// RUN: mlir-opt %s -canonicalize="test-convergence" --split-input-file -allow-unregistered-dialect | FileCheck %s // Fold all the gpu.wait ops as they are redundant. // CHECK-LABEL: func @fold_wait_op_test1 func.func @fold_wait_op_test1() { %1 = gpu.wait async gpu.wait [] %3 = gpu.wait async gpu.wait [%3] return } // CHECK-NOT: gpu.wait // ----- // Erase duplicate barriers. // CHECK-LABEL: func @erase_barriers // CHECK-NEXT: gpu.barrier // CHECK-NEXT: return func.func @erase_barriers() { gpu.barrier gpu.barrier return } // ----- // Replace uses of gpu.wait op with its async dependency. // CHECK-LABEL: func @fold_wait_op_test2 func.func @fold_wait_op_test2(%arg0: i1) -> (memref<5xf16>, memref<5xf16>) { %0 = gpu.wait async %memref, %asyncToken = gpu.alloc async [%0] () : memref<5xf16> gpu.wait [%0] %1 = gpu.wait async [%0] %memref_0, %asyncToken_0 = gpu.alloc async [%1] () : memref<5xf16> gpu.wait [%1] return %memref, %memref_0 : memref<5xf16>, memref<5xf16> } // CHECK-NEXT: %[[TOKEN0:.*]] = gpu.wait async // CHECK-NEXT: gpu.alloc async [%[[TOKEN0]]] () // CHECK-NEXT: %[[TOKEN1:.*]] = gpu.wait async // CHECK-NEXT: gpu.alloc async [%[[TOKEN1]]] () // CHECK-NEXT: return // ----- // CHECK-LABEL: func @fold_memcpy_op func.func @fold_memcpy_op(%arg0: i1) { %cst = arith.constant 0.000000e+00 : f16 %1 = memref.alloc() : memref<2xf16> %2 = gpu.wait async %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16> gpu.wait [%2] affine.store %cst, %memref[0] : memref<2xf16> %3 = gpu.wait async %4 = gpu.memcpy async [%3] %1, %memref : memref<2xf16>, memref<2xf16> gpu.wait [%3] %5 = scf.if %arg0 -> (i1) { memref.dealloc %1 : memref<2xf16> scf.yield %arg0 : i1 } else { memref.dealloc %1 : memref<2xf16> scf.yield %arg0 : i1 } return } // CHECK-NOT: gpu.memcpy // ----- // We cannot fold memcpy here as dest is a block argument. // CHECK-LABEL: func @do_not_fold_memcpy_op1 func.func @do_not_fold_memcpy_op1(%arg0: i1, %arg1: memref<2xf16>) { %cst = arith.constant 0.000000e+00 : f16 %2 = gpu.wait async %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16> gpu.wait [%2] affine.store %cst, %memref[0] : memref<2xf16> %3 = gpu.wait async %4 = gpu.memcpy async [%3] %arg1, %memref : memref<2xf16>, memref<2xf16> gpu.wait [%3] return } // CHECK: gpu.memcpy // ----- // We cannot fold gpu.memcpy as it is used by an op having read effect on dest. // CHECK-LABEL: func @do_not_fold_memcpy_op2 func.func @do_not_fold_memcpy_op2(%arg0: i1, %arg1: index) -> f16 { %cst = arith.constant 0.000000e+00 : f16 %1 = memref.alloc() : memref<2xf16> %2 = gpu.wait async %memref, %asyncToken = gpu.alloc async [%2] () : memref<2xf16> gpu.wait [%2] affine.store %cst, %memref[0] : memref<2xf16> %3 = gpu.wait async %4 = gpu.memcpy async [%3] %1, %memref : memref<2xf16>, memref<2xf16> gpu.wait [%3] %5 = memref.load %1[%arg1] : memref<2xf16> return %5 : f16 } // CHECK: gpu.memcpy // ----- // We cannot fold gpu.memcpy, as the defining op if dest is not a alloc like op. // CHECK-LABEL: func @do_not_fold_memcpy_op3 func.func @do_not_fold_memcpy_op3(%arg0: memref<1xi8>, %arg1: memref) { %0 = arith.constant 0 : index %1 = memref.view %arg0[%0][] : memref<1xi8> to memref gpu.memcpy %1, %arg1 : memref, memref func.return } // CHECK: gpu.memcpy // ----- // CHECK-LABEL: @memcpy_after_cast func.func @memcpy_after_cast(%arg0: memref<10xf32>, %arg1: memref<10xf32>) { // CHECK-NOT: memref.cast // CHECK: gpu.memcpy %0 = memref.cast %arg0 : memref<10xf32> to memref %1 = memref.cast %arg1 : memref<10xf32> to memref gpu.memcpy %0, %1 : memref, memref return } // ----- // CHECK-LABEL: @memset_after_cast func.func @memset_after_cast(%arg0: memref<10xf32>, %arg1: f32) { // CHECK-NOT: memref.cast // CHECK: gpu.memset %0 = memref.cast %arg0 : memref<10xf32> to memref gpu.memset %0, %arg1 : memref, f32 return } // ----- // Test case: Folding of memref.dim(gpu.alloc(%size), %idx) -> %size // CHECK-LABEL: func @gpu_dim_of_alloc( // CHECK-SAME: %[[SIZE:[0-9a-z]+]]: index // CHECK-NEXT: return %[[SIZE]] : index func.func @gpu_dim_of_alloc(%size: index) -> index { %0 = gpu.alloc(%size) : memref %c0 = arith.constant 0 : index %1 = memref.dim %0, %c0 : memref return %1 : index } // ----- // CHECK-LABEL: func @simplify_gpu_launch func.func @simplify_gpu_launch() attributes {llvm.emit_c_interface} { %cst = arith.constant 0.000000e+00 : f32 %c1 = arith.constant 1 : index %c32 = arith.constant 32 : index %c16 = arith.constant 16 : index %c2 = arith.constant 2 : index %c0 = arith.constant 0 : index %0 = memref.alloc() : memref<2x16x16xf32> scf.for %arg0 = %c0 to %c2 step %c1 { scf.for %arg1 = %c0 to %c16 step %c1 { scf.for %arg2 = %c0 to %c16 step %c1 { memref.store %cst, %0[%arg0, %arg1, %arg2] : memref<2x16x16xf32> } } } %1 = gpu.wait async %memref, %asyncToken = gpu.alloc async [%1] () : memref<2x16x16xf32> %2 = gpu.memcpy async [%1] %memref, %0 : memref<2x16x16xf32>, memref<2x16x16xf32> gpu.wait [%1] gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %c1, %arg7 = %c1, %arg8 = %c1) threads(%arg3, %arg4, %arg5) in (%arg9 = %c32, %arg10 = %c1, %arg11 = %c1) { %3 = arith.muli %arg5, %c32 : index %4 = arith.muli %arg4, %c32 : index %5 = arith.addi %3, %4 : index %6 = arith.addi %5, %arg3 : index %7 = arith.divui %6, %c32 : index %8 = arith.muli %arg0, %c16 : index %9 = arith.muli %arg1, %c2 : index %10 = arith.muli %7, %c2 : index %11 = arith.addi %9, %10 : index %12 = memref.load %memref[%11, %c0, %8] : memref<2x16x16xf32> %13 = arith.addi %11, %c1 : index %14 = memref.load %memref[%13, %c0, %8] : memref<2x16x16xf32> memref.store %12, %memref[%11, %c0, %8] : memref<2x16x16xf32> memref.store %14, %memref[%13, %c0, %8] : memref<2x16x16xf32> gpu.terminator } return } // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK: gpu.launch blocks(%{{.*}}, %{{.*}}, %{{.*}}) in (%{{.*}} = %[[C1]], %{{.*}} = %[[C1]], %{{.*}} = %[[C1]]) threads(%[[TIDX:.*]], %{{.*}}, %{{.*}}) in (%{{.*}} = %c32, %{{.*}} = %[[C1]], %{{.*}} = %[[C1]]) { // CHECK-NEXT: arith.divui %[[TIDX]], %c32 : index // CHECK-NEXT: arith.muli %{{.*}}, %c2 : index // CHECK-NEXT: memref.load %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32> // CHECK-NEXT: arith.addi %{{.*}}, %[[C1]] : index // CHECK-NEXT: memref.load %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32> // CHECK-NEXT: memref.store %{{.*}}, %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32> // CHECK-NEXT: memref.store %{{.*}}, %memref[%{{.*}}, %[[C0]], %[[C0]]] : memref<2x16x16xf32> // CHECK-NEXT: gpu.terminator // CHECK-NEXT: } // ----- // CHECK-LABEL: func @make_reduce_uniform // CHECK: gpu.launch blocks // CHECK: %[[V1:.*]] = "test.test2"() : () -> i32 // CHECK: %[[V2:.*]] = gpu.all_reduce add %[[V1]] uniform { // CHECK: "test.test3"(%[[V2]]) : (i32) -> () func.func @make_reduce_uniform() { %0:6 = "test.test1"() : () -> (index, index, index, index, index, index) gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2) threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) { %1 = "test.test2"() : () -> i32 %2 = gpu.all_reduce add %1 {} : (i32) -> (i32) "test.test3"(%2) : (i32) -> () gpu.terminator } return } // ----- // CHECK-LABEL: func @make_subgroup_reduce_uniform // CHECK: gpu.launch blocks // CHECK: %[[V1:.*]] = "test.test2"() : () -> i32 // CHECK: %[[V2:.*]] = gpu.subgroup_reduce add %[[V1]] uniform // CHECK: "test.test3"(%[[V2]]) : (i32) -> () func.func @make_subgroup_reduce_uniform() { %0:6 = "test.test1"() : () -> (index, index, index, index, index, index) gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2) threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) { %1 = "test.test2"() : () -> i32 %2 = gpu.subgroup_reduce add %1 : (i32) -> (i32) "test.test3"(%2) : (i32) -> () gpu.terminator } return } // ----- // The GPU kernel does not have any side effecting ops, so the entire // gpu.launch op can fold away. // CHECK-LABEL: func @gpu_launch_without_side_effects // CHECK-NOT: gpu.launch func.func @gpu_launch_without_side_effects() { %0:6 = "test.test1"() : () -> (index, index, index, index, index, index) gpu.launch blocks(%arg0, %arg1, %arg2) in (%arg6 = %0#0, %arg7 = %0#1, %arg8 = %0#2) threads(%arg3, %arg4, %arg5) in (%arg9 = %0#3, %arg10 = %0#4, %arg11 = %0#5) { %1 = arith.addi %arg0, %arg1 : index gpu.terminator } return }