
53

Kind Inference for Datatypes

NINGNING XIE, The University of Hong Kong, China

RICHARD A. EISENBERG, Bryn Mawr College, USA and Tweag I/O, United Kingdom

BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

In recent years, languages like Haskell have seen a dramatic surge of new features that significantly extends

the expressive power of their type systems. With these features, the challenge of kind inference for datatype

declarations has presented itself and become a worthy research problem on its own.

This paper studies kind inference for datatypes. Inspired by previous research on type-inference, we offer

declarative specifications for what datatype declarations should be accepted, both for Haskell98 and for a more

advanced system we call PolyKinds, based on the extensions in modern Haskell, including a limited form of

dependent types. We believe these formulations to be novel and without precedent, even for Haskell98. These

specifications are complemented with implementable algorithmic versions. We study soundness, completeness

and the existence of principal kinds in these systems, proving the properties where they hold. This work can

serve as a guide both to language designers who wish to formalize their datatype declarations and also to

implementors keen to have principled inference of principal types.

CCS Concepts: ·Theory of computation→Type theory; · Software and its engineering→ Functional

languages; Polymorphism; Data types and structures.

Additional Key Words and Phrases: Haskell, Dependent Types

ACM Reference Format:

Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. 2020. Kind Inference for Datatypes. Proc.

ACM Program. Lang. 4, POPL, Article 53 (January 2020), 28 pages. https://doi.org/10.1145/3371121

1 INTRODUCTION

Modern functional languages such as Haskell, ML, and OCaml come with powerful forms of type
inference. The global type-inference algorithms employed in those languages are derived from
the Hindley-Milner type system (HM) [Damas and Milner 1982; Hindley 1969], with multiple
extensions. As the languages evolve, researchers also formalize the key aspects of type inference
for the new extensions. Common extensions of HM include higher-ranked polymorphism [Odersky
and Läufer 1996; Peyton Jones et al. 2007] and type-inference for GADTs [Peyton Jones et al. 2006],
which have both been formally studied thoroughly.

Most research work for extensions of HM so far has focused on forms of polymorphism (such as
support for impredicativity [Le Botlan and Rémy 2003; Leijen 2009; Rémy and Yakobowski 2008;
Serrano et al. 2018; Vytiniotis et al. 2008]), where type variables all have the same kind. In these
systems, the type variables introduced by universal quantifiers and/or type declarations all stand
for proper types (i.e., they have kind ⋆). In such a simplified setting, datatype declarations such as

Authors’ addresses: Ningning Xie, The University of Hong Kong, Department of Computer Science, Hong Kong, China,

nnxie@cs.hku.hk; Richard A. Eisenberg, Bryn Mawr College, Department of Computer Science, Bryn Mawr, PA, USA,

Tweag I/O, United Kingdom, rae@richarde.dev; Bruno C. d. S. Oliveira, The University of Hong Kong, Department of

Computer Science, Hong Kong, China, bruno@cs.hku.hk.

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART53

https://doi.org/10.1145/3371121

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3371121
https://doi.org/10.1145/3371121

53:2 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

data Maybe a = Nothing | Just a pose no problem at all for type inference: with only one possible
kind for a, there is nothing to infer.
However, real-world implementations for languages like Haskell support a non-trivial kind

language, including kinds other than⋆. Haskell98 accepts higher-kinded polymorphism [Jones 1995],
enabling datatype declarations such as data AppInt f = Mk (f Int). The type of constructor Mk

applies the type variable f to an argument Int . Accordingly, AppInt Bool would not work, as the
type Bool Int (in the instantiated type of Mk) is invalid. Instead, we must write something like
AppInt Maybe: the argument to AppInt must be suitable for applying to Int . In Haskell98, AppInt
has kind (⋆→ ⋆) → ⋆. For Haskell98-style higher-kinded polymorphism, Jones [1995] presents
one of the few extensions of HM that deals with a non-trivial language of kinds. His work addresses
the related problem of inference for constructor type classes, although he does not show directly
how to do inference for datatype declarations.
Modern Haskell1 has a much richer type and kind language compared to Haskell98. In recent

