// RUN: mlir-opt %s -test-linalg-elementwise-fusion-patterns=fuse-with-reshape-by-expansion -split-input-file | FileCheck %s #map0 = affine_map<(d0, d1, d2) -> (d2, d0, d1)> #map1 = affine_map<(d0, d1, d2) -> (d1, d2, d0)> #map2 = affine_map<(d0, d1, d2) -> ()> func.func @generic_op_reshape_producer_fusion(%arg0 : tensor, %arg1 : tensor, %arg2 : f32) -> tensor { %0 = tensor.collapse_shape %arg0 [[0], [1, 2], [3]] : tensor into tensor %1 = linalg.generic { indexing_maps = [#map0, #map1, #map2, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0, %arg1, %arg2 : tensor, tensor, f32) outs(%arg1 : tensor) { ^bb0(%arg3: f32, %arg4: f32, %arg5: f32, %s: f32): %1 = arith.mulf %arg3, %arg4 : f32 %2 = arith.addf %1, %arg5 : f32 linalg.yield %2 : f32 } -> tensor return %1 : tensor } // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)> // CHECK-DAG: #[[MAP6:.+]] = affine_map<(d0, d1, d2, d3) -> (d2, d3, d0, d1)> // CHECK-DAG: #[[MAP7:.+]] = affine_map<(d0, d1, d2, d3) -> ()> // CHECK: func @generic_op_reshape_producer_fusion // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: f32 // CHECK: %[[T1:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0], [1], [2, 3] // CHECK: %[[T2:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0], [1], [2, 3] // CHECK: %[[T3:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP5]], #[[MAP6]], #[[MAP7]], #[[MAP6]]] // CHECK-SAME: ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[ARG0]], %[[T1]], %[[ARG2]] : tensor, tensor, f32) // CHECK-SAME: outs(%[[T2]] : tensor) // CHECK: %[[T4:.+]] = tensor.collapse_shape %[[T3]] // CHECK-SAME: [0], [1], [2, 3] // CHECK-SAME: tensor into tensor // CHECK: return %[[T4]] // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> ()> func.func @generic_op_reshape_consumer_fusion(%arg0 : tensor, %arg1 : tensor, %arg2 : f32) -> tensor { %0 = linalg.generic { indexing_maps = [#map0, #map0, #map1, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1, %arg2 : tensor, tensor, f32) outs(%arg0 : tensor) { ^bb0(%arg3: f32, %arg4: f32, %arg5: f32, %s: f32): %1 = arith.mulf %arg3, %arg4 : f32 %2 = arith.addf %1, %arg5 : f32 linalg.yield %2 : f32 } -> tensor %1 = tensor.expand_shape %0 [[0], [1, 2, 3]] : tensor into tensor return %1 : tensor } // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3) -> ()> // CHECK: func @generic_op_reshape_consumer_fusion // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: f32 // CHECK: %[[T0:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0], [1, 2, 3] // CHECK-SAME: tensor into tensor // CHECK: %[[T1:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0], [1, 2, 3] // CHECK: %[[T2:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0], [1, 2, 3] // CHECK-SAME: tensor into tensor // CHECK: %[[T3:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP3]], #[[MAP2]]] // CHECK-SAME: ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[T0]], %[[T1]], %[[ARG2]] : tensor, tensor, f32) // CHECK-SAME: outs(%[[T2]] : tensor) // CHECK: return %[[T3]] : tensor // ----- func.func @reshape_as_consumer_permutation (%a : tensor, %b : tensor) -> tensor { %c = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d2, d1)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%a, %b : tensor, tensor) outs(%a : tensor) { ^bb0(%arg0 : f32, %arg1: f32, %s: f32): %1 = arith.addf %arg0, %arg1 : f32 linalg.yield %1 : f32 } -> tensor %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]] : tensor into tensor return %d : tensor } // CHECK-DAG: #[[MAP8:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d0, d1, d5)> // CHECK-DAG: #[[MAP9:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d5)> // CHECK-DAG: #[[MAP10:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d5, d2, d3, d4)> // CHECK: func @reshape_as_consumer_permutation // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[T0:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1, 2], [3, 4], [5] // CHECK-SAME: tensor into tensor<3x4x?x?x2x?xf32> // CHECK: %[[T1:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0, 1, 2], [3] // CHECK-SAME: tensor into tensor<3x4x?x?xf32> // CHECK: %[[T2:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1], [2], [3, 4, 5]] // CHECK-SAME: tensor into tensor // CHECK: %[[T3:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP8]], #[[MAP9]], #[[MAP10]]] // CHECK-SAME: ["parallel", "parallel", "parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[T0]], %[[T1]] : tensor<3x4x?x?x2x?xf32>, tensor<3x4x?x?xf32>) // CHECK-SAME: outs(%[[T2]] : tensor) // CHECK: return %[[T3]] : tensor // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1, d2) -> (d0, d1)> #map2 = affine_map<(d0, d1, d2) -> (d2)> func.func @generic_op_reshape_consumer_static(%arg0: tensor<264x4xf32>) -> tensor<8x33x4xf32> { %cst = arith.constant dense<2.000000e+00> : tensor<264x4xf32> %0 = tensor.empty() : tensor<264x4xf32> %1 = linalg.generic { indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %cst : tensor<264x4xf32>, tensor<264x4xf32>) outs(%0 : tensor<264x4xf32>) { ^bb0(%arg1: f32, %arg2: f32, %s: f32): %2 = arith.mulf %arg1, %arg2 : f32 linalg.yield %2 : f32 } -> tensor<264x4xf32> %2 = tensor.expand_shape %1 [[0, 1], [2]] : tensor<264x4xf32> into tensor<8x33x4xf32> return %2 : tensor<8x33x4xf32> } // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)> // CHECK: func @generic_op_reshape_consumer_static // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor<264x4xf32> // CHECK-DAG: %[[CST:.+]] = arith.constant // CHECK-SAME: : tensor<8x33x4xf32> // CHECK-DAG: %[[INIT:.+]] = tensor.empty() // CHECK: %[[T0:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1], [2] // CHECK-SAME: tensor<264x4xf32> into tensor<8x33x4xf32> // CHECK: %[[T1:.+]] = tensor.expand_shape %[[INIT]] // CHECK-SAME: [0, 1], [2] // CHECK-SAME: : tensor<264x4xf32> into tensor<8x33x4xf32> // CHECK: %[[T2:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP2]], #[[MAP2]], #[[MAP2]]] // CHECK-SAME: ["parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[T0]], %[[CST]] : // CHECK-SAME: outs(%[[T1]] : tensor<8x33x4xf32>) // CHECK: return %[[T2]] : tensor<8x33x4xf32> // ----- #map0 = affine_map<(d0, d1, d2) -> (d2, d0, d1)> #map1 = affine_map<(d0, d1, d2) -> (d1, d2, d0)> func.func @indexed_consumer_reshape_producer_fusion(%arg0 : tensor, %arg1 : tensor) -> tensor { %0 = tensor.collapse_shape %arg0 [[0], [1, 2], [3]]: tensor into tensor %1 = linalg.generic { indexing_maps = [#map0, #map1, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0, %arg1 : tensor, tensor) outs(%0 : tensor) { ^bb0(%arg3: i32, %arg4: i32, %s: i32): %idx0 = linalg.index 0 : index %idx1 = linalg.index 1 : index %idx2 = linalg.index 2 : index %1 = arith.muli %arg3, %arg4 : i32 %2 = arith.index_cast %idx0 : index to i32 %3 = arith.addi %1, %2 : i32 %4 = arith.index_cast %idx1 : index to i32 %5 = arith.addi %3, %4 : i32 %6 = arith.index_cast %idx2 : index to i32 %7 = arith.addi %5, %6 : i32 linalg.yield %7 : i32 } -> tensor return %1 : tensor } // Only check the body in the indexed version of the test. // CHECK: #[[MAP:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 4)> // CHECK: func @indexed_consumer_reshape_producer_fusion // CHECK: linalg.generic // CHECK: ^{{.