//===- LowerHLFIROrderedAssignments.cpp - Lower HLFIR ordered assignments -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file defines a pass to lower HLFIR ordered assignments. // Ordered assignments are all the operations with the // OrderedAssignmentTreeOpInterface that implements user defined assignments, // assignment to vector subscripted entities, and assignments inside forall and // where. // The pass lowers these operations to regular hlfir.assign, loops and, if // needed, introduces temporary storage to fulfill Fortran semantics. // // For each rewrite, an analysis builds an evaluation schedule, and then the // new code is generated by following the evaluation schedule. //===----------------------------------------------------------------------===// #include "ScheduleOrderedAssignments.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/HLFIRTools.h" #include "flang/Optimizer/Builder/TemporaryStorage.h" #include "flang/Optimizer/Builder/Todo.h" #include "flang/Optimizer/Dialect/Support/FIRContext.h" #include "flang/Optimizer/HLFIR/Passes.h" #include "mlir/IR/Dominance.h" #include "mlir/IR/IRMapping.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/TypeSwitch.h" #include "llvm/Support/Debug.h" namespace hlfir { #define GEN_PASS_DEF_LOWERHLFIRORDEREDASSIGNMENTS #include "flang/Optimizer/HLFIR/Passes.h.inc" } // namespace hlfir #define DEBUG_TYPE "flang-ordered-assignment" // Test option only to test the scheduling part only (operations are erased // without codegen). The only goal is to allow printing and testing the debug // info. static llvm::cl::opt dbgScheduleOnly( "flang-dbg-order-assignment-schedule-only", llvm::cl::desc("Only run ordered assignment scheduling with no codegen"), llvm::cl::init(false)); namespace { /// Structure that represents a masked expression being lowered. Masked /// expressions are any expressions inside an hlfir.where. As described in /// Fortran 2018 section 10.2.3.2, the evaluation of the elemental parts of such /// expressions must be masked, while the evaluation of none elemental parts /// must not be masked. This structure analyzes the region evaluating the /// expression and allows splitting the generation of the none elemental part /// from the elemental part. struct MaskedArrayExpr { MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion); /// Generate the none elemental part. Must be called outside of the /// loops created for the WHERE construct. void generateNoneElementalPart(fir::FirOpBuilder &builder, mlir::IRMapping &mapper); /// Methods below can only be called once generateNoneElementalPart has been /// called. /// Return the shape of the expression. mlir::Value generateShape(fir::FirOpBuilder &builder, mlir::IRMapping &mapper); /// Return the value of an element value for this expression given the current /// where loop indices. mlir::Value generateElementalParts(fir::FirOpBuilder &builder, mlir::ValueRange oneBasedIndices, mlir::IRMapping &mapper); /// Generate the cleanup for the none elemental parts, if any. This must be /// called after the loops created for the WHERE construct. void generateNoneElementalCleanupIfAny(fir::FirOpBuilder &builder, mlir::IRMapping &mapper); mlir::Location loc; mlir::Region ®ion; /// Was generateNoneElementalPart called? bool noneElementalPartWasGenerated = false; /// Set of operations that form the elemental parts of the /// expression evaluation. These are the hlfir.elemental and /// hlfir.elemental_addr that form the elemental tree producing /// the expression value. hlfir.elemental that produce values /// used inside transformational operations are not part of this set. llvm::SmallSet elementalParts{}; }; } // namespace namespace { /// Structure that visits an ordered assignment tree and generates code for /// it according to a schedule. class OrderedAssignmentRewriter { public: OrderedAssignmentRewriter(fir::FirOpBuilder &builder, hlfir::OrderedAssignmentTreeOpInterface root) : builder{builder}, root{root} {} /// Generate code for the current run of the schedule. void lowerRun(hlfir::Run &run) { currentRun = &run; walk(root); currentRun = nullptr; assert(constructStack.empty() && "must exit constructs after a run"); mapper.clear(); savedInCurrentRunBeforeUse.clear(); } /// After all run have been lowered, clean-up all the temporary /// storage that were created (do not call final routines). void cleanupSavedEntities() { for (auto &temp : savedEntities) temp.second.destroy(root.getLoc(), builder); } /// Lowered value for an expression, and the original hlfir.yield if any /// clean-up needs to be cloned after usage. using ValueAndCleanUp = std::pair>; private: /// Walk the part of an order assignment tree node that needs /// to be evaluated in the current run. void walk(hlfir::OrderedAssignmentTreeOpInterface node); /// Generate code when entering a given ordered assignment node. void pre(hlfir::ForallOp forallOp); void pre(hlfir::ForallIndexOp); void pre(hlfir::ForallMaskOp); void pre(hlfir::WhereOp whereOp); void pre(hlfir::ElseWhereOp elseWhereOp); void pre(hlfir::RegionAssignOp); /// Generate code when leaving a given ordered assignment node. void post(hlfir::ForallOp); void post(hlfir::ForallMaskOp); void post(hlfir::WhereOp); void post(hlfir::ElseWhereOp); /// Enter (and maybe create) the fir.if else block of an ElseWhereOp, /// but do not generate the elswhere mask or the new fir.if. void enterElsewhere(hlfir::ElseWhereOp); /// Are there any leaf region in the node that must be saved in the current /// run? bool mustSaveRegionIn( hlfir::OrderedAssignmentTreeOpInterface node, llvm::SmallVectorImpl &saveEntities) const; /// Should this node be evaluated in the current run? Saving a region in a /// node does not imply the node needs to be evaluated. bool isRequiredInCurrentRun(hlfir::OrderedAssignmentTreeOpInterface node) const; /// Generate a scalar value yielded by an ordered assignment tree region. /// If the value was not saved in a previous run, this clone the region /// code, except the final yield, at the current execution point. /// If the value was saved in a previous run, this fetches the saved value /// from the temporary storage and returns the value. /// Inside Forall, the value will be hoisted outside of the forall loops if /// it does not depend on the forall indices. /// An optional type can be provided to get a value from a specific type /// (the cast will be hoisted if the computation is hoisted). mlir::Value