// RUN: mlir-opt %s --transform-interpreter -canonicalize --split-input-file --verify-diagnostics | FileCheck %s func.func @simple_depth_2_unpeeled(%global: memref, %result: memref ) { %c0 = arith.constant 0 : index %c100 = arith.constant 100 : index %c4 = arith.constant 4 : index %shared = memref.alloc(%c100) : memref> %c0f = arith.constant 0.0 : f32 // Predication is not currently implemented for transfer_read/write, so this is expected to fail. // expected-note @below {{couldn't predicate}} scf.for %i = %c0 to %c100 step %c4 iter_args(%accum = %c0f) -> f32 { %mem = vector.transfer_read %global[%i], %c0f : memref, vector<4xf32> vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref> %0 = arith.addf %accum, %accum : f32 scf.yield %0 : f32 } return } !t = !transform.any_op module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) { %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t // expected-error @below {{irreversible pipelining failure}} // expected-note @below {{try setting "peel_epilogue"}} transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t transform.yield } } // ----- // Loop pipeliner is tested separately, just verify the overall shape of the IR here. func.func private @body(index, memref>) // CHECK-LABEL: @simple_depth_2_peeled // CHECK-SAME: %[[ARG:.+]]: memref func.func @simple_depth_2_peeled(%global: memref) { %c0 = arith.constant 0 : index %c100 = arith.constant 100 : index %c200 = arith.constant 200 : index %c4 = arith.constant 4 : index // CHECK: memref.alloc %shared = memref.alloc(%c200) : memref> %c0f = arith.constant 0.0 : f32 // CHECK: %[[LOADED1:.+]] = vector.transfer_read %[[ARG]] // CHECK: %[[LOADED2:.+]] = vector.transfer_read %[[ARG]] // CHECK: %[[LOOP:.+]]:2 = scf.for {{.*}} iter_args(%[[IA1:.+]] = %[[LOADED1]], %[[IA2:.+]] = %[[LOADED2]]) // CHECK: vector.transfer_write %[[IA1]] // CHECK: func.call @body // CHECK: %[[LOCAL_LOADED:.+]] = vector.transfer_read %[[ARG]] // CHECK: scf.yield %[[IA2]], %[[LOCAL_LOADED]] scf.for %i = %c0 to %c100 step %c4 { %mem = vector.transfer_read %global[%i], %c0f : memref, vector<4xf32> vector.transfer_write %mem, %shared[%i] : vector<4xf32>, memref> func.call @body(%i, %shared) : (index, memref>) -> () } // CHECK: vector.transfer_write %[[LOOP]]#0 // CHECK: call @body // CHECK: vector.transfer_write %[[LOOP]]#1 // CHECK: call @body return } !t = !transform.any_op module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) { %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t transform.yield } } // ----- // CHECK-LABEL: @async_depth_2_predicated // CHECK-SAME: %[[GLOBAL:.+]]: memref func.func @async_depth_2_predicated(%global: memref, %alloc_size: index) { %c0 = arith.constant 0 : index %c98 = arith.constant 98 : index %c100 = arith.constant 100 : index // CHECK-DAG: %[[C4:.+]] = arith.constant 4 // CHECK-DAG: %[[C90:.+]] = arith.constant 90 // CHECK-DAG: %[[C96:.+]] = arith.constant 96 // CHECK-DAG: %[[C8:.+]] = arith.constant 8 // CHECK-DAG: %[[C2:.+]] = arith.constant 2 // CHECK-DAG: %[[C0:.+]] = arith.constant 0 %c4 = arith.constant 4 : index // CHECK: %[[SHARED:.+]] = memref.alloc{{.*}} #gpu.address_space %shared = memref.alloc(%alloc_size) : memref> %c0f = arith.constant 0.0 : f32 // CHECK: %[[TOKEN0:.+]] = nvgpu.device_async_copy // CHECK: %[[TOKEN1:.+]] = nvgpu.device_async_copy // CHECK: scf.for %[[I:.+]] = {{.*}} iter_args // CHECK-SAME: %[[ITER_ARG0:.+]] = %[[TOKEN0]] // CHECK-SAME: %[[ITER_ARG1:.+]] = %[[TOKEN1]] scf.for %i = %c0 to %c98 step %c4 { // Condition for the predication "select" below. // CHECK: %[[CMP0:.+]] = arith.cmpi slt, %[[I]], %[[C90]] // CHECK: nvgpu.device_async_wait %[[ITER_ARG0]] {numGroups = 1 // Original "select" with updated induction variable. // CHECK: %[[I_PLUS_8:.+]] = arith.addi %[[I]], %[[C8]] // CHECK: %[[CMP1:.+]] = arith.cmpi slt, %[[I_PLUS_8]], %[[C96]] // CHECK: %[[SELECTED0:.+]] = arith.select %[[CMP1]], %[[C4]], %[[C2]] %c96 = arith.constant 96 : index %cond = arith.cmpi slt, %i, %c96 : index %c2 = arith.constant 2 : index %read_size = arith.select %cond, %c4, %c2 : index // Updated induction variables (two more) for the device_async_copy below. // These are generated repeatedly by the pipeliner. // CHECK: %[[I_PLUS_8_2:.+]] = arith.addi %[[I]], %[[C8]] // CHECK: %[[I_PLUS_8_3:.+]] = arith.addi %[[I]], %[[C8]] // The second "select" is generated by predication and selects 0 for // the two last iterations. // CHECK: %[[SELECTED1:.+]] = arith.select %[[CMP0]], %[[SELECTED0]], %[[C0]] // CHECK: %[[ASYNC_TOKEN:.+]] = nvgpu.device_async_copy %[[GLOBAL]][%[[I_PLUS_8_3]]], %[[SHARED]][%[[I_PLUS_8_2]]], 4, %[[SELECTED1]] %token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size : memref to memref> nvgpu.device_async_wait %token // CHECK: scf.yield %[[ITER_ARG1]], %[[ASYNC_TOKEN]] } // There is no need to wait for the last copies as it it was fully predicated // out and doesn't load the original data. // CHECK-NOT: nvgpu.device_async_wait return } !t = !transform.any_op module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) { %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2 } : (!t) -> !t transform.yield } } // ----- // CHECK-LABEL: @async_depth_2_peeled func.func @async_depth_2_peeled(%global: memref) { %c0 = arith.constant 0 : index %c98 = arith.constant 98 : index %c100 = arith.constant 100 : index %c4 = arith.constant 4 : index %shared = memref.alloc(%c100) : memref> %c0f = arith.constant 0.0 : f32 // CHECK: nvgpu.device_async_copy // CHECK: nvgpu.device_async_copy // CHECK: scf.for // CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 1 // CHECK: arith.select // CHECK: nvgpu.device_async_copy // CHECK: scf.yield // CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 1 // CHECK: nvgpu.device_async_wait %{{.*}} {numGroups = 0 scf.for %i = %c0 to %c98 step %c4 { %c96 = arith.constant 96 : index %cond = arith.cmpi slt, %i, %c96 : index %c2 = arith.constant 2 : index %read_size = arith.select %cond, %c4, %c2 : index %token = nvgpu.device_async_copy %global[%i], %shared[%i], 4, %read_size : memref to memref> nvgpu.device_async_wait %token } return } !t = !transform.any_op module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !t {transform.readonly}) { %loop = transform.structured.match ops{["scf.for"]} in %arg0 : (!t) -> !t transform.nvgpu.pipeline_shared_memory_copies failures(propagate) %loop { depth = 2, peel_epilogue } : (!t) -> !t transform.yield } }