*}}( // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: i32, %[[ARG4:[a-zA-Z0-9_]+]]: i32, // CHECK-SAME: %[[ARG8:[a-zA-Z0-9_]+]]: i32) // CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index // CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index // CHECK-DAG: %[[IDX2:.+]] = linalg.index 2 : index // CHECK-DAG: %[[IDX3:.+]] = linalg.index 3 : index // CHECK-DAG: %[[T3:.+]] = affine.apply #[[MAP]](%[[IDX1]], %[[IDX0]]) // CHECK: %[[T4:.+]] = arith.muli %[[ARG3]], %[[ARG4]] // CHECK: %[[T5:.+]] = arith.index_cast %[[T3]] // CHECK: %[[T6:.+]] = arith.addi %[[T4]], %[[T5]] // CHECK: %[[T7:.+]] = arith.index_cast %[[IDX2]] // CHECK: %[[T8:.+]] = arith.addi %[[T6]], %[[T7]] // CHECK: %[[T9:.+]] = arith.index_cast %[[IDX3]] // CHECK: %[[T10:.+]] = arith.addi %[[T8]], %[[T9]] // CHECK: linalg.yield %[[T10]] // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> func.func @indexed_producer_reshape_consumer_fusion(%arg0 : tensor, %arg1 : tensor) -> tensor { %0 = linalg.generic { indexing_maps = [#map0, #map0, #map0], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor, tensor) outs(%arg0 : tensor) { ^bb0(%arg3: i32, %arg4: i32, %s: i32): %idx0 = linalg.index 0 : index %idx1 = linalg.index 1 : index %1 = arith.muli %arg3, %arg4 : i32 %2 = arith.index_cast %idx0 : index to i32 %3 = arith.addi %1, %2 : i32 %4 = arith.index_cast %idx1 : index to i32 %5 = arith.addi %3, %4 : i32 linalg.yield %5 : i32 } -> tensor %1 = tensor.expand_shape %0 [[0], [1, 2, 3]] : tensor into tensor return %1 : tensor } // Only check the body in the indexed version of the test. // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 4)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 5)> // CHECK: func @indexed_producer_reshape_consumer_fusion // CHECK: linalg.generic // CHECK: ^{{.*}}( // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: i32, %[[ARG4:[a-zA-Z0-9_]+]]: i32, // CHECK-SAME: %[[ARG5:[a-zA-Z0-9_]+]]: i32) // CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index // CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index // CHECK-DAG: %[[IDX2:.+]] = linalg.index 2 : index // CHECK-DAG: %[[IDX3:.+]] = linalg.index 3 : index // CHECK: %[[T1:.+]] = affine.apply #[[MAP1]](%[[IDX2]], %[[IDX1]]) // CHECK: %[[T2:.+]] = affine.apply #[[MAP2]](%[[IDX3]], %[[T1]]) // CHECK: %[[T4:.+]] = arith.muli %[[ARG3]], %[[ARG4]] // CHECK: %[[T5:.+]] = arith.index_cast %[[IDX0]] // CHECK: %[[T6:.+]] = arith.addi %[[T4]], %[[T5]] // CHECK: %[[T7:.+]] = arith.index_cast %[[T2]] // CHECK: %[[T8:.+]] = arith.addi %[[T6]], %[[T7]] // CHECK: linalg.yield %[[T8]] // ----- func.func @reshape_as_consumer_permutation (%a : tensor<210x6x4xi32>, %b : tensor<210x4xi32>) -> tensor<2x3x4x5x6x7xi32> { %shape = tensor.empty() : tensor<6x4x210xi32> %c = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d2, d1)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%a, %b : tensor<210x6x4xi32>, tensor<210x4xi32>) outs(%shape : tensor<6x4x210xi32>) { ^bb0(%arg3 : i32, %arg4: i32, %s: i32): %idx0 = linalg.index 0 : index %idx1 = linalg.index 1 : index %idx2 = linalg.index 2 : index %1 = arith.addi %arg3, %arg4 : i32 %2 = arith.index_cast %idx0 : index to i32 %3 = arith.addi %1, %2 : i32 %4 = arith.index_cast %idx1 : index to i32 %5 = arith.addi %3, %4 : i32 %6 = arith.index_cast %idx2 : index to i32 %7 = arith.addi %5, %6 : i32 linalg.yield %7 : i32 } -> tensor<6x4x210xi32> %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]] : tensor<6x4x210xi32> into tensor<2x3x4x5x6x7xi32> return %d : tensor<2x3x4x5x6x7xi32> } // ----- // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d0, d1, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d5)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d5, d2, d3, d4)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 3)> // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 6)> // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 7)> // CHECK: func @reshape_as_consumer_permutation // CHECK-SAME: %[[ARG0:.+]]: tensor<210x6x4xi32> // CHECK-SAME: %[[ARG1:.+]]: tensor<210x4xi32> // CHECK-DAG: %[[INIT:.+]] = tensor.empty() // CHECK-DAG: %[[T1:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1, 2], [3, 4], [5] // CHECK-DAG: %[[T2:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0, 1, 2], [3] // CHECK-DAG: %[[T3:.+]] = tensor.expand_shape %[[INIT]] // CHECK-SAME: [0, 1], [2], [3, 4, 5] // CHECK-SAME: : tensor<6x4x210xi32> into tensor<2x3x4x5x6x7xi32> // CHECK: %[[T4:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] // CHECK-SAME: ins(%[[T1]], %[[T2]] : tensor<5x6x7x2x3x4xi32>, tensor<5x6x7x4xi32>) // CHECK-SAME: outs(%[[T3]] : tensor<2x3x4x5x6x7xi32>) // CHECK: ^{{.+}}( // CHECK-SAME: %[[ARG8:[a-zA-Z0-9_]+]]: i32, %[[ARG9:[a-zA-Z0-9_]+]]: i32, // CHECK-SAME: %[[ARG10:[a-zA-Z0-9_]+]]: i32) // CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index // CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index // CHECK-DAG: %[[IDX2:.+]] = linalg.index 2 : index // CHECK-DAG: %[[IDX3:.+]] = linalg.index 3 : index // CHECK-DAG: %[[IDX4:.+]] = linalg.index 4 : index // CHECK-DAG: %[[IDX5:.+]] = linalg.index 5 : index // CHECK-DAG: %[[T5:.+]] = affine.apply #[[MAP3]](%[[IDX1]], %[[IDX0]]) // CHECK-DAG: %[[T6:.+]] = affine.apply #[[MAP4]](%[[IDX3]], %[[IDX2]]) // CHECK-DAG: %[[T7:.+]] = affine.apply #[[MAP5]](%[[IDX4]], %[[T6]]) // CHECK-DAG: %[[T8:.+]] = arith.addi %[[ARG8]], %[[ARG9]] // CHECK: %[[T9:.+]] = arith.index_cast %[[T5]] // CHECK: %[[T10:.+]] = arith.addi %[[T8]], %[[T9]] // CHECK: %[[T11:.+]] = arith.index_cast %[[T7]] // CHECK: %[[T12:.+]] = arith.addi %[[T10]], %[[T11]] // CHECK: %[[T13:.+]] = arith.index_cast %[[IDX5]] // CHECK: %[[T14:.+]] = arith.addi %[[T12]], %[[T13]] // ----- func.func @reshape_as_producer_projected_permutation( %arg0 : tensor<33x8x?xi32>, %shape : tensor<264x?x4xi32>) -> tensor<264x?x4xi32> { %0 = tensor.collapse_shape %arg0 [[0, 1], [2]] : tensor<33x8x?xi32> into tensor<264x?xi32> %1 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<264x?xi32>) outs(%shape : tensor<264x?x4xi32>) { ^bb0(%arg1: i32, %s: i32): %idx0 = linalg.index 0 : index %idx1 = linalg.index 1 : index %idx2 = linalg.index 2 : index %2 = arith.index_cast %idx0 : index to i32 %3 = arith.addi %arg1, %2 : i32 %4 = arith.index_cast %idx1 : index to i32 %5 = arith.addi %3, %4 : i32 %6 = arith.index_cast %idx2 : index to i32 %7 = arith.addi %5, %6 : i32 linalg.yield %7 : i32 } -> tensor<264x?x4xi32> return %1 : tensor<264x?x4xi32> } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1) -> (d0 + d1 * 8)> // CHECK: @reshape_as_producer_projected_permutation // CHECK-SAME: %[[ARG0:.+]]: tensor<33x8x?xi32> // CHECK: %[[RES:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]]] // CHECK-SAME: ins(%[[ARG0]] : tensor<33x8x?xi32>) // CHECK: ^{{.+}}( // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: i32, // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: i32) // CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index // CHECK-DAG: %[[IDX1:.