// RUN: mlir-opt %s -split-input-file -allow-unregistered-dialect -pass-pipeline="builtin.module(func.func(linalg-detensorize))" | FileCheck %s #map0 = affine_map<() -> ()> #attrs = { indexing_maps = [#map0, #map0, #map0], iterator_types = [] } func.func @main() -> (tensor) attributes {} { %c0 = arith.constant 0 : i32 %0 = tensor.from_elements %c0 : tensor %c10 = arith.constant 10 : i32 %1 = tensor.from_elements %c10 : tensor cf.br ^bb1(%0 : tensor) ^bb1(%2: tensor): // 2 preds: ^bb0, ^bb2 %3 = tensor.empty() : tensor %4 = linalg.generic #attrs ins(%2, %1 : tensor, tensor) outs(%3 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i1): %8 = arith.cmpi slt, %arg0, %arg1 : i32 linalg.yield %8 : i1 } -> tensor %5 = tensor.extract %4[] : tensor cf.cond_br %5, ^bb2(%2 : tensor), ^bb3(%2 : tensor) ^bb2(%6: tensor): // pred: ^bb1 %7 = tensor.empty() : tensor %8 = linalg.generic #attrs ins(%6, %6 : tensor, tensor) outs(%7 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): %9 = arith.addi %arg0, %arg1 : i32 linalg.yield %9 : i32 } -> tensor cf.br ^bb3(%8 : tensor) ^bb3(%10: tensor): // pred: ^bb1 return %10 : tensor } // CHECK-LABEL: func @main() // CHECK-DAG: arith.constant 0 // CHECK-DAG: arith.constant 10 // CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32) // CHECK-NEXT: ^[[bb1]](%{{.*}}: i32): // CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}} // CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32) // CHECK-NEXT: ^[[bb2]](%{{.*}}: i32) // CHECK-NEXT: arith.addi %{{.*}}, %{{.*}} // CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32) // CHECK-NEXT: ^[[bb3]](%{{.*}}: i32) // CHECK-NEXT: tensor.from_elements %{{.*}} : tensor // CHECK-NEXT: return %{{.*}} // CHECK-NEXT: } // ----- // Similar to the above test with one change: one of the block after the // if-condition passes/forwards its tensor argument to another block. #map0 = affine_map<() -> ()> #attrs = { indexing_maps = [#map0, #map0, #map0], iterator_types = [] } func.func @main() -> (tensor) attributes {} { %c0 = arith.constant 0 : i32 %0 = tensor.from_elements %c0 : tensor %c10 = arith.constant 10 : i32 %1 = tensor.from_elements %c10 : tensor cf.br ^bb1(%0 : tensor) ^bb1(%2: tensor): // 2 preds: ^bb0, ^bb2 %3 = tensor.empty() : tensor %4 = linalg.generic #attrs ins(%2, %1 : tensor, tensor) outs(%3 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i1): %8 = arith.cmpi slt, %arg0, %arg1 : i32 linalg.yield %8 : i1 } -> tensor %5 = tensor.extract %4[] : tensor cf.cond_br %5, ^bb2(%2 : tensor), ^bb3(%2 : tensor) ^bb2(%6: tensor): // pred: ^bb1 %7 = tensor.empty() : tensor %8 = linalg.generic #attrs ins(%6, %6 : tensor, tensor) outs(%7 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): %9 = arith.addi %arg0, %arg1 : i32 linalg.yield %9 : i32 } -> tensor cf.br ^bb3(%8 : tensor) ^bb3(%10: tensor): // pred: ^bb1 cf.br ^bb4(%10 : tensor) ^bb4(%11: tensor): // pred: ^bb1 return %11 : tensor } // CHECK-LABEL: func @main() // CHECK-DAG: arith.constant 0 // CHECK-DAG: arith.constant 10 // CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32) // CHECK-NEXT: ^[[bb1]](%{{.*}}: i32): // CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}} // CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb3(%{{.*}} : i32) // CHECK-NEXT: ^[[bb2]](%{{.*}}: i32) // CHECK-NEXT: arith.addi %{{.*}}, %{{.*}} // CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32) // CHECK-NEXT: ^[[bb3]](%{{.*}}: i32) // CHECK-NEXT: cf.br ^[[bb4:.*]](%{{.*}} : i32) // CHECK-NEXT: ^[[bb4]](%{{.*}}: i32) // CHECK-NEXT: tensor.from_elements %{{.*}} : tensor // CHECK-NEXT: return %{{.*}} // CHECK-NEXT: } // ----- #map0 = affine_map<() -> ()> #attrs = { indexing_maps = [#map0, #map0, #map0], iterator_types = [] } func.func @main() -> (tensor) attributes {} { %c0 = arith.constant 0 : i32 %0 = tensor.from_elements %c0 : tensor %c10 = arith.constant 10 : i32 %1 = tensor.from_elements %c10 : tensor cf.br ^bb1(%0 : tensor) ^bb1(%2: tensor): // 2 preds: ^bb0, ^bb2 %3 = tensor.empty() : tensor %4 = linalg.generic #attrs ins(%2, %1 : tensor, tensor) outs(%3 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i1): %8 = arith.cmpi slt, %arg0, %arg1 : i32 linalg.yield %8 : i1 } -> tensor %5 = tensor.extract %4[] : tensor // This cf.cond_br intentionally has bb2 as it's target for both branches. This // is to make sure that the "forward phase" of the cost-model correctly adds // the users of a block argument (in this case bb2's argument) to the work // list. cf.cond_br %5, ^bb2(%2 : tensor), ^bb2(%2 : tensor) ^bb2(%6: tensor): // pred: ^bb1 %12 = tensor.from_elements %c10 : tensor %7 = tensor.empty() : tensor %8 = linalg.generic #attrs ins(%6, %12 : tensor, tensor) outs(%7 : tensor) { ^bb0(%arg0: i32, %arg1: i32, %arg2: i32): %9 = arith.addi %arg0, %arg1 : i32 linalg.yield %9 : i32 } -> tensor cf.br ^bb3(%8 : tensor) ^bb3(%10: tensor): // pred: ^bb1 return %10 : tensor } // CHECK-LABEL: func @main() // CHECK-DAG: arith.constant 0 // CHECK-DAG: arith.constant 10 // CHECK: cf.br ^[[bb1:.*]](%{{.*}}: i32) // CHECK-NEXT: ^[[bb1]](%{{.*}}: i32): // CHECK-NEXT: arith.cmpi slt, %{{.*}}, %{{.*}} // CHECK-NEXT: cf.cond_br %{{.*}}, ^[[bb2:.*]](%{{.*}} : i32), ^bb2(%{{.*}} : i32) // CHECK-NEXT: ^[[bb2]](%{{.*}}: i32) // CHECK-NEXT: arith.addi %{{.*}}, %{{.*}} // CHECK-NEXT: cf.br ^[[bb3:.*]](%{{.*}} : i32) // CHECK-NEXT: ^[[bb3]](%{{.*}}: i32) // CHECK-NEXT: tensor.from_elements %{{.*}} : tensor // CHECK-NEXT: return %{{.*}} // CHECK-NEXT: }