
  

KernelGen – a toolchain for automatic
GPU-centric applications porting

Nicolas Lihogrud
Dmitry Mikushin
Andrew Adinets

P A R A L L E L   C O M P U T A T I O N A L   T E C H N O L O G I E S   ' 2 0 1 2



  

Contents

● Motivation and targets

● Idea

● Key results

● User interface

● Internals

● Development plans



  

Motivation and targets



  

Motivation

● The need to port huge numerical models on GPU: no 
computational “kernel”, individual model blocks have 
too small self perf impact (~10%), resulting into small 
speedups, if only one block is ported (the figure below 
is for COSMO model)

 → too hard to port models on GPU by hand



  

Motivation

● Most of the modern numerical weather prediction 
models are not suitable for manual parallelization due 
to enormous code base size:

 → too hard to port models on GPU by hand

Model Developer Lines of code
COSMO 4.13 DWD 187K
WRF 3.3 NOAA/NCAR 370K
AROME/ARPEGE METEOFRANCE 2280K



  

Motivation

● In well-known study on porting WSM5 block of the WRF 
model with OpenACC directives 40-60% of time is spent 
on communications 

 → intensive CPU ⟷ GPU data transfer may introduce 
significantly negative performance impact

The number of CPU 
cores and GPUs

Total time 
(seconds)

The time of 
transfers

The time of 
computations

1 / - 236

4 / - 70

1 / 1 19.72 10.75 8.85

2 / 2 12 6.87 5.29

Michael Wolfe, Craig Toepfer – Porting WRF

http://www.pgroup.com/lit/articles/insider/v1n3a1.htm


  

Targets

● Create runtime environment capable of executing 
original CPU applications on the GPU without code 
modifications

● Minimize data transfers by keeping all the application 
data in GPU memory and automatically porting onto 
GPU as much code as possible



  

Idea



  

Idea

● Many computational kernels, single main kernel

● Minimize data transfers by performing some serial 
computations on the GPU

+ Use DragonEgg/LLVM/Polly:

➔ Support many programming languages

➔ Automated search for potentially parallel code blocks

➔ Automated generation of GPU kernels



  

Idea

● Main host system and peripheral GPU:

➔ Transfer data from host to GPU

➔ Launch the GPU kernel and wait for completion

➔ Transfer results back from GPU to host



  

Idea

● Main host system and peripheral GPU:

➔ Transfer data from host to GPU

➔ Launch the GPU kernel and wait for completion

➔ Transfer results back from GPU to host



  

Idea

● Main host system and peripheral GPU:

➔ Transfer data from host to GPU

➔ Launch the GPU kernel and wait for completion

➔ Transfer results back from GPU to host

● Main GPU and peripheral host-system:

➔ Port on GPU as much source code as possible, except host-only 
functions (I/O, syscalls, …)

The main
GPU-kernel for

entry point

...

GPU

GPU kernels
of individual
computational loops



  

Key results



  

Results

● KernelGen can recognize parallel loops in simple tests 
and can generate GPU kernels with efficiency 
comparable to PGI Accelerator

● KernelGen successfully compiles major NWP models: 
WRF, COSMO and SLM (ПЛАВ)

● Complexity: half-year work of 2 developers, based on 
many other projects



  

Some tests

Performance and register footprint of CUDA kernels 
generated with KernelGen and PGI:

In some cases kernels generated by KernelGen and PGI 
are significantly different, but performance is always 
comparable

Kernel KGen time KGen #regs PGI time PGI #regs CPU time

sincos 0.00390 9 0.00357 29 0.64972

jacobi_1 0.02063 24 0.02862 17 1.05245

jacobi_2 0.01233 7 0.01206 10 0.10387



  

KernelGen
 from the user point of view



  

User interface

● KernelGen can generate GPU code out of any language 
supported by the gcc compiler frontend

● KernelGen compiler flags are fully compatible with gcc 
(except the LTO logic, which is replaced by custom IR-
code link step)

● Required additional GPU configuration parameters are 
provided through the environment variables 
(kernelgen_runmode, kernelgen_verbose, 
kernelgen_szheap, …)



  