years, Haskell has seen a dramatic surge of new features that extend the expressive power of
algebraic datatypes. Such features include GADTs, kind polymorphism [Yorgey et al. 2012] with
implicit kind arguments, and dependent kinds [Weirich et al. 2013], among others. With great power
comes great responsibility: now we must be able to infer these kinds, too. For instance, consider
these datatype declarations:

data App f a = MkApp (f a)

data Fix f = In (f (Fix f))

data T = MkT1 (App Maybe Int)

| MkT2 (App Fix Maybe) -- accept or reject?

Should the declaration for T be accepted or rejected? In a Haskell98 setting, the kind of App
is (⋆ → ⋆) → ⋆ → ⋆. Therefore T should be rejected, because in MkT2 the datatype App is
applied to Fix :: (⋆ → ⋆) → ⋆ and Maybe :: ⋆ → ⋆, which do not match the expected kinds of
App. However, with kind polymorphism, T is accepted, because App has the more general kind
∀k . (k → ⋆) → k → ⋆. With this kind, both uses of App in T are valid.
The questions we ask in this paper are these:Which datatype declarations should be accepted?

What kinds do accepted datatypes have? Surprisingly, the literature is essentially silent on these
questionsÐwe are unaware of any formal treatment of kind inference for datatype declarations.
Inspired by previous research on type inference, we offer declarative specifications for two

languages: Haskell98, as standardized [Peyton Jones 2003] (Section 3); and PolyKinds, a significant
fragment of modern Haskell (Section 6). These specifications are complemented with algorithmic
versions that can guide implementations (Sections 4 and 7). To relate the declarative and algorithmic
formulations we study various properties, including soundness, completeness, and the existence of
principal kinds (Sections 4.7, 5, and 7.6).
We offer the following contributions:
• Kind inference for Haskell98: We formalize Haskell98’s datatype declarations, providing
both a declarative specification and syntax-driven algorithm for kind inference. We prove that
the algorithm is sound and observe how Haskell98’s technique of defaulting unconstrained
kinds to ⋆ leads to incompleteness. We believe that ours is the first formalization of this
aspect of Haskell98. Its inclusion in this paper both sheds light on this historically important
language and also prepares us for the more challenging features of modern Haskell.

• Completeness for Haskell98 kind inference: To model the Haskell98 behavior of de-
faulting declaratively, and thus to achieve completeness, Section 5 proposes a variant of the
declarative system that adapts the type parameters approach from Garcia and Cimini [2015].

• Kind inference for modern Haskell: We present a type and kind language that is unified
and dependently typed, modeling the challenging features for kind inference in modern

1We consider the Glasgow Haskell Compiler’s implementation of Haskell, in version 8.8.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:3

Haskell. We include both a declarative specification (Section 6) and a syntax-driven algorithm
(Section 7). The algorithm is proved sound, and we observe where and why completeness
fails. In the design of our algorithm, we must choose between completeness and termination;
we favor termination but conjecture that an alternative design would regain completeness
(Section 9). Unlike other dependently typed languages, we retain the ability to infer top-level
kinds instead of relying on compulsory annotations.

• Technical advances: This work introduces a number of technical innovations that appear
important in the implementation of type-inference for a dependently typed language. We
expect implementations to have developed these ideas independently, but this paper provides
their first known formalization. These innovations include promotion (Sections 4.6 and 7.4),
local scopes and moving (Section 7.4), and the quantification check (Section 7.2). In addition,
our kind-directed unification appears to risk divergence, yet we provide a subtle proof that it
is indeed terminating.

Our type systems are detailed, and many rules are elided to save space. The full judgmentsÐand
all proofs of stated lemmas and theoremsÐare provided in the technical supplement2. In addition,
we have included there a detailed comparison of our work here to the GHC implementation. It is our
belief that this study can help inform the design of principled inference algorithms for languages
beyond Haskell, as well as to guide the continued evolution of GHC’s kind inference algorithm.

