// RUN: mlir-opt -allow-unregistered-dialect %s -affine-scalrep | FileCheck %s // CHECK-DAG: [[$MAP0:#map[0-9]*]] = affine_map<(d0, d1) -> (d1 + 1)> // CHECK-DAG: [[$MAP1:#map[0-9]*]] = affine_map<(d0, d1) -> (d0)> // CHECK-DAG: [[$MAP2:#map[0-9]*]] = affine_map<(d0, d1) -> (d1)> // CHECK-DAG: [[$MAP3:#map[0-9]*]] = affine_map<(d0, d1) -> (d0 - 1)> // CHECK-DAG: [[$MAP4:#map[0-9]*]] = affine_map<(d0) -> (d0 + 1)> // CHECK-LABEL: func @simple_store_load() { func.func @simple_store_load() { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } memref.dealloc %m : memref<10xf32> return // CHECK: %[[C7:.*]] = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: arith.addf %[[C7]], %[[C7]] : f32 // CHECK-NEXT: } // CHECK-NEXT: return } // CHECK-LABEL: func @multi_store_load() { func.func @multi_store_load() { %cf7 = arith.constant 7.0 : f32 %cf8 = arith.constant 8.0 : f32 %cf9 = arith.constant 9.0 : f32 %m = gpu.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 affine.store %cf8, %m[%i0] : memref<10xf32> affine.store %cf9, %m[%i0] : memref<10xf32> %v2 = affine.load %m[%i0] : memref<10xf32> %v3 = affine.load %m[%i0] : memref<10xf32> %v4 = arith.mulf %v2, %v3 : f32 } gpu.dealloc %m : memref<10xf32> return // CHECK-NEXT: %[[C7:.*]] = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: arith.constant 8.000000e+00 : f32 // CHECK-NEXT: %[[C9:.*]] = arith.constant 9.000000e+00 : f32 // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: arith.addf %[[C7]], %[[C7]] : f32 // CHECK-NEXT: arith.mulf %[[C9]], %[[C9]] : f32 // CHECK-NEXT: } // CHECK-NEXT: return } // The store-load forwarding can see through affine apply's since it relies on // dependence information. // CHECK-LABEL: func @store_load_affine_apply func.func @store_load_affine_apply() -> memref<10x10xf32> { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10x10xf32> affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { %t0 = affine.apply affine_map<(d0, d1) -> (d1 + 1)>(%i0, %i1) %t1 = affine.apply affine_map<(d0, d1) -> (d0)>(%i0, %i1) %idx0 = affine.apply affine_map<(d0, d1) -> (d1)> (%t0, %t1) %idx1 = affine.apply affine_map<(d0, d1) -> (d0 - 1)> (%t0, %t1) affine.store %cf7, %m[%idx0, %idx1] : memref<10x10xf32> // CHECK-NOT: affine.load %{{[0-9]+}} %v0 = affine.load %m[%i0, %i1] : memref<10x10xf32> %v1 = arith.addf %v0, %v0 : f32 } } // The memref and its stores won't be erased due to this memref return. return %m : memref<10x10xf32> // CHECK: %{{.*}} = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: %{{.*}} = memref.alloc() : memref<10x10xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: %{{.*}} = affine.apply [[$MAP0]](%{{.*}}, %{{.*}}) // CHECK-NEXT: %{{.*}} = affine.apply [[$MAP1]](%{{.*}}, %{{.*}}) // CHECK-NEXT: %{{.*}} = affine.apply [[$MAP2]](%{{.*}}, %{{.*}}) // CHECK-NEXT: %{{.*}} = affine.apply [[$MAP3]](%{{.*}}, %{{.*}}) // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<10x10xf32> // CHECK-NEXT: %{{.*}} = arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return %{{.*}} : memref<10x10xf32> } // CHECK-LABEL: func @store_load_nested func.func @store_load_nested(%N : index) { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } } return // CHECK: %{{.*}} = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} { // CHECK-NEXT: %{{.