Compile application for KernelGen

$ make
cd kernelgen && make
make[1]: Entering directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/m
alloc/kernelgen'
kernelgen-gfortran -c ../sincos.f90 -o sincos.o
KernelGen : NumExtractedLoops = 1 
CurrentFunction:"sincos_" CurrentHeader:"21.orig.header"
KernelGen : NumExtractedLoops = 2 
CurrentFunction:"sincos_" CurrentHeader:"12.orig.header"
KernelGen : NumExtractedLoops = 3 
CurrentFunction:"sincos_" CurrentHeader:"3.orig.header"
kernelgen-gcc -std=c99 -c ../main.c -o main.o
KernelGen : NumExtractedLoops = 1 CurrentFunction:"main" 
CurrentHeader:"6.orig.header"
kernelgen-gfortran sincos.o main.o -o sincos
$



  

Launch application for KernelGen

[marcusmae@noisy malloc]$ kernelgen_verbose=1 
kernelgen_runmode=1 kernelgen_szheap=$((1024*1024*1024)) 
kernelgen/sincos 512 512 64
Using KernelGen/CUDA

Building kernels index ...
__kernelgen_sincos__loop_21
__kernelgen_sincos__loop_12
__kernelgen_sincos__loop_3
__kernelgen_main_loop_6
__kernelgen_main

... 

Launching kernel __kernelgen_sincos__loop_3
    blockDim = { 32, 16, 2 }
    gridDim = { 16, 32, 32 }
__kernelgen_sincos__loop_3 time = 0.00407996 sec
only the kernel execution time = 0.00390173 sec



  

Compile application for PGI

$ make
cd pgi && make
make[1]: Entering directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/malloc/pgi'
pgfortran -fast -Mnomain -Minfo=accel -ta=nvidia:4.1,time 
-Mcuda=keepgpu,keepbin,keepptx -c ../sincos.f90 -o sincos.o
sincos:
     12, Generating copyin(y(:nx,:ny,:nz))
         Generating copyin(x(:nx,:ny,:nz))
         Generating copyout(xy1(:nx,:ny,:nz))
     13, Loop is parallelizable
     14, Loop is parallelizable
     15, Loop is parallelizable
         Accelerator kernel generated
         13, !$acc do parallel, vector(4) ! blockidx%y threadidx%z
         14, !$acc do parallel, vector(4) ! blockidx%x threadidx%y
         15, !$acc do vector(16) ! threadidx%x
pgcc -c ../main.c -o main.o
pgfortran -fast -Mnomain -Minfo=accel -ta=nvidia:4.1,time 
-Mcuda=keepgpu,keepbin,keepptx sincos.o main.o -o sincos
make[1]: Leaving directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/malloc/pgi'
$



  

Launch application for PGI

$ pgi/sincos 512 512 64
Accelerator Kernel Timing data
home/marcusmae/Programming/kernelgen/tests/perf/sincos/mal
loc/pgi/../sincos.f90
  sincos
    12: region entered 1 time
        time(us): total=2362577 init=2268435 region=94142
                  kernels=3575 data=86839
        w/o init: total=94142 max=94142 min=94142 
avg=94142
        15: kernel launched 1 times
            grid: [128x16]  block: [16x4x4]
            time(us): total=3575 max=3575 min=3575 
avg=3575



  

KernelGen
from the developer point of view



  

Compiling and linking

● Port whole code on the GPU

➔ Compiling and linking
➔ Problem: no linker for GPU code

➔ Compile parts of the code for GPU and link them manually, 
inlining everything into main kernel and loops kernels

➔ CUDA-compiler exists only for C/C++ code

● Automatically extract parallel loops

➔ Analyze simple AST or specialized IR?