generateYieldedScalarValue( mlir::Region ®ion, std::optional castToType = std::nullopt); /// Generate an entity yielded by an ordered assignment tree region, and /// optionally return the (uncloned) yield if there is any clean-up that /// should be done after using the entity. Like, generateYieldedScalarValue, /// this will return the saved value if the region was saved in a previous /// run. ValueAndCleanUp generateYieldedEntity(mlir::Region ®ion, std::optional castToType = std::nullopt); struct LhsValueAndCleanUp { mlir::Value lhs; std::optional elementalCleanup; mlir::Region *nonElementalCleanup = nullptr; std::optional vectorSubscriptLoopNest; std::optional vectorSubscriptShape; }; /// Generate the left-hand side. If the left-hand side is vector /// subscripted (hlfir.elemental_addr), this will create a loop nest /// (unless it was already created by a WHERE mask) and return the /// element address. LhsValueAndCleanUp generateYieldedLHS(mlir::Location loc, mlir::Region &lhsRegion, std::optional loweredRhs = std::nullopt); /// If \p maybeYield is present and has a clean-up, generate the clean-up /// at the current insertion point (by cloning). void generateCleanupIfAny(std::optional maybeYield); void generateCleanupIfAny(mlir::Region *cleanupRegion); /// Generate a masked entity. This can only be called when whereLoopNest was /// set (When an hlfir.where is being visited). /// This method returns the scalar element (that may have been previously /// saved) for the current indices inside the where loop. mlir::Value generateMaskedEntity(mlir::Location loc, mlir::Region ®ion) { MaskedArrayExpr maskedExpr(loc, region); return generateMaskedEntity(maskedExpr); } mlir::Value generateMaskedEntity(MaskedArrayExpr &maskedExpr); /// Create a fir.if at the current position inside the where loop nest /// given the element value of a mask. void generateMaskIfOp(mlir::Value cdt); /// Save a value for subsequent runs. void generateSaveEntity(hlfir::SaveEntity savedEntity, bool willUseSavedEntityInSameRun); void saveLeftHandSide(hlfir::SaveEntity savedEntity, hlfir::RegionAssignOp regionAssignOp); /// Get a value if it was saved in this run or a previous run. Returns /// nullopt if it has not been saved. std::optional getIfSaved(mlir::Region ®ion); /// Generate code before the loop nest for the current run, if any. void doBeforeLoopNest(const std::function &callback) { if (constructStack.empty()) { callback(); return; } auto insertionPoint = builder.saveInsertionPoint(); builder.setInsertionPoint(constructStack[0]); callback(); builder.restoreInsertionPoint(insertionPoint); } /// Can the current loop nest iteration number be computed? For simplicity, /// this is true if and only if all the bounds and steps of the fir.do_loop /// nest dominates the outer loop. The argument is filled with the current /// loop nest on success. bool currentLoopNestIterationNumberCanBeComputed( llvm::SmallVectorImpl &loopNest); template fir::factory::TemporaryStorage *insertSavedEntity(mlir::Region ®ion, T &&temp) { auto inserted = savedEntities.insert(std::make_pair(®ion, std::forward(temp))); assert(inserted.second && "temp must have been emplaced"); return &inserted.first->second; } fir::FirOpBuilder &builder; /// Map containing the mapping between the original order assignment tree /// operations and the operations that have been cloned in the current run. /// It is reset between two runs. mlir::IRMapping mapper; /// Dominance info is used to determine if inner loop bounds are all computed /// before outer loop for the current loop. It does not need to be reset /// between runs. mlir::DominanceInfo dominanceInfo; /// Construct stack in the current run. This allows setting back the insertion /// point correctly when leaving a node that requires a fir.do_loop or fir.if /// operation. llvm::SmallVector constructStack; /// Current where loop nest, if any. std::optional whereLoopNest; /// Map of temporary storage to keep track of saved entity once the run /// that saves them has been lowered. It is kept in-between runs. /// llvm::MapVector is used to guarantee deterministic order /// of iterating through savedEntities (e.g. for generating /// destruction code for the temporary storages). llvm::MapVector savedEntities; /// Map holding the values that were saved in the current run and that also /// need to be used (because their construct will be visited). It is reset /// after each run. It avoids having to store and fetch in the temporary /// during the same run, which would require the temporary to have different /// fetching and storing counters. llvm::DenseMap savedInCurrentRunBeforeUse; /// Root of the order assignment tree being lowered. hlfir::OrderedAssignmentTreeOpInterface root; /// Pointer to the current run of the schedule being lowered. hlfir::Run *currentRun = nullptr; /// When allocating temporary storage inlined, indicate if the storage should /// be heap or stack allocated. Temporary allocated with the runtime are heap /// allocated by the runtime. bool allocateOnHeap = true; }; } // namespace void OrderedAssignmentRewriter::walk( hlfir::OrderedAssignmentTreeOpInterface node) { bool mustVisit = isRequiredInCurrentRun(node) || mlir::isa(node); llvm::SmallVector saveEntities; mlir::Operation *nodeOp = node.getOperation(); if (mustSaveRegionIn(node, saveEntities)) { mlir::IRRewriter::InsertPoint insertionPoint; if (auto elseWhereOp = mlir::dyn_cast(nodeOp)) { // ElseWhere mask to save must be evaluated inside the fir.if else // for the previous where/elsewehere (its evaluation must be // masked by the "pending control mask"). insertionPoint = builder.saveInsertionPoint(); enterElsewhere(elseWhereOp); } for (hlfir::SaveEntity saveEntity : saveEntities) generateSaveEntity(saveEntity, mustVisit); if (insertionPoint.isSet()) builder.restoreInsertionPoint(insertionPoint); } if (mustVisit) { llvm::TypeSwitch(nodeOp) .Case( [&](auto concreteOp) { pre(concreteOp); }) .Default([](auto) {}); if (auto *body = node.getSubTreeRegion()) { for (mlir::Operation &op : body->getOps()) if (auto subNode = mlir::dyn_cast(op)) walk(subNode); llvm::TypeSwitch(nodeOp) .Case([&](auto concreteOp) { post(concreteOp); }) .Default([](auto) {}); } } } void OrderedAssignmentRewriter::pre(hlfir::ForallOp forallOp) { /// Create a fir.do_loop given the hlfir.forall control values. mlir::Type idxTy = builder.getIndexType(); mlir::Location loc = forallOp.getLoc(); mlir::Value lb = generateYieldedScalarValue(forallOp.getLbRegion(), idxTy); mlir::Value ub = generateYieldedScalarValue(forallOp.getUbRegion(), idxTy); mlir::Value step; if (forallOp.getStepRegion().empty()) { auto insertionPoint = builder.saveInsertionPoint(); if (!constructStack.empty()) builder.setInsertionPoint(constructStack[0]); step = builder.createIntegerConstant(loc, idxTy, 1); if (!constructStack.empty()) builder.restoreInsertionPoint(insertionPoint); } else { step = generateYieldedScalarValue(forallOp.getStepRegion(), idxTy); } auto doLoop = builder.create(loc, lb, ub, step); builder.setInsertionPointToStart(doLoop.getBody()); mlir::Value oldIndex = forallOp.getForallIndexValue(); mlir::Value newIndex = builder.createConvert(loc, oldIndex.getType(), doLoop.getInductionVar()); mapper.map(oldIndex, newIndex); constructStack.push_back(doLoop); } void OrderedAssignmentRewriter::post(hlfir::ForallOp) { assert(!constructStack.empty() && "must contain a loop"); builder.setInsertionPointAfter(constructStack.pop_back_val()); } void OrderedAssignmentRewriter::pre(hlfir::ForallIndexOp forallIndexOp) { mlir::Location loc = forallIndexOp.getLoc(); mlir::Type intTy = fir::unwrapRefType(forallIndexOp.getType()); mlir::Value indexVar = builder.createTemporary(loc, intTy, forallIndexOp.getName()); mlir::Value newVal = mapper.lookupOrDefault(forallIndexOp.getIndex()); builder.createStoreWithConvert(loc, newVal, indexVar); mapper.map(forallIndexOp, indexVar); } void OrderedAssignmentRewriter::pre(hlfir::ForallMaskOp forallMaskOp) { mlir::Location loc = forallMaskOp.getLoc(); mlir::Value mask = generateYieldedScalarValue(forallMaskOp.getMaskRegion(), builder.getI1Type()); auto ifOp = builder.create(loc, std::nullopt, mask, false); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); constructStack.push_back(ifOp); } void OrderedAssignmentRewriter::post(hlfir::ForallMaskOp forallMaskOp) { assert(!constructStack.empty() && "must contain an ifop"); builder.setInsertionPointAfter(constructStack.pop_back_val()); } /// Convert an entity to the type of a given mold. /// This is intended to help with cases where hlfir entity is a value while /// it must be used as a variable or vice-versa. These mismatches may occur /// between the type of user defined assignment block arguments and the actual /// argument that was lowered for them. The actual may be an in-memory copy /// while the block argument expects an hlfir.expr. static hlfir::Entity convertToMoldType(mlir::Location loc, fir::FirOpBuilder &builder, hlfir::Entity input, hlfir::Entity mold, llvm::SmallVectorImpl &cleanups) { if (input.getType() == mold.getType()) return input; fir::FirOpBuilder *b = &builder; if (input.isVariable() && mold.isValue()) { if (fir::isa_trivial(mold.getType())) { // fir.ref to T. mlir::Value load = builder.create(loc, input); return hlfir::Entity{builder.createConvert(loc, mold.getType(), load)}; } // fir.ref to hlfir.expr. mlir::Value asExpr = builder.create(loc, input); if (asExpr.getType() != mold.getType()) TODO(loc, "hlfir.expr conversion"); cleanups.emplace_back([=]() { b->create(loc, asExpr); }); return hlfir::Entity{asExpr}; } if (input.isValue() && mold.isVariable()) { // T to fir.ref, or hlfir.expr to fir.ref. hlfir::AssociateOp associate = hlfir::genAssociateExpr( loc, builder, input, mold.getFortranElementType(), ".tmp.val2ref"); cleanups.emplace_back( [=]() { b->create(loc, associate); }); return hlfir::Entity{associate.getBase()}; } // Variable to Variable mismatch (e.g., fir.heap vs fir.ref), or value // to Value mismatch (e.g. i1 vs fir.logical<4>). if (mlir::isa(mold.getType()) && !mlir::isa(input.getType())) { // An entity may have have been saved without descriptor while the original // value had a descriptor (e.g., it was not contiguous). auto emboxed = hlfir::convertToBox(loc, builder, input, mold.getType()); assert(!emboxed.second && "temp should already be in memory"); input = hlfir::Entity{fir::getBase(emboxed.first)}; } return hlfir::Entity{builder.createConvert(loc, mold.getType(), input)}; } void OrderedAssignmentRewriter::pre(hlfir::RegionAssignOp regionAssignOp) { mlir::Location loc = regionAssignOp.getLoc(); std::optional elementalLoopNest; auto [rhsValue, oldRhsYield] = generateYieldedEntity(regionAssignOp.getRhsRegion()); hlfir::Entity rhsEntity{rhsValue}; LhsValueAndCleanUp loweredLhs = generateYieldedLHS(loc, regionAssignOp.getLhsRegion(), rhsEntity); hlfir::Entity lhsEntity{loweredLhs.lhs}; if (loweredLhs.vectorSubscriptLoopNest) rhsEntity = hlfir::getElementAt( loc, builder, rhsEntity, loweredLhs.vectorSubscriptLoopNest->oneBasedIndices); if (!regionAssignOp.getUserDefinedAssignment().empty()) { hlfir::Entity userAssignLhs{regionAssignOp.getUserAssignmentLhs()}; hlfir::Entity userAssignRhs{regionAssignOp.getUserAssignmentRhs()}; std::optional elementalLoopNest; if (lhsEntity.isArray() && userAssignLhs.isScalar()) { // Elemental assignment with array argument (the RHS cannot be an array // if the LHS is not). mlir::Value shape = hlfir::genShape(loc, builder, lhsEntity); elementalLoopNest = hlfir::genLoopNest(loc, builder, shape); builder.setInsertionPointToStart(elementalLoopNest->innerLoop.getBody()); lhsEntity = hlfir::getElementAt(loc, builder, lhsEntity, elementalLoopNest->oneBasedIndices); rhsEntity = hlfir::getElementAt(loc, builder, rhsEntity, elementalLoopNest->oneBasedIndices); } llvm::SmallVector argConversionCleanups; lhsEntity = convertToMoldType(loc, builder, lhsEntity, userAssignLhs, argConversionCleanups); rhsEntity = convertToMoldType(loc, builder, rhsEntity, userAssignRhs, argConversionCleanups); mapper.map(userAssignLhs, lhsEntity); mapper.map(userAssignRhs, rhsEntity); for (auto &op : regionAssignOp.getUserDefinedAssignment().front().without_terminator()) (void)builder.clone(op, mapper); for (auto &cleanupConversion : argConversionCleanups) cleanupConversion(); if (elementalLoopNest) builder.setInsertionPointAfter(elementalLoopNest->outerLoop); } else { // TODO: preserve allocatable assignment aspects for forall once // they are conveyed in hlfir.region_assign. builder.create(loc, rhsEntity, lhsEntity); } generateCleanupIfAny(loweredLhs.elementalCleanup); if (loweredLhs.vectorSubscriptLoopNest) builder.setInsertionPointAfter( loweredLhs.vectorSubscriptLoopNest->outerLoop); generateCleanupIfAny(oldRhsYield); generateCleanupIfAny(loweredLhs.nonElementalCleanup); } void OrderedAssignmentRewriter::generateMaskIfOp(mlir::Value