*}} = arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return } // No forwarding happens here since either of the two stores could be the last // writer; store/load forwarding will however be possible here once loop live // out SSA scalars are available. // CHECK-LABEL: func @multi_store_load_nested_no_fwd func.func @multi_store_load_nested_no_fwd(%N : index) { %cf7 = arith.constant 7.0 : f32 %cf8 = arith.constant 8.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { affine.store %cf8, %m[%i1] : memref<10xf32> } affine.for %i2 = 0 to %N { // CHECK: %{{[0-9]+}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } } return } // No forwarding happens here since both stores have a value going into // the load. // CHECK-LABEL: func @store_load_store_nested_no_fwd func.func @store_load_store_nested_no_fwd(%N : index) { %cf7 = arith.constant 7.0 : f32 %cf9 = arith.constant 9.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { // CHECK: %{{[0-9]+}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 affine.store %cf9, %m[%i0] : memref<10xf32> } } return } // Forwarding happens here since the last store postdominates all other stores // and other forwarding criteria are satisfied. // CHECK-LABEL: func @multi_store_load_nested_fwd func.func @multi_store_load_nested_fwd(%N : index) { %cf7 = arith.constant 7.0 : f32 %cf8 = arith.constant 8.0 : f32 %cf9 = arith.constant 9.0 : f32 %cf10 = arith.constant 10.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { affine.store %cf8, %m[%i1] : memref<10xf32> } affine.for %i2 = 0 to %N { affine.store %cf9, %m[%i2] : memref<10xf32> } affine.store %cf10, %m[%i0] : memref<10xf32> affine.for %i3 = 0 to %N { // CHECK-NOT: %{{[0-9]+}} = affine.load %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } } return } // There is no unique load location for the store to forward to. // CHECK-LABEL: func @store_load_no_fwd func.func @store_load_no_fwd() { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to 10 { affine.for %i2 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%i2] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } } } return } // Forwarding happens here as there is a one-to-one store-load correspondence. // CHECK-LABEL: func @store_load_fwd func.func @store_load_fwd() { %cf7 = arith.constant 7.0 : f32 %c0 = arith.constant 0 : index %m = memref.alloc() : memref<10xf32> affine.store %cf7, %m[%c0] : memref<10xf32> affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { affine.for %i2 = 0 to 10 { // CHECK-NOT: affine.load %{{[0-9]}}+ %v0 = affine.load %m[%c0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } } } return } // Although there is a dependence from the second store to the load, it is // satisfied by the outer surrounding loop, and does not prevent the first // store to be forwarded to the load. func.func @store_load_store_nested_fwd(%N : index) -> f32 { %cf7 = arith.constant 7.0 : f32 %cf9 = arith.constant 9.0 : f32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 10 { affine.store %cf7, %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 %idx = affine.apply affine_map<(d0) -> (d0 + 1)> (%i0) affine.store %cf9, %m[%idx] : memref<10xf32> } } // Due to this load, the memref isn't optimized away. %v3 = affine.load %m[%c1] : memref<10xf32> return %v3 : f32 // CHECK: %{{.*}} = memref.alloc() : memref<10xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} { // CHECK-NEXT: %{{.*}} = arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: %{{.*}} = affine.apply [[$MAP4]](%{{.*}}) // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: return %{{.