// RUN: mlir-opt %s -transform-interpreter -split-input-file -verify-diagnostics | FileCheck %s // Check that the im2col patterns are properly connected with the // transform dialect. // Non static shapes are not supported. // Check that we emit an error. // TODO: Hook up the rewriter errors in transform dialect. func.func @conv_non_static(%arg0: tensor, %arg1: tensor<3x3x4x16xf32>, %arg2: tensor) -> tensor { // expected-note@below {{when applied to this op}} %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor, tensor<3x3x4x16xf32>) outs(%arg2: tensor) -> tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op // expected-error@below {{failed to apply}} %1:2 = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // Check that we get the proper handles for the img2col tensor producer // and the final instruction. // CHECK: IR printer: tensor_producer // CHECK-NEXT: %[[COL_TENSOR:.+]] = linalg.generic // CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1, d2)>] // CHECK: ^bb0(%[[OUT_DATA:.+]]: f32) // Collapsed indices. // CHECK: %[[BINDEX:.+]] = linalg.index 0 : index // CHECK: %[[MINDEX:.+]] = linalg.index 1 : index // CHECK: %[[KINDEX:.+]] = linalg.index 2 : index // Compute input channel/convolved indices. // CHECK: %[[ICINDEX:.+]] = affine.apply affine_map<(d0) -> (d0 mod 4)>(%[[KINDEX]]) // CHECK: %[[CONVH:.+]] = affine.apply affine_map<(d0, d1) -> (d0 floordiv 14 + d1 floordiv 12)>(%[[MINDEX]], %[[KINDEX]]) // CHECK: %[[CONVW:.+]] = affine.apply affine_map<(d0, d1) -> (d0 mod 14 + (d1 mod 12) floordiv 4)>(%[[MINDEX]], %[[KINDEX]]) // Extract from the input tensor. // CHECK: %[[EXTRACTED_INPUT:.+]] = tensor.extract // CHECK-SAME: %{{.+}}{{\[}}%[[BINDEX]], %[[CONVH]], %[[CONVW]], %[[ICINDEX]]] : tensor<1x16x16x4xf32> // CHECK: linalg.yield %[[EXTRACTED_INPUT]] : f32 // CHECK: IR printer: transformed // CHECK: tensor.expand_shape %{{[^ ]*}} {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xf32> into tensor<1x14x14x16xf32> // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_16433136 // CHECK-SAME: %[[INPUT:.+]]: tensor<1x16x16x4xf32> // CHECK-SAME: %[[FILTER:.+]]: tensor<3x3x4x16xf32> // CHECK-SAME: %[[OUTPUT:.+]]: tensor<1x14x14x16xf32> // CHECK-DAG: %[[COLLAPSED_FILTER:.+]] = tensor.collapse_shape %[[FILTER]] {{\[}}[0, 1, 2], [3]] : tensor<3x3x4x16xf32> into tensor<36x16xf32> // CHECK-DAG: %[[COLLAPSED_OUT:.+]] = tensor.collapse_shape %[[OUTPUT]] {{\[}}[0], [1, 2], [3]] : tensor<1x14x14x16xf32> into tensor<1x196x16xf32> // CHECK: %[[INIT_COL_TENSOR:.+]] = tensor.empty() : tensor<1x196x36xf32> // CHECK: %[[COL_TENSOR:.+]] = linalg.generic // CHECK-SAME: #[[MAP0]] // CHECK: ^bb0(%[[OUT_DATA:.+]]: f32) // CHECK: linalg.yield %{{.+}} : f32 // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic // CHECK-SAME: #[[MAP1]] // CHECK-SAME: #[[MAP2]] // CHECK-SAME: #[[MAP3]] // CHECK-SAME: ins(%[[COL_TENSOR]], %[[COLLAPSED_FILTER]] : tensor<1x196x36xf32>, tensor<36x16xf32>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xf32>) // CHECK: ^bb0(%[[ARG0:.+]]: f32, %[[ARG1:.+]]: f32, %[[ARG2:.+]]: f32) // CHECK: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG1]] : f32 // CHECK: %[[ADD:.