cdt) { mlir::Location loc = cdt.getLoc(); cdt = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{cdt}); cdt = builder.createConvert(loc, builder.getI1Type(), cdt); auto ifOp = builder.create(cdt.getLoc(), std::nullopt, cdt, /*withElseRegion=*/false); constructStack.push_back(ifOp.getOperation()); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); } void OrderedAssignmentRewriter::pre(hlfir::WhereOp whereOp) { mlir::Location loc = whereOp.getLoc(); if (!whereLoopNest) { // This is the top-level WHERE. Start a loop nest iterating on the shape of // the where mask. if (auto maybeSaved = getIfSaved(whereOp.getMaskRegion())) { // Use the saved value to get the shape and condition element. hlfir::Entity savedMask{maybeSaved->first}; mlir::Value shape = hlfir::genShape(loc, builder, savedMask); whereLoopNest = hlfir::genLoopNest(loc, builder, shape); constructStack.push_back(whereLoopNest->outerLoop.getOperation()); builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody()); mlir::Value cdt = hlfir::getElementAt(loc, builder, savedMask, whereLoopNest->oneBasedIndices); generateMaskIfOp(cdt); if (maybeSaved->second) { // If this is the same run as the one that saved the value, the clean-up // was left-over to be done now. auto insertionPoint = builder.saveInsertionPoint(); builder.setInsertionPointAfter(whereLoopNest->outerLoop); generateCleanupIfAny(maybeSaved->second); builder.restoreInsertionPoint(insertionPoint); } return; } // The mask was not evaluated yet or can be safely re-evaluated. MaskedArrayExpr mask(loc, whereOp.getMaskRegion()); mask.generateNoneElementalPart(builder, mapper); mlir::Value shape = mask.generateShape(builder, mapper); whereLoopNest = hlfir::genLoopNest(loc, builder, shape); constructStack.push_back(whereLoopNest->outerLoop.getOperation()); builder.setInsertionPointToStart(whereLoopNest->innerLoop.getBody()); mlir::Value cdt = generateMaskedEntity(mask); generateMaskIfOp(cdt); return; } // Where Loops have been already created by a parent WHERE. // Generate a fir.if with the value of the current element of the mask // inside the loops. The case where the mask was saved is handled in the // generateYieldedScalarValue call. mlir::Value cdt = generateYieldedScalarValue(whereOp.getMaskRegion()); generateMaskIfOp(cdt); } void OrderedAssignmentRewriter::post(hlfir::WhereOp whereOp) { assert(!constructStack.empty() && "must contain a fir.if"); builder.setInsertionPointAfter(constructStack.pop_back_val()); // If all where/elsewhere fir.if have been popped, this is the outer whereOp, // and the where loop must be exited. assert(!constructStack.empty() && "must contain a fir.do_loop or fir.if"); if (mlir::isa(constructStack.back())) { builder.setInsertionPointAfter(constructStack.pop_back_val()); whereLoopNest.reset(); } } void OrderedAssignmentRewriter::enterElsewhere(hlfir::ElseWhereOp elseWhereOp) { // Create an "else" region for the current where/elsewhere fir.if. auto ifOp = mlir::dyn_cast(constructStack.back()); assert(ifOp && "must be an if"); if (ifOp.getElseRegion().empty()) { mlir::Location loc = elseWhereOp.getLoc(); builder.createBlock(&ifOp.getElseRegion()); auto end = builder.create(loc); builder.setInsertionPoint(end); } else { builder.setInsertionPoint(&ifOp.getElseRegion().back().back()); } } void OrderedAssignmentRewriter::pre(hlfir::ElseWhereOp elseWhereOp) { enterElsewhere(elseWhereOp); if (elseWhereOp.getMaskRegion().empty()) return; // Create new nested fir.if with elsewhere mask if any. mlir::Value cdt = generateYieldedScalarValue(elseWhereOp.getMaskRegion()); generateMaskIfOp(cdt); } void OrderedAssignmentRewriter::post(hlfir::ElseWhereOp elseWhereOp) { // Exit ifOp that was created for the elseWhereOp mask, if any. if (elseWhereOp.getMaskRegion().empty()) return; assert(!constructStack.empty() && "must contain a fir.if"); builder.setInsertionPointAfter(constructStack.pop_back_val()); } /// Is this value a Forall index? /// Forall index are block arguments of hlfir.forall body, or the result /// of hlfir.forall_index. static bool isForallIndex(mlir::Value value) { if (auto blockArg = mlir::dyn_cast(value)) { if (mlir::Block *block = blockArg.getOwner()) return block->isEntryBlock() && mlir::isa_and_nonnull(block->getParentOp()); return false; } return value.getDefiningOp(); } static OrderedAssignmentRewriter::ValueAndCleanUp castIfNeeded(mlir::Location loc, fir::FirOpBuilder &builder, OrderedAssignmentRewriter::ValueAndCleanUp valueAndCleanUp, std::optional castToType) { if (!castToType.has_value()) return valueAndCleanUp; mlir::Value cast = builder.createConvert(loc, *castToType, valueAndCleanUp.first); return {cast, valueAndCleanUp.second}; } std::optional OrderedAssignmentRewriter::getIfSaved(mlir::Region ®ion) { mlir::Location loc = region.getParentOp()->getLoc(); // If the region was saved in the same run, use the value that was evaluated // instead of fetching the temp, and do clean-up, if any, that were delayed. // This is done to avoid requiring the temporary stack to have different // fetching and storing counters, and also because it produces slightly better // code. if (auto savedInSameRun = savedInCurrentRunBeforeUse.find(®ion); savedInSameRun != savedInCurrentRunBeforeUse.end()) return savedInSameRun->second; // If the region was saved in a previous run, fetch the saved value. if (auto temp = savedEntities.find(®ion); temp != savedEntities.end()) { doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); }); return ValueAndCleanUp{temp->second.fetch(loc, builder), std::nullopt}; } return std::nullopt; } OrderedAssignmentRewriter::ValueAndCleanUp OrderedAssignmentRewriter::generateYieldedEntity( mlir::Region ®ion, std::optional castToType) { mlir::Location loc = region.getParentOp()->getLoc(); if (auto maybeValueAndCleanUp = getIfSaved(region)) return castIfNeeded(loc, builder, *maybeValueAndCleanUp, castToType); // Otherwise, evaluate the region now. // Masked expression must not evaluate the elemental parts that are masked, // they have custom code generation. if (whereLoopNest.has_value()) { mlir::Value maskedValue = generateMaskedEntity(loc, region); return castIfNeeded(loc, builder, {maskedValue, std::nullopt}, castToType); } assert(region.hasOneBlock() && "region must contain one block"); auto oldYield = mlir::dyn_cast_or_null( region.back().getOperations().back()); assert(oldYield && "region computing entities must end with a YieldOp"); mlir::Block::OpListType &ops = region.back().getOperations(); // Inside Forall, scalars that do not depend on forall indices can be hoisted // here because their evaluation is required to only call pure procedures, and // if they depend on a variable previously assigned to in a forall assignment, // this assignment must have been scheduled in a previous run. Hoisting of // scalars is done here to help creating simple temporary storage if needed. // Inner forall bounds can often be hoisted, and this allows computing the // total number of iterations to create temporary storages. bool hoistComputation = false; if (fir::isa_trivial(oldYield.getEntity().getType()) && !constructStack.empty()) { hoistComputation = true; for (mlir::Operation &op : ops) if (llvm::any_of(op.getOperands(), [](mlir::Value value) { return isForallIndex(value); })) { hoistComputation = false; break; } } auto insertionPoint = builder.saveInsertionPoint(); if (hoistComputation) builder.setInsertionPoint(constructStack[0]); // Clone all operations except the final hlfir.yield. assert(!ops.empty() && "yield block cannot be empty"); auto end = ops.end(); for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt) (void)builder.clone(*opIt, mapper); // Get the value for the yielded entity, it may be the result of an operation // that was cloned, or it may be the same as the previous value if the yield // operand was created before the ordered assignment tree. mlir::Value newEntity = mapper.lookupOrDefault(oldYield.getEntity()); if (castToType.has_value()) newEntity = builder.createConvert(newEntity.getLoc(), *castToType, newEntity); if (hoistComputation) { // Hoisted trivial scalars clean-up can be done right away, the value is // in registers. generateCleanupIfAny(oldYield); builder.restoreInsertionPoint(insertionPoint); return {newEntity, std::nullopt}; } if (oldYield.getCleanup().empty()) return {newEntity, std::nullopt}; return {newEntity, oldYield}; } mlir::Value OrderedAssignmentRewriter::generateYieldedScalarValue( mlir::Region ®ion, std::optional castToType) { mlir::Location loc = region.getParentOp()->getLoc(); auto [value, maybeYield] = generateYieldedEntity(region, castToType); value = hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{value}); assert(fir::isa_trivial(value.getType()) && "not a trivial scalar value"); generateCleanupIfAny(maybeYield); return value; } OrderedAssignmentRewriter::LhsValueAndCleanUp OrderedAssignmentRewriter::generateYieldedLHS( mlir::Location loc, mlir::Region &lhsRegion, std::optional loweredRhs) { LhsValueAndCleanUp loweredLhs; hlfir::ElementalAddrOp elementalAddrLhs = mlir::dyn_cast(lhsRegion.back().back()); if (auto temp = savedEntities.find(&lhsRegion); temp != savedEntities.end()) { // The LHS address was computed and saved in a previous run. Fetch it. doBeforeLoopNest([&]() { temp->second.resetFetchPosition(loc, builder); }); if (elementalAddrLhs && !whereLoopNest) { // Vector subscripted designator address are saved element by element. // If no "elemental" loops have been created yet, the shape of the // RHS, if it is an array can be used, or the shape of the vector // subscripted designator must be retrieved to generate the "elemental" // loop nest. if (loweredRhs && loweredRhs->isArray()) { // The RHS shape can be used to create the elemental loops and avoid // saving the LHS shape. loweredLhs.vectorSubscriptShape = hlfir::genShape(loc, builder, *loweredRhs); } else { // If the shape cannot be retrieved from the RHS, it must have been // saved. Get it from the temporary. auto &vectorTmp = temp->second.cast(); loweredLhs.vectorSubscriptShape = vectorTmp.fetchShape(loc, builder); } loweredLhs.vectorSubscriptLoopNest = hlfir::genLoopNest( loc, builder, loweredLhs.vectorSubscriptShape.value()); builder.setInsertionPointToStart( loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody()); } loweredLhs.lhs = temp->second.fetch(loc, builder); return loweredLhs; } // The LHS has not yet been evaluated and saved. Evaluate it now. if (elementalAddrLhs && !whereLoopNest) { // This is a vector subscripted entity. The address of elements must // be returned. If no "elemental" loops have been created for a WHERE, // create them now based on the vector subscripted designator shape. for (auto &op : lhsRegion.front().without_terminator()) (void)builder.clone(op, mapper); loweredLhs.vectorSubscriptShape = mapper.lookupOrDefault(elementalAddrLhs.getShape()); loweredLhs.vectorSubscriptLoopNest = hlfir::genLoopNest(loc, builder, *loweredLhs.vectorSubscriptShape, !elementalAddrLhs.isOrdered()); builder.setInsertionPointToStart( loweredLhs.vectorSubscriptLoopNest->innerLoop.getBody()); mapper.map(elementalAddrLhs.getIndices(), loweredLhs.vectorSubscriptLoopNest->oneBasedIndices); for (auto &op : elementalAddrLhs.getBody().front().without_terminator()) (void)builder.clone(op, mapper); loweredLhs.elementalCleanup = elementalAddrLhs.getYieldOp(); loweredLhs.lhs = mapper.lookupOrDefault(loweredLhs.elementalCleanup->getEntity()); } else { // This is a designator without vector subscripts. Generate it as // it is done for other entities. auto [lhs, yield] = generateYieldedEntity(lhsRegion); loweredLhs.lhs = lhs; if (yield && !yield->getCleanup().empty()) loweredLhs.nonElementalCleanup = &yield->getCleanup(); } return loweredLhs; } mlir::Value OrderedAssignmentRewriter::generateMaskedEntity(MaskedArrayExpr &maskedExpr) { assert(whereLoopNest.has_value() && "must be inside WHERE loop nest"); auto insertionPoint = builder.saveInsertionPoint(); if (!maskedExpr.noneElementalPartWasGenerated) { // Generate none elemental part before the where loops (but inside the // current forall loops if any). builder.setInsertionPoint(whereLoopNest->outerLoop); maskedExpr.generateNoneElementalPart(builder, mapper); } // Generate the none elemental part cleanup after the where loops. builder.setInsertionPointAfter(whereLoopNest->outerLoop); maskedExpr.generateNoneElementalCleanupIfAny(builder, mapper); // Generate the value of the current element for the masked expression // at the current insertion point (inside the where loops, and any fir.if // generated for previous masks). builder.restoreInsertionPoint(insertionPoint); return maskedExpr.generateElementalParts( builder, whereLoopNest->oneBasedIndices, mapper); } void OrderedAssignmentRewriter::generateCleanupIfAny( std::optional maybeYield) { if (maybeYield.has_value()) generateCleanupIfAny(&maybeYield->getCleanup()); } void