to 1024 { affine.for %i6 = 0 to 1024 { %3 = affine.load %arg1[%i6, %i5] : memref<1024x1024xf32> %4 = affine.load %arg0[%i4, %i6] : memref<1024x1024xf32> %5 = arith.mulf %4, %3 : f32 %6 = affine.load %arg2[%i4, %i5] : memref<1024x1024xf32> %7 = arith.addf %6, %5 : f32 affine.store %7, %arg2[%i4, %i5] : memref<1024x1024xf32> } } } // Should fuse elementwise add loop at loop depth 2, above loop-carried // dependence between load/store on '%arg2', carried on reduction loop %i6. // CHECK: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } return } // ----- func.func @affine_2mm_fused(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>, %arg2: memref<1024x1024xf32>, %arg3: memref<1024x1024xf32>, %arg4: memref<1024x1024xf32>) { %cst = arith.constant 0.000000e+00 : f32 affine.for %i0 = 0 to 1024 { affine.for %i1 = 0 to 1024 { affine.store %cst, %arg2[%i0, %i1] : memref<1024x1024xf32> } } affine.for %i2 = 0 to 1024 { affine.for %i3 = 0 to 1024 { affine.store %cst, %arg4[%i2, %i3] : memref<1024x1024xf32> } } affine.for %i4 = 0 to 1024 { affine.for %i5 = 0 to 1024 { affine.for %i6 = 0 to 1024 { %0 = affine.load %arg1[%i6, %i5] : memref<1024x1024xf32> %1 = affine.load %arg0[%i4, %i6] : memref<1024x1024xf32> %2 = arith.mulf %1, %0 : f32 %3 = affine.load %arg2[%i4, %i5] : memref<1024x1024xf32> %4 = arith.addf %3, %2 : f32 affine.store %4, %arg2[%i4, %i5] : memref<1024x1024xf32> } } } affine.for %i7 = 0 to 1024 { affine.for %i8 = 0 to 1024 { affine.for %i9 = 0 to 1024 { %5 = affine.load %arg1[%i9, %i8] : memref<1024x1024xf32> %6 = affine.load %arg0[%i7, %i9] : memref<1024x1024xf32> %7 = arith.mulf %6, %5 : f32 %8 = affine.load %arg4[%i7, %i8] : memref<1024x1024xf32> %9 = arith.addf %8, %7 : f32 affine.store %9, %arg4[%i7, %i8] : memref<1024x1024xf32> } } } // Should fuse MM initialization loops into their consumers, then fuse the // two matmul loops together for input reuse on '%arg0/%arg1'. // CHECK: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } return } // ----- func.func @affine_2_dependent_mm_fused(%arg0: memref<1024x1024xf32>, %arg1: memref<1024x1024xf32>, %arg2: memref<1024x1024xf32>, %arg3: memref<1024x1024xf32>, %arg4: memref<1024x1024xf32>) { affine.for %i0 = 0 to 1024 { affine.for %i1 = 0 to 1024 { affine.for %i2 = 0 to 1024 { %0 = affine.load %arg1[%i2, %i1] : memref<1024x1024xf32> %1 = affine.load %arg0[%i0, %i2] : memref<1024x1024xf32> %2 = arith.mulf %1, %0 : f32 %3 = affine.load %arg2[%i0, %i1] : memref<1024x1024xf32> %4 = arith.addf %3, %2 : f32 affine.store %4, %arg2[%i0, %i1] : memref<1024x1024xf32> } } } affine.for %i3 = 0 to 1024 { affine.for %i4 = 0 to 1024 { affine.for %i5 = 0 to 1024 { %5 = affine.load %arg3[%i5, %i4] : memref<1024x1024xf32> %6 = affine.load %arg2[%i3, %i5] : memref<1024x1024xf32> %7 = arith.mulf %6, %5 : f32 %8 = affine.load %arg4[%i3, %i4] : memref<1024x1024xf32> %9 = arith.addf %8, %7 : f32 affine.store %9, %arg4[%i3, %i4] : memref<1024x1024xf32> } } } // CHECK: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 1024 { // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.mulf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<1024x1024xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: } return } // ----- // CHECK-LABEL: func @should_fuse_self_dependence_multi_store_producer() { func.func @should_fuse_self_dependence_multi_store_producer() { %m = memref.alloc() : memref<10xf32> %local_m = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf7, %local_m[%i0] : memref<10xf32> %v0 = affine.load %local_m[%i0] : memref<10xf32> affine.store %v0, %m[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v1 = affine.load %m[%i1] : memref<10xf32> } // CHECK: affine.for %[[i0:.*]] = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, [[LOCAL_M:%.*]][%[[i0]]] : memref<10xf32> // CHECK-NEXT: [[v0:%.*]] = affine.load [[LOCAL_M]][%[[i0]]] : memref<10xf32> // CHECK-NEXT: affine.store [[v0]], %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- // CHECK-LABEL: func @should_fuse_dead_multi_store_producer() { func.func @should_fuse_dead_multi_store_producer() { %m = memref.alloc() : memref<10xf32> %dead_m = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf7, %dead_m[%i0] : memref<10xf32> affine.store %cf7, %m[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v0 = affine.load %m[%i1] : memref<10xf32> } // CHECK: affine.for %[[i0:.*]] = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%[[i0]]] : memref<10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: } // CHECK-NEXT: return return } // ----- // CHECK-LABEL: func @should_fuse_function_live_out_multi_store_producer func.func @should_fuse_function_live_out_multi_store_producer(%live_in_out_m : memref<10xf32>) { %m = memref.alloc() : memref<10xf32> %cf7 = arith.constant 7.0 : f32 affine.for %i0 = 0 to 10 { affine.store %cf7, %live_in_out_m[%i0] : memref<10xf32> affine.store %cf7, %m[%i0] : memref<10xf32> } affine.for %i1 = 0 to 10 { %v0 = affine.load %m[%i1] : memref<10xf32> } // CHECK: affine.for %[[i0:.*]] = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%[[i0]]] : memref<10xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: affine.load %{{.*}}[0] : memref<1xf32> // CHECK-NEXT: } // CHECK-NEXT: return return } // Add further tests in mlir/test/Transforms/loop-fusion-4.mlir