+]] = arith.addf %[[MUL]], %[[ARG2]] : f32 // CHECK: linalg.yield %[[ADD]] : f32 // CHECK: } -> tensor<1x196x16xf32> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xf32> into tensor<1x14x14x16xf32> // CHECK: return %[[RESULT]] func.func @conv_16433136(%arg0: tensor<1x16x16x4xf32>, %arg1: tensor<3x3x4x16xf32>, %arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xf32>, tensor<3x3x4x16xf32>) outs(%arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> return %0 : tensor<1x14x14x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } } // ----- // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3, d1)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2) -> (d1, d2, d0)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2 + d4, d3 + d5)> // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3, d4, d5)> // CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d3, d1, d2)> // CHECK: @depthwise_conv_hwc_114x16x3 // CHECK-SAME: %[[INPUT:.+]]: tensor<1x114x114x16xf32> // CHECK-SAME: %[[FILTER:.+]]: tensor<3x3x16xf32> // CHECK-SAME: %[[OUTPUT:.+]]: tensor<1x112x112x16xf32> // CHECK: %[[INPUT_T_INIT:.+]] = tensor.empty() : tensor<1x16x114x114xf32> // CHECK: %[[INPUT_T:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[INPUT]] : tensor<1x114x114x16xf32>) outs(%[[INPUT_T_INIT]] : tensor<1x16x114x114xf32>) { // CHECK-NEXT: ^bb0(%[[ARG3:.+]]: f32, %[[ARG4:.+]]: f32): // CHECK-NEXT: linalg.yield %[[ARG3]] : f32 // CHECK-NEXT: } -> tensor<1x16x114x114xf32> // CHECK: %[[FILTER_T_INIT:.+]] = tensor.empty() : tensor<16x3x3xf32> // CHECK: %[[FILTER_T:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP3]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[FILTER]] : tensor<3x3x16xf32>) outs(%[[FILTER_T_INIT]] : tensor<16x3x3xf32>) { // CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32): // CHECK: linalg.yield // CHECK: } -> tensor<16x3x3xf32> // CHECK: %[[INIT_OUTPUT_TENSOR:.+]] = tensor.empty() : tensor<1x16x112x112xf32> // CHECK: %[[OUTPUT_T:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[OUTPUT]] : tensor<1x112x112x16xf32>) outs(%[[INIT_OUTPUT_TENSOR]] : tensor<1x16x112x112xf32>) { // CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield // CHECK-NEXT: } -> tensor<1x16x112x112xf32> // CHECK: %[[INIT_COL_TENSOR:.+]] = tensor.empty() : tensor<1x16x112x112x3x3xf32> // CHECK: %[[COL_TENSOR:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP4]], #[[MAP5]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[INPUT_T]] : tensor<1x16x114x114xf32>) outs(%[[INIT_COL_TENSOR]] : tensor<1x16x112x112x3x3xf32>) { // CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield // CHECK-NEXT: } -> tensor<1x16x112x112x3x3xf32> // CHECK: %[[COL_TENSOR_R:.+]] = tensor.collapse_shape %[[COL_TENSOR]] // CHECK-SAME: tensor<1x16x112x112x3x3xf32> into tensor<16x12544x9xf32> // CHECK: %[[FILTER_T_R:.+]] = tensor.collapse_shape %[[FILTER_T]] // CHECK-SAME: tensor<16x3x3xf32> into tensor<16x9xf32> // CHECK: %[[OUTPUT_T_R:.+]] = tensor.collapse_shape %[[OUTPUT_T]] // CHECK-SAME: tensor<1x16x112x112xf32> into tensor<16x12544xf32> // CHECK: %[[BMV_RESULT:.+]] = linalg.batch_matvec ins(%[[COL_TENSOR_R]], %[[FILTER_T_R]] : tensor<16x12544x9xf32>, tensor<16x9xf32>) outs(%[[OUTPUT_T_R]] : tensor<16x12544xf32>) -> tensor<16x12544xf32> // CHECK: %[[RESULT_R:.+]] = tensor.expand_shape %[[BMV_RESULT]] // CHECK-SAME: tensor<16x12544xf32> into tensor<1x16x112x112xf32> // CHECK: %[[RESULT_INIT:.+]] = tensor.empty() : tensor<1x112x112x16xf32> // CHECK: %[[RESULT:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP6]], #[[MAP1]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[RESULT_R]] : tensor<1x16x112x112xf32>) outs(%[[RESULT_INIT]] : tensor<1x112x112x16xf32>) { // CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32): // CHECK-NEXT: linalg.yield // CHECK-NEXT: } -> tensor<1x112x112x16xf32> // CHECK: return %[[RESULT]] : tensor<1x112x112x16xf32> func.func @depthwise_conv_hwc_114x16x3(%input: tensor<1x114x114x16xf32>, %filter: tensor<3x3x16xf32>, %output: