# REQUIRES: x86 # RUN: llvm-mc -filetype=obj -triple=i386 %s -o %t.o # RUN: ld.lld -shared -z now %t.o -o %t.so # RUN: llvm-readobj -r %t.so | FileCheck --check-prefix=LD-REL %s # RUN: llvm-objdump --no-print-imm-hex -d --no-show-raw-insn %t.so | FileCheck --check-prefix=LD %s # RUN: ld.lld -z now %t.o -o %t # RUN: llvm-readelf -r %t | FileCheck --check-prefix=NOREL %s # RUN: llvm-objdump --no-print-imm-hex -d --no-show-raw-insn %t | FileCheck --check-prefix=LE %s ## Check _TLS_MODULE_BASE_ used by LD produces a dynamic relocation with a value of 0. # LD-REL: .rel.dyn { # LD-REL-NEXT: R_386_TLS_DESC - # LD-REL-NEXT: } ## 0x2318-0x1267 = 4273 ## dtpoff(a) = 8, dtpoff(b) = 12 # LD: leal -8(%ebx), %eax # LD-NEXT: calll *(%eax) # LD-NEXT: leal 8(%eax), %ecx # LD-NEXT: leal 12(%eax), %edx ## When producing an executable, the LD code sequence can be relaxed to LE. ## It is the same as GD->LE. ## tpoff(_TLS_MODULE_BASE_) = 0, tpoff(a) = -8, tpoff(b) = -4 # NOREL: no relocations # LE: leal 0, %eax # LE-NEXT: nop # LE-NEXT: leal -8(%eax), %ecx # LE-NEXT: leal -4(%eax), %edx # LE-NEXT: addl %gs:0, %ecx # LE-NEXT: addl %gs:0, %edx leal _TLS_MODULE_BASE_@tlsdesc(%ebx), %eax call *_TLS_MODULE_BASE_@tlscall(%eax) leal a@dtpoff(%eax), %ecx leal b@dtpoff(%eax), %edx addl %gs:0, %ecx addl %gs:0, %edx .section .tbss .zero 8 a: .zero 4 b: .zero 4