OrderedAssignmentRewriter::generateCleanupIfAny( mlir::Region *cleanupRegion) { if (cleanupRegion && !cleanupRegion->empty()) { assert(cleanupRegion->hasOneBlock() && "region must contain one block"); for (auto &op : cleanupRegion->back().without_terminator()) builder.clone(op, mapper); } } bool OrderedAssignmentRewriter::mustSaveRegionIn( hlfir::OrderedAssignmentTreeOpInterface node, llvm::SmallVectorImpl &saveEntities) const { for (auto &action : currentRun->actions) if (hlfir::SaveEntity *savedEntity = std::get_if(&action)) if (node.getOperation() == savedEntity->yieldRegion->getParentOp()) saveEntities.push_back(*savedEntity); return !saveEntities.empty(); } bool OrderedAssignmentRewriter::isRequiredInCurrentRun( hlfir::OrderedAssignmentTreeOpInterface node) const { // hlfir.forall_index do not contain saved regions/assignments, // but if their hlfir.forall parent was required, they are // required (the forall indices needs to be mapped). if (mlir::isa(node)) return true; for (auto &action : currentRun->actions) if (hlfir::SaveEntity *savedEntity = std::get_if(&action)) { // A SaveEntity action does not require evaluating the node that contains // it, but it requires to evaluate all the parents of the nodes that // contains it. For instance, an saving a bound in hlfir.forall B does not // require creating the loops for B, but it requires creating the loops // for any forall parent A of the forall B. if (node->isProperAncestor(savedEntity->yieldRegion->getParentOp())) return true; } else { auto assign = std::get(action); if (node->isAncestor(assign.getOperation())) return true; } return false; } /// Is the apply using all the elemental indices in order? static bool isInOrderApply(hlfir::ApplyOp apply, hlfir::ElementalOpInterface elemental) { mlir::Region::BlockArgListType elementalIndices = elemental.getIndices(); if (elementalIndices.size() != apply.getIndices().size()) return false; for (auto [elementalIdx, applyIdx] : llvm::zip(elementalIndices, apply.getIndices())) if (elementalIdx != applyIdx) return false; return true; } /// Gather the tree of hlfir::ElementalOpInterface use-def, if any, starting /// from \p elemental, which may be a nullptr. static void gatherElementalTree(hlfir::ElementalOpInterface elemental, llvm::SmallPtrSetImpl &elementalOps, bool isOutOfOrder) { if (elemental) { // Only inline an applied elemental that must be executed in order if the // applying indices are in order. An hlfir::Elemental may have been created // for a transformational like transpose, and Fortran 2018 standard // section 10.2.3.2, point 10 imply that impure elemental sub-expression // evaluations should not be masked if they are the arguments of // transformational expressions. if (isOutOfOrder && elemental.isOrdered()) return; elementalOps.insert(elemental.getOperation()); for (mlir::Operation &op : elemental.getElementalRegion().getOps()) if (auto apply = mlir::dyn_cast(op)) { bool isUnorderedApply = isOutOfOrder || !isInOrderApply(apply, elemental); auto maybeElemental = mlir::dyn_cast_or_null( apply.getExpr().getDefiningOp()); gatherElementalTree(maybeElemental, elementalOps, isUnorderedApply); } } } MaskedArrayExpr::MaskedArrayExpr(mlir::Location loc, mlir::Region ®ion) : loc{loc}, region{region} { mlir::Operation &terminator = region.back().back(); if (auto elementalAddr = mlir::dyn_cast(terminator)) { // Vector subscripted designator (hlfir.elemental_addr terminator). gatherElementalTree(elementalAddr, elementalParts, /*isOutOfOrder=*/false); return; } // Try if elemental expression. mlir::Value entity = mlir::cast(terminator).getEntity(); auto maybeElemental = mlir::dyn_cast_or_null( entity.getDefiningOp()); gatherElementalTree(maybeElemental, elementalParts, /*isOutOfOrder=*/false); } void MaskedArrayExpr::generateNoneElementalPart(fir::FirOpBuilder &builder, mlir::IRMapping &mapper) { assert(!noneElementalPartWasGenerated && "none elemental parts already generated"); // Clone all operations, except the elemental and the final yield. mlir::Block::OpListType &ops = region.back().getOperations(); assert(!ops.empty() && "yield block cannot be empty"); auto end = ops.end(); for (auto opIt = ops.begin(); std::next(opIt) != end; ++opIt) if (!elementalParts.contains(&*opIt)) (void)builder.clone(*opIt, mapper); noneElementalPartWasGenerated = true; } mlir::Value MaskedArrayExpr::generateShape(fir::FirOpBuilder &builder, mlir::IRMapping &mapper) { assert(noneElementalPartWasGenerated && "non elemental part must have been generated"); mlir::Operation &terminator = region.back().back(); // If the operation that produced the yielded entity is elemental, it was not // cloned, but it holds a shape argument that was cloned. Return the cloned // shape. if (auto elementalAddrOp = mlir::dyn_cast(terminator)) return mapper.lookupOrDefault(elementalAddrOp.getShape()); mlir::Value entity = mlir::cast(terminator).getEntity(); if (auto elemental = entity.getDefiningOp()) return mapper.lookupOrDefault(elemental.getShape()); // Otherwise, the whole entity was cloned, and the shape can be generated // from it. hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)}; return hlfir::genShape(loc, builder, hlfir::Entity{clonedEntity}); } mlir::Value MaskedArrayExpr::generateElementalParts(fir::FirOpBuilder &builder, mlir::ValueRange oneBasedIndices, mlir::IRMapping &mapper) { assert(noneElementalPartWasGenerated && "non elemental part must have been generated"); mlir::Operation &terminator = region.back().back(); hlfir::ElementalOpInterface elemental = mlir::dyn_cast(terminator); if (!elemental) { // If the terminator is not an hlfir.elemental_addr, try if the yielded // entity was produced by an hlfir.elemental. mlir::Value entity = mlir::cast(terminator).getEntity(); elemental = entity.getDefiningOp(); if (!elemental) { // The yielded entity was not produced by an elemental operation, // get its clone in the non elemental part evaluation and address it. hlfir::Entity clonedEntity{mapper.lookupOrDefault(entity)}; return hlfir::getElementAt(loc, builder, clonedEntity, oneBasedIndices); } } auto mustRecursivelyInline = [&](hlfir::ElementalOp appliedElemental) -> bool { return elementalParts.contains(appliedElemental.getOperation()); }; return inlineElementalOp(loc, builder, elemental, oneBasedIndices, mapper, mustRecursivelyInline); } void MaskedArrayExpr::generateNoneElementalCleanupIfAny( fir::FirOpBuilder &builder, mlir::IRMapping &mapper) { mlir::Operation &terminator = region.back().back(); mlir::Region *cleanupRegion = nullptr; if (auto elementalAddr = mlir::dyn_cast(terminator)) { cleanupRegion = &elementalAddr.getCleanup(); } else { auto yieldOp = mlir::cast(terminator); cleanupRegion = &yieldOp.getCleanup(); } if (cleanupRegion->empty()) return; for (mlir::Operation &op : cleanupRegion->front().without_terminator()) { if (auto destroy = mlir::dyn_cast(op)) if (elementalParts.contains(destroy.getExpr().getDefiningOp())) continue; (void)builder.clone(op, mapper); } } static hlfir::RegionAssignOp getAssignIfLeftHandSideRegion(mlir::Region ®ion) { auto assign = mlir::dyn_cast(region.getParentOp()); if (assign && (&assign.getLhsRegion() == ®ion)) return assign; return nullptr; } bool OrderedAssignmentRewriter::currentLoopNestIterationNumberCanBeComputed( llvm::SmallVectorImpl &loopNest) { if (constructStack.empty()) return true; mlir::Operation *outerLoop = constructStack[0]; mlir::Operation *currentConstruct = constructStack.back(); // Loop through the loops until the outer construct is met, and test if the // loop operands dominate the outer construct. while (currentConstruct) { if (auto doLoop = mlir::dyn_cast(currentConstruct)) { if (llvm::any_of(doLoop->getOperands(), [&](mlir::Value value) { return !dominanceInfo.properlyDominates(value, outerLoop); })) { return false; } loopNest.push_back(doLoop); } if (currentConstruct == outerLoop) currentConstruct = nullptr; else currentConstruct = currentConstruct->getParentOp(); } return true; } static mlir::Value computeLoopNestIterationNumber(mlir::Location loc, fir::FirOpBuilder &builder, llvm::ArrayRef loopNest) { mlir::Value loopExtent; for (fir::DoLoopOp doLoop : loopNest) { mlir::Value extent = builder.genExtentFromTriplet( loc, doLoop.getLowerBound(), doLoop.getUpperBound(), doLoop.getStep(), builder.getIndexType()); if (!loopExtent) loopExtent = extent; else loopExtent = builder.create(loc, loopExtent, extent); } assert(loopExtent && "loopNest must not be empty"); return loopExtent; } /// Return a name for temporary storage that indicates in which context /// the temporary storage was created. static llvm::StringRef getTempName(hlfir::OrderedAssignmentTreeOpInterface root) { if (mlir::isa(root.getOperation())) return ".tmp.forall"; if (mlir::isa(root.getOperation())) return ".tmp.where"; return ".tmp.assign"; } void OrderedAssignmentRewriter::generateSaveEntity( hlfir::SaveEntity savedEntity, bool willUseSavedEntityInSameRun) { mlir::Region ®ion = *savedEntity.yieldRegion; if (hlfir::RegionAssignOp regionAssignOp = getAssignIfLeftHandSideRegion(region)) { // Need to save the address, not the values. assert(!willUseSavedEntityInSameRun && "lhs cannot be used in the loop nest where it is saved"); return saveLeftHandSide(savedEntity, regionAssignOp); } mlir::Location loc = region.getParentOp()->getLoc(); // Evaluate the region inside the loop nest (if any). auto [clonedValue, oldYield] = generateYieldedEntity(region); hlfir::Entity entity{clonedValue}; entity = hlfir::loadTrivialScalar(loc, builder, entity); mlir::Type entityType = entity.getType(); llvm::StringRef tempName = getTempName(root); fir::factory::TemporaryStorage *temp = nullptr; if (constructStack.empty()) { // Value evaluated outside of any loops (this may be the first MASK of a // WHERE construct, or an LHS/RHS temp of hlfir.region_assign outside of // WHERE/FORALL). temp = insertSavedEntity( region, fir::factory::SimpleCopy(loc, builder, entity, tempName)); } else { // Need to create a temporary for values computed inside loops. // Create temporary storage outside of the loop nest given the entity // type (and the loop context). llvm::SmallVector loopNest; bool loopShapeCanBePreComputed = currentLoopNestIterationNumberCanBeComputed(loopNest); doBeforeLoopNest([&] { /// For simple scalars inside loops whose total iteration number can be /// pre-computed, create a rank-1 array outside of the loops. It will be /// assigned/fetched inside the loops like a normal Fortran array given /// the iteration count. if (loopShapeCanBePreComputed && fir::isa_trivial(entityType)) { mlir::Value loopExtent = computeLoopNestIterationNumber(loc, builder, loopNest); auto sequenceType = builder.getVarLenSeqTy(entityType).cast(); temp = insertSavedEntity(region, fir::factory::HomogeneousScalarStack{ loc, builder, sequenceType, loopExtent, /*lenParams=*/{}, allocateOnHeap, /*stackThroughLoops=*/true, tempName}); } else { // If the number of iteration is not known, or if the values at each // iterations are values that may have different shape, type parameters // or dynamic type, use the runtime to create and manage a stack-like // temporary. temp = insertSavedEntity( region, fir::factory::AnyValueStack{loc, builder, entityType}); } }); // Inside the loop nest (and any fir.if if there are active masks), copy // the value to the temp and do clean-ups for the value if any. temp->pushValue(loc, builder, entity); } // Delay the clean-up if the entity will be used in the same run (i.e., the // parent construct will be visited and needs to be lowered). When possible, // this is not done for hlfir.expr because this use would prevent the // hlfir.expr storage from being moved when creating the temporary in // bufferization, and that would lead to an extra copy. if (willUseSavedEntityInSameRun && (!temp->canBeFetchedAfterPush() || !mlir::isa(entity.getType()))) { auto inserted = savedInCurrentRunBeforeUse.try_emplace(®ion, entity, oldYield); assert(inserted.second && "entity must have been emplaced"); (void)inserted; } else { if (constructStack.empty() && mlir::isa(region.getParentOp())) { // Here the clean-up code is inserted after the original // RegionAssignOp, so that the assignment code happens // before the cleanup. We do this only for standalone // operations, because the clean-up is handled specially // during lowering of the parent constructs if any // (e.g. see generateNoneElementalCleanupIfAny for // WhereOp). auto insertionPoint = builder.saveInsertionPoint(); builder.setInsertionPointAfter(region.getParentOp()); generateCleanupIfAny(oldYield); builder.restoreInsertionPoint(insertionPoint); } else { generateCleanupIfAny(oldYield); } } } static bool rhsIsArray(hlfir::RegionAssignOp regionAssignOp) { auto yieldOp = mlir::dyn_cast( regionAssignOp.getRhsRegion().back().back()); return yieldOp && hlfir::Entity{yieldOp.getEntity()}.isArray(); } void