tensor<1x112x112x16xf32>) -> tensor<1x112x112x16xf32> { %0 = linalg.depthwise_conv_2d_nhwc_hwc { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<1x114x114x16xf32>, tensor<3x3x16xf32>) outs(%output : tensor<1x112x112x16xf32>) -> tensor<1x112x112x16xf32> return %0 : tensor<1x112x112x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.depthwise_conv_2d_nhwc_hwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[LHSMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[RHSMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[RESMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: func.func @batch_nhwc_conv // CHECK-SAME: (%[[INPUT:.+]]: tensor<8x16x16x4xf32>, %[[FILTER:.+]]: tensor<3x3x4x16xf32>, %[[INIT:.+]]: tensor<8x14x14x16xf32>) // CHECK-DAG: %[[CS_FILTER:.+]] = tensor.collapse_shape %[[FILTER]] {{\[}}[0, 1, 2], [3]] : tensor<3x3x4x16xf32> into tensor<36x16xf32> // CHECK-DAG: %[[CS_RESULT:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1, 2], [3]] : tensor<8x14x14x16xf32> into tensor<8x196x16xf32> // CHECK: %[[IT:.+]] = tensor.empty() : tensor<8x196x36xf32> // CHECK: %[[IMG2COL:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"] // CHECK-SAME: outs(%[[IT]] : tensor<8x196x36xf32>) // CHECK: %[[MATMUL:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[LHSMAP]], #[[RHSMAP]], #[[RESMAP]]], // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction"] // CHECK-SAME: ins(%[[IMG2COL]], %[[CS_FILTER]] : tensor<8x196x36xf32>, tensor<36x16xf32>) // CHECK-SAME: outs(%[[CS_RESULT]] : tensor<8x196x16xf32>) // CHECK: ^bb0(%[[ARG0:.+]]: f32, %[[ARG1:.+]]: f32, %[[ARG2:.+]]: f32): // CHECK: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG1]] : f32 // CHECK: %[[ADD:.+]] = arith.addf %[[MUL]], %[[ARG2]] : f32 // CHECK: linalg.yield %[[ADD]] : f32 // CHECK: } -> tensor<8x196x16xf32> // CHECK: %[[CS_FINAL:.+]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0], [1, 2], [3]] : tensor<8x196x16xf32> into tensor<8x14x14x16xf32> // CHECK: return %[[CS_FINAL]] func.func @batch_nhwc_conv(%arg0: tensor<8x16x16x4xf32>, %arg1: tensor<3x3x4x16xf32>, %arg2: tensor<8x14x14x16xf32>) -> tensor<8x14x14x16xf32> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<8x16x16x4xf32>, tensor<3x3x4x16xf32>) outs(%arg2: tensor<8x14x14x16xf32>) -> tensor<8x14x14x16xf32> return %0 : tensor<8x14x14x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK-DAG: #[[MAP:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // Im2col maps // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0) -> (d0 floordiv 9)> // CHECK-DAG: #[[MAP7:.+]] = affine_map<(d0, d1) -> (d0 floordiv 14 + (d1 mod 9) floordiv 3)> // CHECK-DAG: #[[MAP8:.+]] = affine_map<(d0, d1) -> (d0 + d1 - (d0 floordiv 14) * 14 - (d1 floordiv 3) * 3)> // CHECK-DAG: #[[LHSMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)> // CHECK-DAG: #[[RHSMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2)> // CHECK-DAG: #[[RESMAP:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: func.func @batch_nchw_conv // CHECK-SAME: (%[[INPUT:.+]]: tensor<8x4x16x16xf32>, %[[FILTER:.+]]: tensor<16x4x3x3xf32>, %[[INIT:.+]]: tensor<8x16x14x14xf32>) // CHECK-DAG: %[[CS_FILTER:.+]] = tensor.collapse_shape %[[FILTER]] {{\[}}[0], [1, 2, 3]] : tensor<16x4x3x3xf32> into tensor<16x36xf32> // CHECK-DAG: %[[CS_RESULT:.+]] = tensor.collapse_shape %[[INIT]] {{\[}}[0], [1], [2, 3]] : tensor<8x16x14x14xf32> into tensor<8x16x196xf32> // CHECK: %[[IT:.+]] = tensor.empty() : tensor<8x36x196xf32> // CHECK: %[[IMG2COL:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP]]] // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel"] // CHECK-SAME: outs(%[[IT]] : tensor<8x36x196xf32>) // Collapsed indices. // CHECK: %[[BINDEX:.