+]] = linalg.index 1 : index // CHECK-DAG: %[[IDX2:.+]] = linalg.index 2 : index // CHECK-DAG: %[[IDX3:.+]] = linalg.index 3 : index // CHECK-DAG: %[[T0:.+]] = affine.apply #[[MAP2]](%[[IDX1]], %[[IDX0]]) // CHECK: %[[T1:.+]] = arith.index_cast %[[T0]] : index to i32 // CHECK: %[[T2:.+]] = arith.addi %[[ARG1]], %[[T1]] : i32 // CHECK: %[[T3:.+]] = arith.index_cast %[[IDX2]] : index to i32 // CHECK: %[[T4:.+]] = arith.addi %[[T2]], %[[T3]] : i32 // CHECK: %[[T5:.+]] = arith.index_cast %[[IDX3]] : index to i32 // CHECK: %[[T6:.+]] = arith.addi %[[T4]], %[[T5]] : i32 // CHECK: linalg.yield %[[T6]] : i32 // CHECK: %[[RES2:.+]] = tensor.collapse_shape %[[RES]] // CHECK-SAME: [0, 1], [2], [3] // CHECK-SAME: : tensor<33x8x?x4xi32> into tensor<264x?x4xi32> // CHECK: return %[[RES2]] : tensor<264x?x4xi32> // ----- #map0 = affine_map<(d0, d1) -> (d0, d1)> #map1 = affine_map<(d0, d1) -> (d1, d0)> func.func @generic_op_reshape_consumer_fusion_projected(%arg0 : tensor, %arg1 : tensor) -> tensor { %0 = linalg.generic { indexing_maps = [#map0, #map0, #map1], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor, tensor) outs(%arg0 : tensor) { ^bb0(%arg3: f32, %arg4: f32, %s: f32): %1 = arith.mulf %arg3, %arg4 : f32 linalg.yield %1 : f32 } -> tensor %1 = tensor.expand_shape %0 [[0], [1, 2, 3]] : tensor into tensor return %1 : tensor } // CHECK-DAG: #[[MAP4:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK-DAG: #[[MAP5:.+]] = affine_map<(d0, d1, d2, d3) -> (d3, d0, d1, d2)> // CHECK: func @generic_op_reshape_consumer_fusion_projected // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[T0:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0, 1, 2], [3] // CHECK-SAME: tensor into tensor // CHECK: %[[T1:.+]] = tensor.expand_shape %[[ARG1]] // CHECK-SAME: [0, 1, 2], [3] // CHECK-SAME: tensor into tensor // CHECK: %[[T2:.+]] = tensor.expand_shape %[[ARG0]] // CHECK-SAME: [0], [1, 2, 3] // CHECK-SAME: tensor into tensor // CHECK: %[[T3:.+]] = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP4]], #[[MAP4]], #[[MAP5]]] // CHECK-SAME: ["parallel", "parallel", "parallel", "parallel"] // CHECK-SAME: ins(%[[T0]], %[[T1]] : tensor, tensor) // CHECK-SAME: outs(%[[T2]] : tensor) // CHECK: return %[[T3]] : tensor // ----- func.func @no_fuse_dynamic_dims(%arg0: tensor) -> tensor { %c0 = arith.constant 0 : index %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor into tensor %1 = tensor.dim %0, %c0 : tensor %2 = tensor.empty(%1) : tensor %3 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%0 : tensor) outs(%2 : tensor) { ^bb0(%arg1 : f32, %arg2: f32): %4 = arith.addf %arg1, %arg1 : f32 linalg.yield %4 : f32 } -> tensor return %3 : tensor } // CHECK: func @no_fuse_dynamic_dims // CHECK-SAME: %[[ARG0:.+]]: tensor // CHECK: %[[RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[RESHAPE]] : tensor) // CHECK: return %[[GENERIC]] // ----- func.func @no_fuse_mismatched_dynamism(%arg0: tensor<2x1xi64>, %arg1: tensor) -> tensor<2xi64> { %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<2x1xi64> into tensor<2xi64> %1 = tensor.empty() : tensor<2xi64> %2 = linalg.generic {indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%0, %arg1 : tensor<2xi64>, tensor) outs(%1 : tensor<2xi64>) { ^bb0(%arg4: i64, %arg5: i64, %arg6: i64): %3 = arith.addi %arg4, %arg5 : i64 linalg.yield %3 : i64 } -> tensor<2xi64> return %2 : tensor<2xi64> } // CHECK: func @no_fuse_mismatched_dynamism // CHECK-SAME: %[[ARG0:.+]]: tensor<2x1xi64> // CHECK-SAME: %[[ARG1:.