2 OVERVIEW

This section gives an overview of our work. We start by contrasting kind inference with type
inference, and then summarize the key aspects of the two systems of datatypes that we develop.

2.1 Kind Inference in Haskell98

Haskell98’s kind language contains a constant (the kind ⋆) and kinds built from arrows (k1 → k2).
Kind inference for Haskell98 datatypes is thus closely related to type inference for the simply
typed λ-calculus (STLC). For example, consider a term + :: Int → Int → Int and a type constructor
⊕ :: ⋆→ ⋆→ ⋆. At the term level, we infer that add a b = a + b yields add :: Int → Int → Int .
Similarly, we can create a datatype data Add a b = Add (a ⊕ b) and infer Add ::⋆→ ⋆→ ⋆.

No principal types. Consider now the function definition k a = 1. In the STLC, there are infinitely
many (incomparable) types that can be assigned to k, including k :: Int → Int and k :: (Int →

Int) → Int . Assuming there are no type variables, the STLC accordingly has no principal types.
An analogous datatype declaration is data K a = K Int . As with k, there are infinitely many
(incomparable) kinds that can be assigned to K , including K ::⋆→ ⋆ and K :: (⋆→ ⋆) → ⋆.

Defaulting. Definitions like k (in STLC) or K (in Haskell98) do not have a principal type/kind,
which raises the immediate question of what type/kind to infer. Haskell98 solves this problem
by using a defaulting strategy: if the kind of a type variable cannot be inferred, then it is defaulted

to ⋆. Therefore the kind of K in Haskell98 is ⋆ → ⋆. From the perspective of type inference,
such defaulting strategy may seem somewhat ad-hoc, but due to the role that ⋆ plays at the type
level it seems a defensible design for kind inference. Defaulting brings complications in writing a
declarative specification. We discuss this point further in Section 4.3.

2.2 Kind Inference in Modern GHC Haskell

The type and kind languages for modern GHC are unified (i.e., types and kinds are indistinguishable),
dependently typed, and the kind system includes the⋆ ::⋆ axiom [Cardelli 1986; Weirich et al. 2013].
We informally use the word type or kind where we find it appropriate. Unlike Haskell98’s datatypes,

2http://arxiv.org/abs/1911.06153.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

http://arxiv.org/abs/1911.06153

53:4 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

whose inference problem is quite closely related to the well-studied inference problem for STLC,
type inference for various features in modern Haskell is not well-studied. While we are motivated
concretely by Haskell, many of the challenges we face would be present in any dependently typed
language seeking principled type inference. We use the term PolyKinds to refer to the fragment of
modern Haskell we model.3 We enumerate the key features of this fragment below.

Kind polymorphism and dependent types. Global type inference, in the style of Damas and Milner
[1982], allows polymorphic kinds to be assigned to datatype definitions. For instance, reconsider
data K a = K Int . In PolyKinds, K can be given the kind K ::∀{k }. k → ⋆. This example shows one
of the interesting new features of PolyKinds over Haskell98: kind polymorphism [Yorgey et al. 2012].
The polymorphic kind is obtained via generalization, which is a standard feature in Damas-Milner
algorithms. Polymorphic types are helpful for recovering principal types, since they generalize
many otherwise incomparable monomorphic types.

System-F-based languages do not have dependent types. In contrast, PolyKinds supports depen-
dent kinds such as data D :: ∀(k ::⋆) (a :: k). K a → ⋆. There are two noteworthy aspects about the
kind of D. Firstly, kind and type variables are typed: different type variables may have different
kinds. Secondly, the kinds of later variables can depend on earlier ones. In D, the kind of a depends
on k. Both typed variables and dependent kinds bring technical complications that do not exist in
many previous studies of type inference (e.g., [Peyton Jones et al. 2007; Vytiniotis et al. 2011]).