+]] = linalg.index 0 : index // CHECK: %[[KINDEX:.+]] = linalg.index 1 : index // CHECK: %[[NINDEX:.+]] = linalg.index 2 : index // Compute input channel/convolved indices. // CHECK: %[[ICINDEX:.+]] = affine.apply #[[MAP1]](%[[KINDEX]]) // CHECK: %[[CONVH:.+]] = affine.apply #[[MAP7]](%[[NINDEX]], %[[KINDEX]]) // CHECK: %[[CONVW:.+]] = affine.apply #[[MAP8]](%[[NINDEX]], %[[KINDEX]]) // Extract from the input tensor. // CHECK: %[[EXTRACTED_INPUT:.+]] = tensor.extract // CHECK-SAME: %[[INPUT]]{{\[}}%[[BINDEX]], %[[ICINDEX]], %[[CONVH]], %[[CONVW]]] : tensor<8x4x16x16xf32> // CHECK: linalg.yield %[[EXTRACTED_INPUT]] : f32 // CHECK: %[[MATMUL:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[LHSMAP]], #[[RHSMAP]], #[[RESMAP]]], // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction"] // CHECK-SAME: ins(%[[CS_FILTER]], %[[IMG2COL]] : tensor<16x36xf32>, tensor<8x36x196xf32>) // CHECK-SAME: outs(%[[CS_RESULT]] : tensor<8x16x196xf32>) // CHECK: ^bb0(%[[ARG0:.+]]: f32, %[[ARG1:.+]]: f32, %[[ARG2:.+]]: f32): // CHECK: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG1]] : f32 // CHECK: %[[ADD:.+]] = arith.addf %[[MUL]], %[[ARG2]] : f32 // CHECK: linalg.yield %[[ADD]] : f32 // CHECK: } -> tensor<8x16x196xf32> // CHECK: %[[CS_FINAL:.+]] = tensor.expand_shape %[[MATMUL]] {{\[}}[0], [1], [2, 3]] : tensor<8x16x196xf32> into tensor<8x16x14x14xf32> // CHECK: return %[[CS_FINAL]] func.func @batch_nchw_conv(%arg0: tensor<8x4x16x16xf32>, %arg1: tensor<16x4x3x3xf32>, %arg2: tensor<8x16x14x14xf32>) -> tensor<8x16x14x14xf32> { %0 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<8x4x16x16xf32>, tensor<16x4x3x3xf32>) outs(%arg2: tensor<8x16x14x14xf32>) -> tensor<8x16x14x14xf32> return %0 : tensor<8x16x14x14xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nchw_fchw"]} in %arg1 : (!transform.any_op) -> !transform.any_op %1:2 = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // ----- // CHECK: IR printer: tensor_producer // CHECK-NEXT: %[[COL_TENSOR:.+]] = linalg.generic // CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1, d2)>] // CHECK: ^bb0(%[[OUT_DATA:.+]]: f32) // Collapsed indices. // CHECK: %[[BINDEX:.+]] = linalg.index 0 : index // CHECK: %[[MINDEX:.+]] = linalg.index 1 : index // CHECK: %[[KINDEX:.+]] = linalg.index 2 : index // Compute input channel/convolved indices. // CHECK: %[[ICINDEX:.+]] = affine.apply affine_map<(d0) -> (d0 mod 4)>(%[[KINDEX]]) // CHECK: %[[CONVH:.+]] = affine.apply affine_map<(d0, d1) -> (d0 floordiv 14 + d1 floordiv 12)>(%[[MINDEX]], %[[KINDEX]]) // CHECK: %[[CONVW:.+]] = affine.apply affine_map<(d0, d1) -> (d0 mod 14 + (d1 mod 12) floordiv 4)>(%[[MINDEX]], %[[KINDEX]]) // Extract from the input tensor. // CHECK: %[[EXTRACTED_INPUT:.+]] = tensor.extract // CHECK-SAME: %{{.+}}{{\[}}%[[BINDEX]], %[[CONVH]], %[[CONVW]], %[[ICINDEX]]] : tensor<1x16x16x4xf32> // CHECK: linalg.yield %[[EXTRACTED_INPUT]] : f32 // CHECK: IR printer: transformed // CHECK: tensor.expand_shape %{{[^ ]*}} {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xf32> into tensor<1x14x14x16xf32> // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_2d_nhwc_fhwc // CHECK-SAME: %[[INPUT:.+]]: tensor<1x16x16x4xf32> // CHECK-SAME: %[[FILTER:.+]]: tensor<16x3x3x4xf32> // CHECK-SAME: %[[OUTPUT:.+]]: tensor<1x14x14x16xf32> // CHECK-DAG: %[[COLLAPSED_FILTER:.+]] = tensor.collapse_shape %[[FILTER]] {{\[}}[0], [1, 2, 3]] : tensor<16x3x3x4xf32> into tensor<16x36xf32> // CHECK-DAG: %[[COLLAPSED_OUT:.