➔ Parse high-level language or its AST (Rose, XML)  waste →
of time

➔ Parse intermediate representation (LLVM IR)



  

Components

● LLVM – the modular analysis and transformation 
system, working with the specialized intermediate 
representation (LLVM IR)

● DragonEgg – the gcc plugin, which converts gimple into 
LLVM IR, i.e. original program may be written in any 
language supported by gcc

● Polly – the loop optimization engine for LLVM IR

● C Backend – generates C code for the given LLVM IR 
module



  

Application runtime design

● Binary image still contains fully working host code used 
by default; GPU version is activated by request

● Almost all the code is running on the GPU

➔ Some parts of the code is not possible to port (functions in 
external libraries, system calls)  → external host calls are 
supported

● All data is stored in GPU memory and is offloaded to 
host only by request

● The main kernel is persistent on the GPU during the 
whole application lifetime  → hacks to overcome some 
limitations of CUDA, concurrent kernels execution



  

Handling host-only calls

● Example: atoi(<address_in_gpu>);

● Launch CPU function and synchronize data by request

➔ SIGSEGV handler to catch GPU memory range 
accesses during the host call

➔ mmap host memory pages onto GPU memory ranges 
and fill them with GPU data; synchronize data back 
after the function is finished

● Interaction model: “active” GPU, “passive” host (GPU 
initiates kernels launches and host calls)



  

Generating parallel loops

● Loop iterations dependency checks

➔ Runtime Alias Analysis

➔ LLVM Polly, ClooG

● Generate LLVM IR for GPU kernels

➔ GPU extensions for Polly

● Determine the GPU kernel compute grid

➔ Substitute kernel arguments

● Runtime-optimization of loops GPU kernels

➔ Substitute compute grid parameters, optimize LLVM

➔ Cache the analysis results



  

KernelGen uses JIT-compilation

● Kernel arguments substitution

➔ Runtime Alias Analysis
➔ Determine the optimal compute grid parameters

● Substitute the compute grid parameters

➔ Helps to reduce the register footprint



  

LLVM Polly



  

LLVM Polly: a tool for loop transformations

j

i

in

m

1

1

p

tn

m

1

1

(a)

● Polly is able to transform loop with dependent 
iterations (a) into loop with parallel iterations (b):

(b)
Illustrations (c) Tobias Grosser



  

LLVM Polly: a tool for loop transformations

(a)

● Polly is able to transform loop with dependent 
iterations (a) into loop with parallel iterations (b):

for (i = 1; i <= n; i++) {

  for (j = 1; j < i + m; j++)
    A[i][j] = A[i-1][j] + A[i][j-1]

  A[i][i+m+1] = A[i-1][i+m] + A[i][i+m]
}

parallel for (p = 1; p <= m+n+1; p++) {
  if (p >= m+2)
    A[p-m-1][p] = A[p-m-2][p-1]
  for (t = max(p+1, 2*p-m); t <= p+n; t++)
    A[-p+t][p] = A[-p+t-1][p] + A[-p+t][p-1]
}

(b)

Code examples (c) Tobias Grosser



  

LLVM Polly: capabilities

● Search for valid SCoPs in LLVM IR

● Optimizations:

➔ Split loops

➔ Transform loops polyhedra

➔ Loops interchanging

➔ ...

● Detect parallel loops

● Generate CLooG AST

● Generate LLVM IR out of CLooG AST

– used by KernelGen



  

Static Control Part (SCoP) 

● Polly works with ScoPs – parts of the program with the 
following properties:

➔ Structured control flow – counting variables, conditions
➔ Loop boundaries, array indices and conditionals are affine 

expressions of parameters and induction variables
➔ All operations (including function calls) do not have side 

effects

● For ScoPs it is possible to determine:

➔ Iterations polyhedras and the order of iterations inside them
➔ Memory access patterns



  

Semantic SCoP

● Polly can detect the semantic ScoPs, i.e. not only 
indexed for-/do- loops, but any code parts that behave 
like indexed for-/do- loops:

i = 0;

do {
  int b = 2 * i;
  int c = b * 3 + 5 * i;

  A[c] = i;
  i += 2;
} while (i < N);

for (i = 0; i == 0 || i < N; i += 2)
  A[11 * i] = i;

Code examples (c) Tobias Grosser



  

Semantic SCoP

● Polly can detect the semantic ScoPs, i.e. not only 
indexed for-/do- loops, but any code parts that behave 
like indexed for-/do- loops:

int A[1024];
int *B = A;

while (B < &A[1024]) {
  *B = 1;
  ++B;
}

int A[1024];

for (i = 0; i < 1024; i++)
  A[i] = 1;

Code examples (c) Tobias Grosser



  

Polly is not enough!