First-order unification with dependent kinds and typed variables. Although PolyKinds is depen-
dently typed, its unification problem is remarkably first-order. This is in contrast to many other
dependently typed languages, where unification is usually higher-order [Andrews 1971; Huet 1973].
Since unification plays a central role in inference algorithms this is a crucial difference. Higher-order
unification is well-known to be undecidable in the general case [Goldfarb 1981]. As a consequence,
type-inference algorithms for most dependently typed languages make various trade-offs.
A key reason why unification can be kept as a first-order problem in PolyKinds is because the

type language does not include lambdas. Type-level lambdas have been avoided since the start in
Haskell, since they bring major challenges for (term-level) type inference [Jones 1995].

The unification problem for PolyKinds is still challenging, compared to unification for System-F-
like languages: unification must be kind-directed, as first observed at the term level by Jones [1995].
Consider the following (contrived) example:

data X :: ∀a (b ::⋆→ ⋆). a b → ⋆ -- accepted

data Y :: ∀(c ::Maybe Bool). X c → ⋆ -- rejected

In X ’s kind, we discover a :: (⋆ → ⋆) → ⋆. When checking Y ’s kind, we must infer how to
instantiate X : that is, we must choose a and b so that a b unifies withMaybe Bool, which is c’s kind.
It is tempting to solve this with a 7→ Maybe and b 7→ Bool, but doing so would be ill-kinded, as a
andMaybe have different kinds. Our unification thus features heterogeneous constraints [Gundry
2013]. When solving a unification variable, we need to first unify the kinds on both sides.

Because unification recurs into kinds, and because types are undifferentiated from kinds, it might
seem that unification might not terminate. In Section 7.4 we show that the first-order unification
with heterogeneous constraints employed in PolyKinds is guaranteed to terminate.

Mutual and polymorphic recursion. Recursion and mutual recursion are omnipresent in datatype
declarations. In PolyKinds, mutually recursive definitions will be kinded together and then get
generalized together. For example, both P and Q get kind ∀(k ::⋆). k → ⋆.

3Some of the features we model are slightly different in our presentation than they exist in GHC. The technical supplement

outlines the differences. These minor differences do not affect the applicability of our work to improving the GHC

implementations, but they may affect the ability to test our examples in GHC.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:5

data P a = MkP (Q a)

data Q a = MkQ (P a)

The recursion is simple here: all recursive occurrences are at the same type. In existing type-
inference algorithms, such recursive definitions are well understood and do not bring considerable
complexity to type inference. However, we must also consider polymorphic recursion as in Poly :

data Poly :: ∀k . k → ⋆

data Poly k = C1 (Poly Int) | C2 (Poly Maybe)

This example includes a kind signature, meaning that we must check the kind of the datatype, not
infer it. In the definition of Poly , the type Poly Int requires an instantiation k 7→ ⋆, while the type
Poly Maybe requires an instantiation of k 7→ (⋆→ ⋆). These differing instantiations cause the
declaration to be polymorphic recursive.

PolyKinds deals with such cases of polymorphic recursion, which also appear at the term levelÐ
for example, when writing recursive functions over GADTs or nested datatypes [Bird and Meertens
1998]. Polymorphic recursion is known to render type-inference undecidable [Henglein 1993].
Furthermore, most existing formalizations of type inference avoid the question entirely, either by
not modeling recursion at all or not allowing polymorphic recursion. Our PolyKinds system has
full support for polymorphic recursion, implemented directly without the use of a fix operator.
Polymorphic recursion is allowed only on datatypes with a kind signature; other datatypes are
treated as monomorphic during inference.