+]] = tensor.collapse_shape %[[OUTPUT]] {{\[}}[0], [1, 2], [3]] : tensor<1x14x14x16xf32> into tensor<1x196x16xf32> // CHECK: %[[INIT_COL_TENSOR:.+]] = tensor.empty() : tensor<1x196x36xf32> // CHECK: %[[COL_TENSOR:.+]] = linalg.generic // CHECK-SAME: #[[MAP0]] // CHECK: ^bb0(%[[OUT_DATA:.+]]: f32) // CHECK: linalg.yield %{{.+}} : f32 // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic // CHECK-SAME: #[[MAP1]] // CHECK-SAME: #[[MAP2]] // CHECK-SAME: #[[MAP3]] // CHECK-SAME: ins(%[[COL_TENSOR]], %[[COLLAPSED_FILTER]] : tensor<1x196x36xf32>, tensor<16x36xf32>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xf32>) // CHECK: ^bb0(%[[ARG0:.+]]: f32, %[[ARG1:.+]]: f32, %[[ARG2:.+]]: f32) // CHECK: %[[MUL:.+]] = arith.mulf %[[ARG0]], %[[ARG1]] : f32 // CHECK: %[[ADD:.+]] = arith.addf %[[MUL]], %[[ARG2]] : f32 // CHECK: linalg.yield %[[ADD]] : f32 // CHECK: } -> tensor<1x196x16xf32> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xf32> into tensor<1x14x14x16xf32> // CHECK: return %[[RESULT]] func.func @conv_2d_nhwc_fhwc(%arg0: tensor<1x16x16x4xf32>, %arg1: tensor<16x3x3x4xf32>, %arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> { %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xf32>, tensor<16x3x3x4xf32>) outs(%arg2: tensor<1x14x14x16xf32>) -> tensor<1x14x14x16xf32> return %0 : tensor<1x14x14x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_fhwc"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } } // ----- // Check for signed extend when the input type is smaller than the accumulator type. // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_integer_extend // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic {indexing_maps = [#[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<1x196x36xi8>, tensor<36x16xi8>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xi32>) // CHECK: ^bb0(%[[ARG0:.+]]: i8, %[[ARG1:.+]]: i8, %[[ARG2:.+]]: i32) // CHECK: %[[EXT0:.+]] = arith.extsi %[[ARG0]] : i8 to i32 // CHECK: %[[EXT1:.+]] = arith.extsi %[[ARG1]] : i8 to i32 // CHECK: %[[MUL:.+]] = arith.muli %[[EXT0]], %[[EXT1]] : i32 // CHECK: %[[ADD:.+]] = arith.addi %[[MUL]], %[[ARG2]] : i32 // CHECK: linalg.yield %[[ADD]] : i32 // CHECK: } -> tensor<1x196x16xi32> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xi32> into tensor<1x14x14x16xi32> // CHECK: return %[[RESULT]] func.func @conv_integer_extend(%arg0: tensor<1x16x16x4xi8>, %arg1: tensor<3x3x4x16xi8>, %arg2: tensor<1x14x14x16xi32>) -> tensor<1x14x14x16xi32> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xi8>, tensor<3x3x4x16xi8>) outs(%arg2: tensor<1x14x14x16xi32>) -> tensor<1x14x14x16xi32> return %0 : tensor<1x14x14x16xi32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } } // ----- // Check for compatible complex case. // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_complex // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic {indexing_maps = [#[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<1x196x36xcomplex>, tensor<36x16xcomplex>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xcomplex>) // CHECK: ^bb0(%[[ARG0:.+]]: complex, %[[ARG1:.+]]: complex, %[[ARG2:.+]]: complex) // CHECK: %[[MUL:.+]] = complex.mul %[[ARG0]], %[[ARG1]] : complex // CHECK: %[[ADD:.