; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py ; RUN: opt -passes='print' -disable-output %s 2>&1 | FileCheck %s ; Tests for PR47904. define void @test_trip_multiple_4(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp uge i32 %num, 4 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_guard(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_guard' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_guard ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_guard ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 call void(i1, ...) @llvm.experimental.guard(i1 %cmp) [ "deopt"() ] %cmp.1 = icmp uge i32 %num, 4 call void(i1, ...) @llvm.experimental.guard(i1 %cmp.1) [ "deopt"() ] br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_ugt_5(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_ugt_5' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_ugt_5 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_ugt_5 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp ugt i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_ugt_5_order_swapped(i32 %num) { ; TODO: Trip multiple can be 4, it is missed due to the processing order of the assumes. ; CHECK-LABEL: 'test_trip_multiple_4_ugt_5_order_swapped' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_ugt_5_order_swapped ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_ugt_5_order_swapped ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp.1 = icmp ugt i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_sgt_5(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_sgt_5' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_sgt_5 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_sgt_5 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 2147483646 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp sgt i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp slt i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_sgt_5_order_swapped(i32 %num) { ; TODO: Trip multiple can be 4, it is missed due to the processing order of the assumes. ; CHECK-LABEL: 'test_trip_multiple_4_sgt_5_order_swapped' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_sgt_5_order_swapped ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_sgt_5_order_swapped ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 2147483646 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp.1 = icmp sgt i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp slt i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_uge_5(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_uge_5' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_uge_5 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_uge_5 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_uge_5_order_swapped(i32 %num) { ; TODO: Trip multiple can be 4, it is missed due to the processing order of the assumes. ; CHECK-LABEL: 'test_trip_multiple_4_uge_5_order_swapped' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_uge_5_order_swapped ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_uge_5_order_swapped ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_sge_5(i32 %num) { ; TODO: Trip multiple can be 4, it is missed due to the processing order of the assumes. ; CHECK-LABEL: 'test_trip_multiple_4_sge_5' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_sge_5 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_sge_5 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 2147483646 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp sge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp slt i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_sge_5_order_swapped(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_sge_5_order_swapped' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_sge_5_order_swapped ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,2147483647) S: [0,2147483647) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_sge_5_order_swapped ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is 2147483646 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 %cmp.1 = icmp sge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp slt i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } ; Same as @test_trip_multiple_4 but with the icmp operands swapped. define void @test_trip_multiple_4_icmp_ops_swapped(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_icmp_ops_swapped' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_icmp_ops_swapped ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_icmp_ops_swapped ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 0, %u tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp uge i32 %num, 4 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_upper_lower_bounds(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_upper_lower_bounds' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_upper_lower_bounds ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_upper_lower_bounds ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.2 = icmp ult i32 %num, 59000 tail call void @llvm.assume(i1 %cmp.2) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_upper_lower_bounds_swapped1(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_upper_lower_bounds_swapped1' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_upper_lower_bounds_swapped1 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_upper_lower_bounds_swapped1 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.2 = icmp ult i32 %num, 59000 tail call void @llvm.assume(i1 %cmp.2) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_4_upper_lower_bounds_swapped2(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_upper_lower_bounds_swapped2' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_upper_lower_bounds_swapped2 ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_upper_lower_bounds_swapped2 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 4 ; entry: %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) %cmp.2 = icmp ult i32 %num, 59000 tail call void @llvm.assume(i1 %cmp.2) %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trip_multiple_5(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_5' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_5 ; CHECK-NEXT: %u = urem i32 %num, 5 ; CHECK-NEXT: --> ((-5 * (%num /u 5)) + %num) U: full-set S: full-set ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-2147483648) S: [0,-2147483648) Exits: (-1 + %num) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add nuw nsw i32 %i.010, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-2147483648) S: [1,-2147483648) Exits: %num LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_5 ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -2 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %num) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %num) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 5 ; entry: %u = urem i32 %num, 5 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) %cmp.1 = icmp uge i32 %num, 5 tail call void @llvm.assume(i1 %cmp.1) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add nuw nsw i32 %i.010, 1 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } define void @test_trunc_operand_larger_than_urem_expr(i64 %N) { ; CHECK-LABEL: 'test_trunc_operand_larger_than_urem_expr' ; CHECK-NEXT: Classifying expressions for: @test_trunc_operand_larger_than_urem_expr ; CHECK-NEXT: %conv = trunc i64 %N to i32 ; CHECK-NEXT: --> (trunc i64 %N to i32) U: full-set S: full-set ; CHECK-NEXT: %and = and i32 %conv, 1 ; CHECK-NEXT: --> (zext i1 (trunc i64 %N to i1) to i32) U: [0,2) S: [0,2) ; CHECK-NEXT: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] ; CHECK-NEXT: --> {0,+,1}<%for.body> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: (-1 + %N) LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %iv.next = add nuw nsw i64 %iv, 1 ; CHECK-NEXT: --> {1,+,1}<%for.body> U: [1,-9223372036854775808) S: [1,-9223372036854775808) Exits: %N LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trunc_operand_larger_than_urem_expr ; CHECK-NEXT: Loop %for.body: backedge-taken count is (-1 + %N) ; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is -1 ; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is (-1 + %N) ; CHECK-NEXT: Loop %for.body: Predicated backedge-taken count is (-1 + %N) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: Loop %for.body: Trip multiple is 1 ; entry: %conv = trunc i64 %N to i32 %and = and i32 %conv, 1 %cmp.pre = icmp eq i32 %and, 0 br i1 %cmp.pre, label %for.body, label %exit for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %iv.next = add nuw nsw i64 %iv, 1 %cmp.1 = icmp ne i64 %iv.next, %N br i1 %cmp.1, label %for.body, label %exit exit: ret void } ; TODO: Even though %num is known to divide by 4, and the loop's IV advances by 4, SCEV can't compute the trip count. define void @test_trip_multiple_4_vectorized_iv(i32 %num) { ; CHECK-LABEL: 'test_trip_multiple_4_vectorized_iv' ; CHECK-NEXT: Classifying expressions for: @test_trip_multiple_4_vectorized_iv ; CHECK-NEXT: %u = urem i32 %num, 4 ; CHECK-NEXT: --> (zext i2 (trunc i32 %num to i2) to i32) U: [0,4) S: [0,4) ; CHECK-NEXT: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] ; CHECK-NEXT: --> {0,+,4}<%for.body> U: [0,-3) S: [-2147483648,2147483645) Exits: <> LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: %inc = add i32 %i.010, 4 ; CHECK-NEXT: --> {4,+,4}<%for.body> U: [0,-3) S: [-2147483648,2147483645) Exits: <> LoopDispositions: { %for.body: Computable } ; CHECK-NEXT: Determining loop execution counts for: @test_trip_multiple_4_vectorized_iv ; CHECK-NEXT: Loop %for.body: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %for.body: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %for.body: Unpredictable symbolic max backedge-taken count. ; CHECK-NEXT: Loop %for.body: Unpredictable predicated backedge-taken count. ; entry: %u = urem i32 %num, 4 %cmp = icmp eq i32 %u, 0 tail call void @llvm.assume(i1 %cmp) br label %for.body for.body: %i.010 = phi i32 [ 0, %entry ], [ %inc, %for.body ] %inc = add i32 %i.010, 4 %cmp2 = icmp ult i32 %inc, %num br i1 %cmp2, label %for.body, label %exit exit: ret void } declare void @llvm.assume(i1) declare void @llvm.experimental.guard(i1, ...)