*}} : f32 } // CHECK-LABEL: func @should_not_fwd func.func @should_not_fwd(%A: memref<100xf32>, %M : index, %N : index) -> f32 { %cf = arith.constant 0.0 : f32 affine.store %cf, %A[%M] : memref<100xf32> // CHECK: affine.load %{{.*}}[%{{.*}}] %v = affine.load %A[%N] : memref<100xf32> return %v : f32 } // Can store forward to A[%j, %i], but no forwarding to load on %A[%i, %j] // CHECK-LABEL: func @refs_not_known_to_be_equal func.func @refs_not_known_to_be_equal(%A : memref<100 x 100 x f32>, %M : index) { %N = affine.apply affine_map<(d0) -> (d0 + 1)> (%M) %cf1 = arith.constant 1.0 : f32 affine.for %i = 0 to 100 { // CHECK: affine.for %[[I:.*]] = affine.for %j = 0 to 100 { // CHECK: affine.for %[[J:.*]] = // CHECK: affine.load %{{.*}}[%[[I]], %[[J]]] %u = affine.load %A[%i, %j] : memref<100x100xf32> // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%[[J]], %[[I]]] affine.store %cf1, %A[%j, %i] : memref<100x100xf32> // CHECK-NEXT: affine.load %{{.*}}[%[[I]], %[[J]]] %v = affine.load %A[%i, %j] : memref<100x100xf32> // This load should disappear. %w = affine.load %A[%j, %i] : memref<100x100xf32> // CHECK-NEXT: "foo" "foo" (%u, %v, %w) : (f32, f32, f32) -> () } } return } // CHECK-LABEL: func @elim_load_after_store func.func @elim_load_after_store(%arg0: memref<100xf32>, %arg1: memref<100xf32>) { %alloc = memref.alloc() : memref<1xf32> %alloc_0 = memref.alloc() : memref<1xf32> // CHECK: affine.for affine.for %arg2 = 0 to 100 { // CHECK: affine.load %0 = affine.load %arg0[%arg2] : memref<100xf32> %1 = affine.load %arg0[%arg2] : memref<100xf32> // CHECK: arith.addf %2 = arith.addf %0, %1 : f32 affine.store %2, %alloc_0[0] : memref<1xf32> %3 = affine.load %arg0[%arg2] : memref<100xf32> %4 = affine.load %alloc_0[0] : memref<1xf32> // CHECK-NEXT: arith.addf %5 = arith.addf %3, %4 : f32 affine.store %5, %alloc[0] : memref<1xf32> %6 = affine.load %arg0[%arg2] : memref<100xf32> %7 = affine.load %alloc[0] : memref<1xf32> %8 = arith.addf %6, %7 : f32 affine.store %8, %arg1[%arg2] : memref<100xf32> } return } // The test checks for value forwarding from vector stores to vector loads. // The value loaded from %in can directly be stored to %out by eliminating // store and load from %tmp. func.func @vector_forwarding(%in : memref<512xf32>, %out : memref<512xf32>) { %tmp = memref.alloc() : memref<512xf32> affine.for %i = 0 to 16 { %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> affine.vector_store %ld0, %tmp[32*%i] : memref<512xf32>, vector<32xf32> %ld1 = affine.vector_load %tmp[32*%i] : memref<512xf32>, vector<32xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<32xf32> } return } // CHECK-LABEL: func @vector_forwarding // CHECK: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: %[[LDVAL:.*]] = affine.vector_load // CHECK-NEXT: affine.vector_store %[[LDVAL]],{{.*}} // CHECK-NEXT: } func.func @vector_no_forwarding(%in : memref<512xf32>, %out : memref<512xf32>) { %tmp = memref.alloc() : memref<512xf32> affine.for %i = 0 to 16 { %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> affine.vector_store %ld0, %tmp[32*%i] : memref<512xf32>, vector<32xf32> %ld1 = affine.vector_load %tmp[32*%i] : memref<512xf32>, vector<16xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<16xf32> } return } // CHECK-LABEL: func @vector_no_forwarding // CHECK: affine.for %{{.*}} = 0 to 16 { // CHECK-NEXT: %[[LDVAL:.*]] = affine.vector_load // CHECK-NEXT: affine.vector_store %[[LDVAL]],{{.*}} // CHECK-NEXT: %[[LDVAL1:.