+]]: tensor // CHECK: %[[RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[RESHAPE]], %[[ARG1]] : tensor<2xi64>, tensor) // CHECK: return %[[GENERIC]] // ----- func.func @reshape_as_consumer_permutation_with_multiple_results (%a : tensor, %b : tensor) -> (tensor, tensor) { %c:2 = linalg.generic { indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>, affine_map<(d0, d1, d2) -> (d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d2, d1)>, affine_map<(d0, d1, d2) -> (d2, d0, d1)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%a, %b : tensor, tensor) outs(%a, %a : tensor, tensor) { ^bb0(%arg0 : f32, %arg1: f32, %s: f32, %t : f32): %1 = arith.addf %arg0, %arg1 : f32 linalg.yield %1, %1 : f32, f32 } -> (tensor, tensor) %d = tensor.expand_shape %c#0 [[0, 1], [2], [3, 4, 5]] : tensor into tensor %e = tensor.expand_shape %c#1 [[0], [1, 2], [3, 4, 5]] : tensor into tensor return %d, %e : tensor, tensor } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d0, d1, d5)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d2, d3, d4, d5)> // CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d5, d2, d3, d4)> // CHECK-DAG: #[[MAP3:.+]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d5, d0, d1, d2, d3, d4)> // CHECK: func @reshape_as_consumer_permutation_with_multiple_results // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor // CHECK-DAG: %[[RESHAPE0:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1, 2], [3, 4], [5]{{\]}} // CHECK-DAG: %[[RESHAPE1:.+]] = tensor.expand_shape %[[ARG1]] {{\[}}[0, 1, 2], [3]{{\]}} // CHECK-DAG: %[[RESHAPE2:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0, 1], [2], [3, 4, 5]{{\]}} // CHECK-DAG: %[[RESHAPE3:.+]] = tensor.expand_shape %[[ARG0]] {{\[}}[0], [1, 2], [3, 4, 5]{{\]}} // CHECK: %[[GENERIC:.+]]:2 = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]], #[[MAP3]]] // CHECK-SAME: ins(%[[RESHAPE0]], %[[RESHAPE1]] : // CHECK-SAME: outs(%[[RESHAPE2]], %[[RESHAPE3]] : // CHECK: return %[[GENERIC]]#0, %[[GENERIC]]#1 // ----- #map0 = affine_map<(d0, d1) -> (d1)> #map1 = affine_map<(d0, d1) -> (d0, d1)> module { func.func @multi_result_op_expansion(%arg0: tensor<512xf32>, %arg1: tensor<512xf32>, %arg2: tensor<512xf32>, %arg3: tensor<200x512xf32>) -> tensor<25x8x1x512xf32> { %0:2 = linalg.generic { indexing_maps = [#map0, #map0, #map0, #map1], iterator_types = ["parallel", "parallel"]} ins(%arg0, %arg1 : tensor<512xf32>, tensor<512xf32>) outs(%arg2, %arg3 : tensor<512xf32>, tensor<200x512xf32>) { ^bb0(%arg4: f32, %arg5: f32, %arg6: f32, %arg7: f32): %2 = arith.addf %arg4, %arg5 : f32 linalg.yield %2, %2 : f32, f32 } -> (tensor<512xf32>, tensor<200x512xf32>) %1 = tensor.expand_shape %0#1 [[0, 1, 2], [3]] : tensor<200x512xf32> into tensor<25x8x1x512xf32> return %1 : tensor<25x8x1x512xf32> } } // CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3) -> (d3)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> // CHECK: func.func @multi_result_op_expansion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor<512xf32> // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor<512xf32> // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor<512xf32> // CHECK-SAME: %[[ARG3:[a-zA-Z0-9]+]]: tensor<200x512xf32> // CHECK: %[[OUTS:.+]] = tensor.expand_shape %[[ARG3]] {{\[}}[0, 1, 2], [3]{{\]}} // CHECK: %[[GENERIC:.+]]:2 = linalg.generic // CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP0]], #[[MAP0]], #[[MAP1]]] // CHECK-SAME: ins(%[[ARG0]], %[[ARG1]] : // CHECK-SAME: outs(%[[ARG2]], %[[OUTS]] : // CHECK: return %[[GENERIC]]#1