Visible kind application. PolyKinds lifts visible type application (VTA) [Eisenberg et al. 2016],
whereby we can explicitly instantiate a function call, as in id @Bool True, to kinds, giving us
visible kind application (VKA). Following the design of VTA, we distinguish specified variables from
inferred variables. As described by Eisenberg et al. [2016, Section 3.1], only specified variables can
be instantiated via VKA. Instantiation of variables is inferred when no explicit kind application is
given. To illustrate, consider data T :: ∀a b. a b → ⋆. Here, a and b are specified variables. Because
their order is given, explicit instantiation of a must happen before b. For example, T @Maybe

instantiates a toMaybe. On the other hand, the kind of a and b can be generalized to a :: k → ⋆ and
b :: k. Elaborating the kind of T , we write T :: ∀{k ::⋆} (a :: k → ⋆) (b :: k). a b → ⋆. The variable k
is inferred and is not available for instantiation with VKA. This split between specified and inferred
variables supports predictable type inference: if the variables invented by the compiler (e.g., k)
were available for instantiation, then we have no way of knowing what order to instantiate them.

Open kind signatures and generalization order. Echoing the design of Haskell, PolyKinds supports
open kind signatures. We say a signature is closed if it contains no free variables (e.g., data T ::∀a. a →

⋆). Otherwise, it is open (e.g., data Q :: ∀(a :: (f b)) (c :: k). f c → ⋆). Free variables (in this case, f ,
b, k) will be generalized over. We have a decision to make: in which order do we generalize the
free variables? This question is non-trivial, as there can be dependency between the variables. We
infer k ::⋆, f :: k → ⋆, b :: k. Even though f and b appear before k, their kinds end up depending
on k and we must quantify k before f and b. Inferring this order is a challenge: we cannot know
the correct order before completing inference. We thus introduce local scopes, which are sets of
variables that may be reordered. Since the ordering is not fixed by the programmer, these variables
are considered inferred, not specified, with respect to VKA.

Existential quantification. PolyKinds supports existentially quantified variables on datatype
constructors. This is useful, for example, to model GADTs. Given data T1 = ∀a.MkT1 a, we get
MkT1 :: ∀(a :: ⋆). a → T1. The type of the data constructor declaration can also be generalized.
Given data P1 :: ∀(a :: ⋆). ⋆, from data T2 = MkT2 P1, we infer MkT2 :: ∀{a :: ⋆}. P1 @a → T2,
where P1 is elaborated to P1 @a with a generalized as an inferred variable.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:6 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

program pgm F recTi
i
; pgm | e polytype σ F ∀ai : κi

i .τ

datatype decl. T F data T ai
i
= Dj

j
monotype τ F Int | a | T | τ1 τ2 |→

data c’tor decl. D F D τi
i kind κ F ⋆ | κ1 → κ2

expression e F . . . term context Ψ F • | Ψ,D : σ
type context Σ F • | Σ, a : κ | Σ,T : κ

Σ;Ψ ⊢pgm pgm : σ (Typing Program)