*]] = affine.vector_load // CHECK-NEXT: affine.vector_store %[[LDVAL1]],{{.*}} // CHECK-NEXT: } // CHECK-LABEL: func @simple_three_loads func.func @simple_three_loads(%in : memref<10xf32>) { affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %in[%i0] : memref<10xf32> // CHECK-NOT: affine.load %v1 = affine.load %in[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 %v3 = affine.load %in[%i0] : memref<10xf32> %v4 = arith.addf %v2, %v3 : f32 } return } // CHECK-LABEL: func @nested_loads_const_index func.func @nested_loads_const_index(%in : memref<10xf32>) { %c0 = arith.constant 0 : index // CHECK: affine.load %v0 = affine.load %in[%c0] : memref<10xf32> affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 20 { affine.for %i2 = 0 to 30 { // CHECK-NOT: affine.load %v1 = affine.load %in[%c0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 } } } return } // CHECK-LABEL: func @nested_loads func.func @nested_loads(%N : index, %in : memref<10xf32>) { affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %in[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { // CHECK-NOT: affine.load %v1 = affine.load %in[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 } } return } // CHECK-LABEL: func @nested_loads_different_memref_accesses_no_cse func.func @nested_loads_different_memref_accesses_no_cse(%in : memref<10xf32>) { affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %in[%i0] : memref<10xf32> affine.for %i1 = 0 to 20 { // CHECK: affine.load %v1 = affine.load %in[%i1] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 } } return } // CHECK-LABEL: func @load_load_store func.func @load_load_store(%m : memref<10xf32>) { affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%i0] : memref<10xf32> // CHECK-NOT: affine.load %v1 = affine.load %m[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 affine.store %v2, %m[%i0] : memref<10xf32> } return } // CHECK-LABEL: func @load_load_store_2_loops_no_cse func.func @load_load_store_2_loops_no_cse(%N : index, %m : memref<10xf32>) { affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%i0] : memref<10xf32> affine.for %i1 = 0 to %N { // CHECK: affine.load %v1 = affine.load %m[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 affine.store %v2, %m[%i0] : memref<10xf32> } } return } // CHECK-LABEL: func @load_load_store_3_loops_no_cse func.func @load_load_store_3_loops_no_cse(%m : memref<10xf32>) { %cf1 = arith.constant 1.0 : f32 affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%i0] : memref<10xf32> affine.for %i1 = 0 to 20 { affine.for %i2 = 0 to 30 { // CHECK: affine.load %v1 = affine.load %m[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 } affine.store %cf1, %m[%i0] : memref<10xf32> } } return } // CHECK-LABEL: func @load_load_store_3_loops func.func @load_load_store_3_loops(%m : memref<10xf32>) { %cf1 = arith.constant 1.0 : f32 affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 20 { // CHECK: affine.load %v0 = affine.load %m[%i0] : memref<10xf32> affine.for %i2 = 0 to 30 { // CHECK-NOT: affine.load %v1 = affine.load %m[%i0] : memref<10xf32> %v2 = arith.addf %v0, %v1 : f32 } } affine.store %cf1, %m[%i0] : memref<10xf32> } return } // CHECK-LABEL: func @loads_in_sibling_loops_const_index_no_cse func.func @loads_in_sibling_loops_const_index_no_cse(%m : memref<10xf32>) { %c0 = arith.constant 0 : index affine.for %i0 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%c0] : memref<10xf32> } affine.for %i1 = 0 to 10 { // CHECK: affine.load %v0 = affine.load %m[%c0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } return } // CHECK-LABEL: func @load_load_affine_apply func.func @load_load_affine_apply(%in : memref<10x10xf32>) { affine.for %i0 = 0 to 10 { affine.for %i1 = 0 to 10 { %t0 = affine.apply affine_map<(d0, d1) -> (d1 + 1)>(%i0, %i1) %t1 = affine.apply affine_map<(d0, d1) -> (d0)>(%i0, %i1) %idx0 = affine.apply affine_map<(d0, d1) -> (d1)> (%t0, %t1) %idx1 = affine.apply affine_map<(d0, d1) -> (d0 - 1)> (%t0, %t1) // CHECK: affine.load %v0 = affine.load %in[%idx0, %idx1] : memref<10x10xf32> // CHECK-NOT: affine.load %v1 = affine.load %in[%i0, %i1] : memref<10x10xf32> %v2 = arith.addf %v0, %v1 : f32 } } return } // CHECK-LABEL: func @vector_loads func.func @vector_loads(%in : memref<512xf32>, %out : memref<512xf32>) { affine.for %i = 0 to 16 { // CHECK: affine.vector_load %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> // CHECK-NOT: affine.vector_load %ld1 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> %add = arith.addf %ld0, %ld1 : vector<32xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<32xf32> } return } // CHECK-LABEL: func @vector_loads_no_cse func.func @vector_loads_no_cse(%in : memref<512xf32>, %out : memref<512xf32>) { affine.for %i = 0 to 16 { // CHECK: affine.vector_load %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> // CHECK: affine.vector_load %ld1 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<16xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<16xf32> } return } // CHECK-LABEL: func @vector_load_store_load_no_cse func.func @vector_load_store_load_no_cse(%in : memref<512xf32>, %out : memref<512xf32>) { affine.for %i = 0 to 16 { // CHECK: affine.vector_load %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> affine.vector_store %ld0, %in[16*%i] : memref<512xf32>, vector<32xf32> // CHECK: affine.vector_load %ld1 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> %add = arith.addf %ld0, %ld1 : vector<32xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<32xf32> } return } // CHECK-LABEL: func @reduction_multi_store func.func @reduction_multi_store() -> memref<1xf32> { %A = memref.alloc() : memref<1xf32> %cf0 = arith.constant 0.0 : f32 %cf5 = arith.constant 5.0 : f32 affine.store %cf0, %A[0] : memref<1xf32> affine.for %i = 0 to 100 step 2 { %l = affine.load %A[0] : memref<1xf32> %s = arith.addf %l, %cf5 : f32 // Store to load forwarding from this store should happen. affine.store %s, %A[0] : memref<1xf32> %m = affine.load %A[0] : memref<1xf32> "test.foo"(%m) : (f32) -> () } // CHECK: affine.for // CHECK: affine.load // CHECK: affine.store %[[S:.*]], // CHECK-NEXT: "test.foo"(%[[S]]) return %A : memref<1xf32> } // CHECK-LABEL: func @vector_load_affine_apply_store_load func.func @vector_load_affine_apply_store_load(%in : memref<512xf32>, %out : memref<512xf32>) { %cf1 = arith.constant 1: index affine.for %i = 0 to 15 { // CHECK: affine.vector_load %ld0 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> %idx = affine.apply affine_map<(d0) -> (d0 + 1)> (%i) affine.vector_store %ld0, %in[32*%idx] : memref<512xf32>, vector<32xf32> // CHECK-NOT: affine.vector_load %ld1 = affine.vector_load %in[32*%i] : memref<512xf32>, vector<32xf32> %add = arith.addf %ld0, %ld1 : vector<32xf32> affine.vector_store %ld1, %out[32*%i] : memref<512xf32>, vector<32xf32> } return } // CHECK-LABEL: func @external_no_forward_load func.func @external_no_forward_load(%in : memref<512xf32>, %out : memref<512xf32>) { affine.for %i = 0 to 16 { %ld0 = affine.load %in[32*%i] : memref<512xf32> affine.store %ld0, %out[32*%i] : memref<512xf32> "memop"(%in, %out) : (memref<512xf32>, memref<512xf32>) -> () %ld1 = affine.load %in[32*%i] : memref<512xf32> affine.store %ld1, %out[32*%i] : memref<512xf32> } return } // CHECK: affine.load // CHECK: affine.store // CHECK: affine.load // CHECK: affine.store // CHECK-LABEL: func @external_no_forward_store func.func @external_no_forward_store(%in : memref<512xf32>, %out : memref<512xf32>) { %cf1 = arith.constant 1.0 : f32 affine.for %i = 0 to 16 { affine.store %cf1, %in[32*%i] : memref<512xf32> "memop"(%in, %out) : (memref<512xf32>, memref<512xf32>) -> () %ld1 = affine.load %in[32*%i] : memref<512xf32> affine.store %ld1, %out[32*%i] : memref<512xf32> } return } // CHECK: affine.store // CHECK: affine.load // CHECK: affine.store // CHECK-LABEL: func @no_forward_cast func.func @no_forward_cast(%in : memref<512xf32>, %out : memref<512xf32>) { %cf1 = arith.constant 1.0 : f32 %cf2 = arith.constant 2.0 : f32 %m2 = memref.cast %in : memref<512xf32> to memref affine.for %i = 0 to 16 { affine.store %cf1, %in[32*%i] : memref<512xf32> affine.store %cf2, %m2[32*%i] : memref %ld1 = affine.load %in[32*%i] : memref<512xf32> affine.store %ld1, %out[32*%i] : memref<512xf32> } return } // CHECK: affine.store // CHECK-NEXT: affine.store // CHECK-NEXT: affine.load // CHECK-NEXT: affine.store // Although there is a dependence from the second store to the load, it is // satisfied by the outer surrounding loop, and does not prevent the first // store to be forwarded to the load. // CHECK-LABEL: func @overlap_no_fwd func.func @overlap_no_fwd(%N : index) -> f32 { %cf7 = arith.constant 7.0 : f32 %cf9 = arith.constant 9.0 : f32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %m = memref.alloc() : memref<10xf32> affine.for %i0 = 0 to 5 { affine.store %cf7, %m[2 * %i0] : memref<10xf32> affine.for %i1 = 0 to %N { %v0 = affine.load %m[2 * %i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 affine.store %cf9, %m[%i0 + 1] : memref<10xf32> } } // Due to this load, the memref isn't optimized away. %v3 = affine.load %m[%c1] : memref<10xf32> return %v3 : f32 // CHECK: affine.for %{{.*}} = 0 to 5 { // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} { // CHECK-NEXT: %{{.*}} = affine.load // CHECK-NEXT: %{{.*}} = arith.addf %{{.*}}, %{{.*}} : f32 // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32> // CHECK-NEXT: return %{{.*}} : f32 } // CHECK-LABEL: func @redundant_store_elim func.func @redundant_store_elim(%out : memref<512xf32>) { %cf1 = arith.constant 1.0 : f32 %cf2 = arith.constant 2.0 : f32 affine.for %i = 0 to 16 { affine.store %cf1, %out[32*%i] : memref<512xf32> affine.store %cf2, %out[32*%i] : memref<512xf32> } return } // CHECK: affine.for // CHECK-NEXT: affine.store // CHECK-NEXT: } // CHECK-LABEL: func @redundant_store_elim_fail func.func @redundant_store_elim_fail(%out : memref<512xf32>) { %cf1 = arith.constant 1.0 : f32 %cf2 = arith.constant 2.0 : f32 affine.for %i = 0 to 16 { affine.store %cf1, %out[32*%i] : memref<512xf32> "test.use"(%out) : (memref<512xf32>) -> () affine.store %cf2, %out[32*%i] : memref<512xf32> } return } // CHECK: affine.for // CHECK-NEXT: affine.store // CHECK-NEXT: "test.use" // CHECK-NEXT: affine.store // CHECK-NEXT: } // CHECK-LABEL: @with_inner_ops func.func @with_inner_ops(%arg0: memref, %arg1: memref, %arg2: i1) { %cst = arith.constant 0.000000e+00 : f64 %cst_0 = arith.constant 3.140000e+00 : f64 %cst_1 = arith.constant 1.000000e+00 : f64 affine.for %arg3 = 0 to 28 { affine.store %cst, %arg1[%arg3] : memref affine.store %cst_0, %arg1[%arg3] : memref %0 = scf.if %arg2 -> (f64) { scf.yield %cst_1 : f64 } else { %1 = affine.load %arg1[%arg3] : memref scf.yield %1 : f64 } affine.store %0, %arg0[%arg3] : memref } return } // CHECK: %[[pi:.