OrderedAssignmentRewriter::saveLeftHandSide( hlfir::SaveEntity savedEntity, hlfir::RegionAssignOp regionAssignOp) { mlir::Region ®ion = *savedEntity.yieldRegion; mlir::Location loc = region.getParentOp()->getLoc(); LhsValueAndCleanUp loweredLhs = generateYieldedLHS(loc, region); fir::factory::TemporaryStorage *temp = nullptr; if (loweredLhs.vectorSubscriptLoopNest) constructStack.push_back(loweredLhs.vectorSubscriptLoopNest->outerLoop); if (loweredLhs.vectorSubscriptLoopNest && !rhsIsArray(regionAssignOp)) { // Vector subscripted entity for which the shape must also be saved on top // of the element addresses (e.g. the shape may change in each forall // iteration and is needed to create the elemental loops). mlir::Value shape = loweredLhs.vectorSubscriptShape.value(); int rank = mlir::cast(shape.getType()).getRank(); const bool shapeIsInvariant = constructStack.empty() || dominanceInfo.properlyDominates(shape, constructStack[0]); doBeforeLoopNest([&] { // Outside of any forall/where/elemental loops, create a temporary that // will both be able to save the vector subscripted designator shape(s) // and element addresses. temp = insertSavedEntity(region, fir::factory::AnyVectorSubscriptStack{ loc, builder, loweredLhs.lhs.getType(), shapeIsInvariant, rank}); }); // Save shape before the elemental loop nest created by the vector // subscripted LHS. auto &vectorTmp = temp->cast(); auto insertionPoint = builder.saveInsertionPoint(); builder.setInsertionPoint(loweredLhs.vectorSubscriptLoopNest->outerLoop); vectorTmp.pushShape(loc, builder, shape); builder.restoreInsertionPoint(insertionPoint); } else { // Otherwise, only save the LHS address. // If the LHS address dominates the constructs, its SSA value can // simply be tracked and there is no need to save the address in memory. // Otherwise, the addresses are stored at each iteration in memory with // a descriptor stack. if (constructStack.empty() || dominanceInfo.properlyDominates(loweredLhs.lhs, constructStack[0])) doBeforeLoopNest([&] { temp = insertSavedEntity(region, fir::factory::SSARegister{}); }); else doBeforeLoopNest([&] { temp = insertSavedEntity( region, fir::factory::AnyVariableStack{loc, builder, loweredLhs.lhs.getType()}); }); } temp->pushValue(loc, builder, loweredLhs.lhs); generateCleanupIfAny(loweredLhs.elementalCleanup); if (loweredLhs.vectorSubscriptLoopNest) { constructStack.pop_back(); builder.setInsertionPointAfter( loweredLhs.vectorSubscriptLoopNest->outerLoop); } } /// Lower an ordered assignment tree to fir.do_loop and hlfir.assign given /// a schedule. static void lower(hlfir::OrderedAssignmentTreeOpInterface root, mlir::PatternRewriter &rewriter, hlfir::Schedule &schedule) { auto module = root->getParentOfType(); fir::FirOpBuilder builder(rewriter, module); OrderedAssignmentRewriter assignmentRewriter(builder, root); for (auto &run : schedule) assignmentRewriter.lowerRun(run); assignmentRewriter.cleanupSavedEntities(); } /// Shared rewrite entry point for all the ordered assignment tree root /// operations. It calls the scheduler and then apply the schedule. static mlir::LogicalResult rewrite(hlfir::OrderedAssignmentTreeOpInterface root, bool tryFusingAssignments, mlir::PatternRewriter &rewriter) { hlfir::Schedule schedule = hlfir::buildEvaluationSchedule(root, tryFusingAssignments); LLVM_DEBUG( /// Debug option to print the scheduling debug info without doing /// any code generation. The operations are simply erased to avoid /// failing and calling the rewrite patterns on nested operations. /// The only purpose of this is to help testing scheduling without /// having to test generated code. if (dbgScheduleOnly) { rewriter.eraseOp(root); return mlir::success(); }); lower(root, rewriter, schedule); rewriter.eraseOp(root); return mlir::success(); } namespace { class ForallOpConversion : public mlir::OpRewritePattern { public: explicit ForallOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments) : OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {} mlir::LogicalResult matchAndRewrite(hlfir::ForallOp forallOp, mlir::PatternRewriter &rewriter) const override { auto root = mlir::cast( forallOp.getOperation()); if (mlir::failed(::rewrite(root, tryFusingAssignments, rewriter))) TODO(forallOp.getLoc(), "FORALL construct or statement in HLFIR"); return mlir::success(); } const bool tryFusingAssignments; }; class WhereOpConversion : public mlir::OpRewritePattern { public: explicit WhereOpConversion(mlir::MLIRContext *ctx, bool tryFusingAssignments) : OpRewritePattern{ctx}, tryFusingAssignments{tryFusingAssignments} {} mlir::LogicalResult matchAndRewrite(hlfir::WhereOp whereOp, mlir::PatternRewriter &rewriter) const override { auto root = mlir::cast( whereOp.getOperation()); return ::rewrite(root, tryFusingAssignments, rewriter); } const bool tryFusingAssignments; }; class RegionAssignConversion : public mlir::OpRewritePattern { public: explicit RegionAssignConversion(mlir::MLIRContext *ctx) : OpRewritePattern{ctx} {} mlir::LogicalResult matchAndRewrite(hlfir::RegionAssignOp regionAssignOp, mlir::PatternRewriter &rewriter) const override { auto root = mlir::cast( regionAssignOp.getOperation()); return ::rewrite(root, /*tryFusingAssignments=*/false, rewriter); } }; class LowerHLFIROrderedAssignments : public hlfir::impl::LowerHLFIROrderedAssignmentsBase< LowerHLFIROrderedAssignments> { public: void runOnOperation() override { // Running on a ModuleOp because this pass may generate FuncOp declaration // for runtime calls. This could be a FuncOp pass otherwise. auto module = this->getOperation(); auto *context = &getContext(); mlir::RewritePatternSet patterns(context); // Patterns are only defined for the OrderedAssignmentTreeOpInterface // operations that can be the root of ordered assignments. The other // operations will be taken care of while rewriting these trees (they // cannot exist outside of these operations given their verifiers/traits). patterns.insert( context, this->tryFusingAssignments.getValue()); patterns.insert(context); mlir::ConversionTarget target(*context); target.markUnknownOpDynamicallyLegal([](mlir::Operation *op) { return !mlir::isa(op); }); if (mlir::failed(mlir::applyPartialConversion(module, target, std::move(patterns)))) { mlir::emitError(mlir::UnknownLoc::get(context), "failure in HLFIR ordered assignments lowering pass"); signalPassFailure(); } } }; } // namespace std::unique_ptr hlfir::createLowerHLFIROrderedAssignmentsPass() { return std::make_unique(); }