+]] = complex.add %[[MUL]], %[[ARG2]] : complex // CHECK: linalg.yield %[[ADD]] : complex // CHECK: } -> tensor<1x196x16xcomplex> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xcomplex> into tensor<1x14x14x16xcomplex> // CHECK: return %[[RESULT]] func.func @conv_complex(%arg0: tensor<1x16x16x4xcomplex>, %arg1: tensor<3x3x4x16xcomplex>, %arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xcomplex>, tensor<3x3x4x16xcomplex>) outs(%arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> return %0 : tensor<1x14x14x16xcomplex> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } } // ----- // Check for compatible complex extended case. // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_complex_extended // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic {indexing_maps = [#[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<1x196x36xcomplex>, tensor<36x16xcomplex>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xcomplex>) // CHECK: ^bb0(%[[ARG0:.+]]: complex, %[[ARG1:.+]]: complex, %[[ARG2:.+]]: complex) // CHECK: %[[REAL:.+]] = complex.re %[[ARG1]] : complex // CHECK: %[[IMAG:.+]] = complex.im %[[ARG1]] : complex // CHECK: %[[REEXT:.+]] = arith.extf %[[REAL]] : f16 to f32 // CHECK: %[[IMEXT:.+]] = arith.extf %[[IMAG]] : f16 to f32 // CHECK: %[[COMPLEX:.+]] = complex.create %[[REEXT]], %[[IMEXT]] : complex // CHECK: %[[MUL:.+]] = complex.mul %[[ARG0]], %[[COMPLEX]] : complex // CHECK: %[[ADD:.+]] = complex.add %[[MUL]], %[[ARG2]] : complex // CHECK: linalg.yield %[[ADD]] : complex // CHECK: } -> tensor<1x196x16xcomplex> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xcomplex> into tensor<1x14x14x16xcomplex> // CHECK: return %[[RESULT]] func.func @conv_complex_extended(%arg0: tensor<1x16x16x4xcomplex>, %arg1: tensor<3x3x4x16xcomplex>, %arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xcomplex>, tensor<3x3x4x16xcomplex>) outs(%arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> return %0 : tensor<1x14x14x16xcomplex> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } } // ----- // Check for compatible complex extended case. // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d2)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK: @conv_complex_f16_extended // CHECK: %[[MATMUL_RESULT:.+]] = linalg.generic {indexing_maps = [#[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%{{.*}}, %{{.*}} : tensor<1x196x36xcomplex>, tensor<36x16xf16>) // CHECK-SAME: outs(%[[COLLAPSED_OUT]] : tensor<1x196x16xcomplex>) // CHECK: ^bb0(%[[ARG0:.+]]: complex, %[[ARG1:.+]]: f16, %[[ARG2:.+]]: complex) // CHECK: %[[EXT:.+]] = arith.extf %[[ARG1]] : f16 to f32 // CHECK: %[[ZERO:.+]] = arith.constant 0.000000e+00 : f32 // CHECK: %[[COMPLEX:.+]] = complex.create %[[EXT]], %[[ZERO]] // CHECK: %[[MUL:.+]] = complex.mul %[[ARG0]], %[[COMPLEX]] : complex // CHECK: %[[ADD:.+]] = complex.add %[[MUL]], %[[ARG2]] : complex // CHECK: linalg.yield %[[ADD]] : complex // CHECK: } -> tensor<1x196x16xcomplex> // CHECK: %[[RESULT:.+]] = tensor.expand_shape %[[MATMUL_RESULT]] {{\[}}[0], [1, 2], [3]] : tensor<1x196x16xcomplex> into tensor<1x14x14x16xcomplex> // CHECK: return %[[RESULT]] func.func @conv_complex_f16_extended(%arg0: tensor<1x16x16x4xcomplex>, %arg1: tensor<3x3x4x16xf16>, %arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> { %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%arg0, %arg1: tensor<1x16x16x4xcomplex>, tensor<3x3x4x16xf16>) outs(%arg2: tensor<1x14x14x16xcomplex>) -> tensor<1x14x14x16xcomplex> return %0 : tensor<1x14x14x16xcomplex> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { %0 = transform.structured.match ops{["linalg.conv_2d_nhwc_hwcf"]} in %arg1 : (!transform.any_op) -> !transform.any_op %img2col_tensor_producer, %transformed = transform.structured.convert_conv2d_to_img2col %0 : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.print %img2col_tensor_producer {name = "tensor_producer"}: !transform.any_op transform.print %transformed {name = "transformed"}: !transform.any_op transform.yield } }