+]] = arith.constant 3.140000e+00 : f64 // CHECK: %{{.*}} = scf.if %arg2 -> (f64) { // CHECK: scf.yield %{{.*}} : f64 // CHECK: } else { // CHECK: scf.yield %[[pi]] : f64 // CHECK: } // Check if scalar replacement works correctly when affine memory ops are in the // body of an scf.for. // CHECK-LABEL: func @affine_store_load_in_scope func.func @affine_store_load_in_scope(%memref: memref<1x4094x510x1xf32>, %memref_2: memref<4x4x1x64xf32>, %memref_0: memref<1x2046x254x1x64xf32>) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %c64 = arith.constant 64 : index %c768 = arith.constant 768 : index scf.for %i = %c0 to %c768 step %c1 { %9 = arith.remsi %i, %c64 : index %10 = arith.divsi %i, %c64 : index %11 = arith.remsi %10, %c2 : index %12 = arith.divsi %10, %c2 : index test.affine_scope { %14 = arith.muli %12, %c2 : index %15 = arith.addi %c2, %14 : index %16 = arith.addi %15, %c0 : index %18 = arith.muli %11, %c2 : index %19 = arith.addi %c2, %18 : index %20 = affine.load %memref[0, symbol(%16), symbol(%19), 0] : memref<1x4094x510x1xf32> %21 = affine.load %memref_2[0, 0, 0, symbol(%9)] : memref<4x4x1x64xf32> %24 = affine.load %memref_0[0, symbol(%12), symbol(%11), 0, symbol(%9)] : memref<1x2046x254x1x64xf32> %25 = arith.mulf %20, %21 : f32 %26 = arith.addf %24, %25 : f32 // CHECK: %[[A:.*]] = arith.addf affine.store %26, %memref_0[0, symbol(%12), symbol(%11), 0, symbol(%9)] : memref<1x2046x254x1x64xf32> %27 = arith.addi %19, %c1 : index %28 = affine.load %memref[0, symbol(%16), symbol(%27), 0] : memref<1x4094x510x1xf32> %29 = affine.load %memref_2[0, 1, 0, symbol(%9)] : memref<4x4x1x64xf32> %30 = affine.load %memref_0[0, symbol(%12), symbol(%11), 0, symbol(%9)] : memref<1x2046x254x1x64xf32> %31 = arith.mulf %28, %29 : f32 %32 = arith.addf %30, %31 : f32 // The addf above will get the forwarded value from the store on // %memref_0 above which is being loaded into %30.. // CHECK: arith.addf %[[A]], "terminate"() : () -> () } } return } // No scalrep will be performed here but we ensure dependence correctly fails. // CHECK-LABEL: func @affine_load_store_in_different_scopes func.func @affine_load_store_in_different_scopes() -> memref<1xf32> { %A = memref.alloc() : memref<1xf32> %cf0 = arith.constant 0.0 : f32 %cf5 = arith.constant 5.0 : f32 affine.store %cf0, %A[0] : memref<1xf32> test.affine_scope { affine.store %cf5, %A[0] : memref<1xf32> "test.terminate"() : () -> () } %v = affine.load %A[0] : memref<1xf32> // CHECK: affine.store // CHECK-NEXT: test.affine_scope // CHECK: affine.store // CHECK: affine.load return %A : memref<1xf32> } // No forwarding should again happen here. // CHECK-LABEL: func.func @no_forwarding_across_scopes func.func @no_forwarding_across_scopes() -> memref<1xf32> { %A = memref.alloc() : memref<1xf32> %cf0 = arith.constant 0.0 : f32 %cf5 = arith.constant 5.0 : f32 %c0 = arith.constant 0 : index %c100 = arith.constant 100 : index %c1 = arith.constant 1 : index // Store shouldn't be forwarded