● In real-world applications compile-time info is often 
insufficient to detect the parallel loop



  

Runtime Alias Analysis



  

Runtime Alias Analysis

● In runtime more accurate alias analysis could be 
performed after substituting the values of pointers and 
checking the used memory intervals for intersection

➔ An argument to postpone loop analysis for runtime 
(JIT-compilation)

● For each pointer operation the access function is 
computed:

f(<the_number_of_iteration>) 

● With help of the ISL library, the problem of linear 
programming is solved: find the f maximum and 
minimum values in the given iterations space



  

Runtime Alias Analysis

● After substitution the pointer value in known, as well as 
its maximum and minimum relative offsets

➔ Thus, it is possible to compose the memory intervals:

0 <= i < 100
0 <= j < 200
ptr = (int*)322636916
f(i,j) = i * 200 + j

f_minimum = 0
f_maximum = 19999
interval:

[322636916, 322716914]



  

Runtime Alias Analysis

● For each pointer use we determine the memory interval

● If some memory write interval

➔ Intersects with another write interval

➔ Or intersects with read interval

Then the kernel is not parallel! 



  

Generating CUDA kernels

● Polly codegen was modified in order to:

➔ Determine the GPU thread indices in compute grid (GridDim, 
BlockDim, BlockIdx, ThreadIdx)

➔ Map loop iterations space onto GPU threads space



  

Generating CUDA kernels

● Organization of iterations-threads mapping:

● All threads perform the same number of iterations
● Threads with sequential indexes perform the sequential 

iterations
➔ Coalescing memory transactions

● Support for mapping iterations space onto any compute grid 
space (extra inner loops)

● Recursive analysis of nested loops:

● Utilize GPU capabilities for multidimensional compute grids 
creation

● The most inner loop always correspond to the “x” axis of the 
GPU compute grid



  

Computing the optimal GPU compute grid

● After substituting the kernel arguments the loops 
dimensions become known

● With known loops dimensions it is possible to compute 
the optimal compute grid configuration:

➔ Minimize the number of unused threads

➔ Specify the number of iterations to perform in each thread



  

Runtime-optimization of loops' kernels

● Initially the “universal” LLVM IR is generated for kernel 
loops: one thread may perform more than one loop 
iteration

● Upon the kernel launch, the used compute grid 
becomes known

➔ Extra IR-code optimizations could be performed 
after substituting the known constants

➔ Reduce the register footprint

➔ Eliminate fictive loops, less branching



  

Development plan



  

Programming

● Implement recursive nested loops analysis – already 
implemented during PCT conf ☺

● Privatize the global variables (no linker for GPU code)

● Re-implement host code JIT-compiler similar to lli

● Restructure the project source code (need better 
design)

● Implement kernels versions switcher heuristics and test 
it in real applications



  

Programming

● Optimizing data synchronization between CPU and GPU 
(#82,  #84)

● Implement kernels configurations cache

● Implement application computational profile dumping 
for further reuse

https://hpcforge.org/tracker/index.php?func=detail&aid=82&group_id=71&atid=366
https://hpcforge.org/tracker/index.php?func=detail&aid=84&group_id=71&atid=366


  

Testing

● Test KernelGen on benchmarks and target applications:

➔ Polybench, NPB, SPEC CPU 2006

➔ COSMO, WRF, SLM, MF-RAPS

● Bug fixing



  

http://kernelgen.org

The work is supported by Applied Parallel Computing contracts 12-2011 
and 13-2011, testing is performed on hardware installed at Lomonosov 
State University, SRCC MSU and supplied by NVIDIA.

http://kernelgen.org/


  

Testing

● Instructions available at project wiki pages:



  

Resources

● The LLVM Compiler Infrastructure
● Polly: Polyhedral optimizations for LLVM
● DragonEgg - Using LLVM as a GCC backend

http://llvm.org/
http://polly.llvm.org/index.html
http://dragonegg.llvm.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