pgm-expr

Σ;Ψ ⊢ e : σ

Σ;Ψ ⊢pgm e : σ

pgm-dt

Σ
′
= Σ, Ti : κi

i
Σ′ ⊢dt Ti { Ψi

i
Σ
′;Ψ, Ψi

i
⊢pgm pgm : σ

Σ;Ψ ⊢pgm recTi
i
; pgm : σ

Σ ⊢dt T { Ψ (Typing Datatype Decl.)dt-decl

(T : κi
i → ⋆) ∈ Σ Σ, ai : κi

i ⊢dc
T ai

i Dj { τj
j

Σ ⊢dt data T ai
i
= Dj

j
{ Dj : ∀ai : κi

i .τj
j

Σ ⊢dcτ D { τ ′ (Typing Data Constructor Decl.)dc-decl

Σ ⊢k τi
i → τ : ⋆

Σ ⊢dcτ D τi
i
{ τi

i → τ

Σ ⊢k τ : κ (Kinding)
k-var

(a : κ) ∈ Σ

Σ ⊢k a : κ

k-tcon

(T : κ) ∈ Σ

Σ ⊢k T : κ

k-nat

Σ ⊢k Int : ⋆

k-arrow

Σ ⊢k→: ⋆ → ⋆ → ⋆

k-app

Σ ⊢k τ1 : κ1 → κ2 Σ ⊢k τ2 : κ1

Σ ⊢k τ1 τ2 : κ2

Fig. 1. Declarative specification of Haskell98 datatype declarations

2.3 Desirable Properties for Kind Inference

One goal in writing this paper is to provide concrete, principled guidance to implementors of
dependently typed languages, such as GHC/Haskell. It is thus important to be able to describe
our inference algorithm as sound and complete against a declarative specification. This declarative
specification is what we might imagine a programmer to have in her head as she programs. This
system should be designed with a minimum of low-level detail and a minimum of surprises. It is
then up to an algorithm to live up to the expectations set by the specification. The algorithm is
sound when all programs it accepts are also accepted by the specification; it is complete when all
programs accepted by the specification are accepted by the algorithm.
Why choose the particular set of features described here? Because they lead to interesting

kind inference challenges. We have found that the features above are sufficient in exploring kind
inference in modern Haskell. We consider unformalized extensions in Section 8.

3 DATATYPES IN HASKELL98

We begin our formal presentation with Haskell98. The fragment of the syntax of Haskell98 that
concerns us appears at the top of Figure 1, including datatype declarations, types, kinds, and contexts.
The metavariable e refers to expressions, but we do not elaborate the details of expressions’ syntax
or typing rules here. A program pgm is a sequence of groups (defined below) of datatype declarations
T , followed by an expression e. We write τ1 → τ2 as an abbreviation for (→)τ1 τ2.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:7

3.1 Groups and Dependency Analysis

Users are free to write declarations in any order: earlier declarations can depend on later ones in
the same compilation unit. However, any kind-checking algorithm must process the declarations in
dependency order. Complicating this is that type declarations may be mutually recursive. A formal
analysis of this dependency analysis is not enlightening, so we consider it to be a preprocessing step
that produces the grammar in Figure 1. This dependency analysis breaks up the (unordered) raw
input into mutually recursive groups (potentially containing just one declaration), and puts these
in dependency order. We use the term group to describe a set of mutually recursive declarations.

3.2 Declarative Typing Rules

The declarative typing rules are in Figure 1. There are no surprises here; we review these rules
briefly. The top judgment is Σ;Ψ ⊢pgm pgm : σ . Its rule pgm-dt extends the input type context
Σ with kinds for the datatype declarations to form Σ

′, which is used to check both the datatype

declarations and the rest of the program. In rule pgm-dt, we implicitly extract the names T
i
from

the declarations T
i
(and use this abuse of notation throughout our work, relating T to T and D

to D). The kinds are guessed for an entire group all at once: they are added to the context before
looking at the declarations. This is needed because the declarations in the group refer to one another.
Guessing the right answer is typical of declarative type systems. The algorithmic system presented
in Section 4 provides a mechanism for an implementation. Although there is no special judgment

for typing a group of mutually recursive datatypes, we use Σ ⊢grp recTi
i
{ κi

i ;Ψi
i
to denote that

the kinding results of datatype declarations are κi
i , and the output term contexts are Ψi

i
.

Declarations are checked with Σ ⊢dt T { Ψ. This uses the guessed kinds to process the data
constructors of a declaration, producing a term context Ψ with the data constructors and their
types. The rule dt-decl ensures that the datatype has an appropriate kind in the context and then
checks data constructors using the ⊢dc judgment. These checks are done in a type context extended

with bindings for the type variables ai
i, where each ai has a kind extracted from the guessed kind

of the datatype T . The subscript on the ⊢dc judgment is the return type of the constructors, whose
types are easily checked by rule dc-decl. The kinding judgment Σ ⊢k τ : κ is standard.

4 KIND INFERENCE FOR HASKELL98

We now present the algorithmic system for Haskell98. Of particular interest is the defaulting rule
(Section 4.3), which means that these rules are not complete with respect to the declarative system.