to the load. affine.store %cf0, %A[0] : memref<1xf32> // CHECK: test.affine_scope // CHECK-NEXT: affine.load test.affine_scope { %l = affine.load %A[0] : memref<1xf32> %s = arith.addf %l, %cf5 : f32 affine.store %s, %A[0] : memref<1xf32> "terminator"() : () -> () } return %A : memref<1xf32> } // CHECK-LABEL: func @parallel_store_load() { func.func @parallel_store_load() { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10xf32> affine.parallel (%i0) = (0) to (10) { affine.store %cf7, %m[%i0] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } memref.dealloc %m : memref<10xf32> return // CHECK: %[[C7:.*]] = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: affine.parallel (%{{.*}}) = (0) to (10) { // CHECK-NEXT: arith.addf %[[C7]], %[[C7]] : f32 // CHECK-NEXT: } // CHECK-NEXT: return } func.func @non_constant_parallel_store_load(%N : index) { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10xf32> affine.parallel (%i0) = (0) to (%N) { affine.store %cf7, %m[%i0] : memref<10xf32> %v0 = affine.load %m[%i0] : memref<10xf32> %v1 = arith.addf %v0, %v0 : f32 } memref.dealloc %m : memref<10xf32> return } // CHECK: func.func @non_constant_parallel_store_load(%[[ARG0:.*]]: index) { // CHECK-NEXT: %[[C7:.*]] = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: affine.parallel (%{{.*}}) = (0) to (%[[ARG0]]) { // CHECK-NEXT: arith.addf %[[C7]], %[[C7]] : f32 // CHECK-NEXT: } // CHECK-NEXT: return // CHECK-LABEL: func @parallel_surrounding_for() { func.func @parallel_surrounding_for() { %cf7 = arith.constant 7.0 : f32 %m = memref.alloc() : memref<10x10xf32> affine.parallel (%i0) = (0) to (10) { affine.for %i1 = 0 to 10 { affine.store %cf7, %m[%i0,%i1] : memref<10x10xf32> %v0 = affine.load %m[%i0,%i1] : memref<10x10xf32> %v1 = arith.addf %v0, %v0 : f32 } } memref.dealloc %m : memref<10x10xf32> return // CHECK: %[[C7:.*]] = arith.constant 7.000000e+00 : f32 // CHECK-NEXT: affine.parallel (%{{.*}}) = (0) to (10) { // CHECK-NEXT: affine.for %{{.*}} = 0 to 10 { // CHECK-NEXT: arith.addf %[[C7]], %[[C7]] : f32 // CHECK-NEXT: } // CHECK-NEXT: } // CHECK-NEXT: return } // CHECK-LABEL: func.func @dead_affine_region_op func.func @dead_affine_region_op() { %c1 = arith.constant 1 : index %alloc = memref.alloc() : memref<15xi1> %true = arith.constant true affine.store %true, %alloc[%c1] : memref<15xi1> // Dead store. affine.store %true, %alloc[%c1] : memref<15xi1> // This affine.if is dead. affine.if affine_set<(d0, d1, d2, d3) : ((d0 + 1) mod 8 >= 0, d0 * -8 >= 0)>(%c1, %c1, %c1, %c1){ // No forwarding will happen. affine.load %alloc[%c1] : memref<15xi1> } // CHECK-NEXT: arith.constant // CHECK-NEXT: memref.alloc // CHECK-NEXT: arith.constant // CHECK-NEXT: affine.store // CHECK-NEXT: affine.if // CHECK-NEXT: affine.load return } // We perform no scalar replacement here since we don't depend on dominance // info, which would be needed in such cases when ops fall in different blocks // of a CFG region. // CHECK-LABEL: func @cross_block func.func @cross_block() { %c10 = arith.constant 10 : index %alloc_83 = memref.alloc() : memref<1x13xf32> %alloc_99 = memref.alloc() : memref<13xi1> %true_110 = arith.constant true affine.store %true_110, %alloc_99[%c10] : memref<13xi1> %true = arith.constant true affine.store %true, %alloc_99[%c10] : memref<13xi1> cf.br ^bb1(%alloc_83 : memref<1x13xf32>) ^bb1(%35: memref<1x13xf32>): // CHECK: affine.load %69 = affine.load %alloc_99[%c10] : memref<13xi1> return }