4.1 Syntax

The top of Figure 2 describes the syntax of kinds and contexts in the algorithmic system for
Haskell98. The differences from the declarative system are highlighted in gray. Kinds are extended
with unification kind variables α̂ . Algorithmic contexts are also extended with unification kind
variables, either unsolved (α̂) or solved (α̂ = κ). Although the grammar for algorithmic term
contexts Γ appears identical to that of declarative contexts, note that the grammar for κ has been
extended; accordingly, algorithmic contexts Γ might include kinds with unification variables, while
declarative contexts Ψ do not. This approach of recording unification variables and their solutions in
the contexts is inspired by Gundry et al. [2010] and Dunfield and Krishnaswami [2013]. Importantly,
an algorithmic context is an ordered list, which enforces that given ∆1, α̂ = κ,∆2, the kind κ must

be well-formed under ∆1. This rules out solutions like α̂ = α̂ → ⋆ or α̂ = β̂, β̂ = α̂ . Complete
contexts Ω are contexts with all unification variables solved.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:8 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

kind κ F ⋆ | κ1 → κ2 | α̂

term context Γ F • | Γ,D : σ

type context ∆,Θ F • | ∆, a : κ | ∆,T : κ | ∆, α̂ | ∆, α̂ = κ

complete type context Ω F • | Ω, a : κ | Ω,T : κ | Ω, α̂ = κ

Ω; Γ ⊩pgm pgm : σ (Typing Program)

a-pgm-expr

[Ω]Ω; [Ω]Γ ⊢ e : σ

Ω; Γ ⊩pgm e : σ

a-pgm-dt

Θ1 = Ω, α̂i
i
, Ti : α̂i

i

Θi ⊩
dt Ti { Γi ⊣ Θi+1

i
Θn+1 −→→ Ω

′
Ω

′; Γ, Γi
i
⊩
pgm pgm : σ

Ω; Γ ⊩pgm recTi
i∈1..n

; pgm : σ

∆ ⊩
dt T { Γ ⊣ Θ (Typing Datatype Decl.)

a-dt-decl

(T : κ) ∈ ∆ ∆, α̂i
i
⊩
u [∆]κ ≈ (α̂i

i
→ ⋆) ⊣ Θ1, α̂i = κi

i
Θj, ai : κi

i
⊩
dc

T ai
i Dj { τj ⊣ Θj+1, ai : κi

i
j

∆ ⊩
dt data T ai

i
= Dj

j∈1..n
{ Dj : ∀ai : κi

i .τj
j

⊣ Θn+1

∆ ⊩
dc
τ D { τ ′ ⊣ Θ (Typing Data Constructor Decl.)a-dc-decl

∆ ⊩
k τi

i → τ : ⋆ ⊣ Θ

∆ ⊩
dc
τ D τi

i
{ τi

i → τ ⊣ Θ

Fig. 2. Algorithmic program typing in Haskell98

We use a hole notation for inserting or replacing declarations in the middle of a context. ∆[Θ]
means that ∆ is of the form ∆1,Θ,∆2. To reduce clutter, when we have ∆[α̂], we also use only
∆ to refer to the same context. If we have ∆[α̂] = ∆1, α̂ ,∆2, then ∆[α̂ = κ] = ∆1, α̂ = κ,∆2.
This notation allows multiple holes: ∆[Θ1][Θ2] means that ∆ is of the form ∆1,Θ1,∆2,Θ2,∆3. For

example, ∆[α̂][β̂] is ∆1, α̂ ,∆2, β̂,∆3. Critically, α̂ appears before β̂ .
Since type contexts carry solutions for unification variables, we use contexts as substitutions:

[∆]κ applies ∆ to kind κ. Applying ∆ substitutes all solved unification variables in its argument
idempotently. If under a complete context Ω, a kind κ is well-formed, then [Ω]κ contains no
unification variables and is thus a well-formed declarative kind. For term contexts, [∆]Γ applies
∆ to each kind in Γ. Similarly, if under Ω, a term context Γ is well-formed, then [Ω]Γ gives back
a declarative term context. The notation [Ω]∆ applies a complete context Ω to ∆. We apply Ω to
the kind of type variables and type constructors in ∆ and remove the binding of solved unification
variables from ∆. The full definition of context substitution is in the technical supplement. As above,
[Ω]∆ is a declarative type context.

4.2 Algorithmic Typing Rules

Figure 2 presents the typing rules for programs, datatype declarations and data constructor dec-
larations. As this work focuses on the problem of kind inference of datatypes, we reduce the
expression typing to the declarative system (rule a-pgm-expr); note that the contexts used there
are declarative, as explained above. For type-checking a group of mutually recursive datatypes
(rule a-pgm-dt), we first assign each type constructor a unification variable α̂ , and then type-check
(⊩dt) each datatype definition (Section 4.4), producing the contextΘn+1. Then we default (Section 4.3)
all unsolved unification variables with ⋆ using Θn+1 −→→ Ω, and continue with the rest of the
program. Defaulting here means that the constraints of one group do not propagate to the rest
of the program; accordingly, the input context of ⊩pgm is always a complete context. Echoing the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:9

notation for the declarative system, we write Ω ⊩
grp recTi

i
{ κi

i ; Γi
i
⊣ Θ to denote that the

results of type-checking a group of datatype declarations are the kinds κi
i , the output term contexts

Γi
i
, and the final output type context Θ.

4.3 Defaulting

One of the key properties of datatypes in Haskell98 is the defaulting rule. In a datatype definition,
if a type parameter is not fully determined by the definitions in its mutually recursive group, it is
defaulted to have kind ⋆.

Definition 4.1 (Defaulting, −→→). An algorithmic context ∆ is defaulted to a complete context Ω,

written ∆ −→→ Ω by replacing all unsolved unification variables α̂ in ∆ with α̂ = ⋆.

To understand how this rule affects code in practice, consider the following definitions:

data Q1 a = MkQ1 -- Q1 :: (⋆→ ⋆)

data Q2 = MkQ2 (Q1 Maybe) -- rejected

data P1 a = MkP1 P2 -- P1 :: (⋆→ ⋆) → ⋆

data P2 = MkP2 (P1 Maybe) -- accepted

One might think that the result of checking Q1 and Q2 would be the same as checking P1 and P2.
However, this is not true. Q1 and Q2 are not mutually recursive: they will not be in the same group
and are checked separately. In contrast, P1 and P2 are mutually recursive and are checked together.
This difference leads to the rejection of Q2: after kinding Q1, the parameter a is defaulted to ⋆, and
then Q1 Maybe fails to kind check. Our algorithm is a faithful model of datatypes in Haskell98, and
this rejection is exactly what the step Θn+1 −→→ Ω (in rule a-pgm-dt) brings.

Other design alternatives. One alternative design is to default in rule a-pgm-expr instead of
rule a-pgm-dt, as shown in rule a-pgm-expr-alt. This means constraints in one group propagate
to other groups, but not to expressions. Then Q2 above is accepted.

∆ −→→ Ω [Ω]Ω; [Ω]Γ ⊢ e : σ

∆; Γ ⊩pgm e : σ
a-pgm-expr-alt

A second alternative is that defaulting happens at the very end of type-checking a compilation unit.
In this scenario, we wait to commit to the kind of a datatype until checking expressions. Now we
can accept the following program, which would otherwise be rejected. However, this strategy does
not play along well with modular design, as it takes an extra action at a module boundary.

data Q1 a = MkQ1

mkQ1 = MkQ1 :: Q1 Maybe

In the rest of this section, we stay with the standard, doing defaulting as portrayed in Figure 2.

4.4 Checking Datatype Declarations

The judgment ∆ ⊩dt T { Γ ⊣ Θ checks the datatype declaration T under the input context ∆,
returning a term context Γ and an output context Θ. Its rule a-dt-decl first gets the kind κ of the
the type constructor from the context. It then assigns a fresh unification variable α̂ to each type

parameter. The expected kind of the type constructor is α̂i
i
→ ⋆. The rule then unifies κ with

α̂i
i
→ ⋆. Before unification, we apply the context to κ; unification (Section 4.6) requires its inputs

to be inert with respect to the context substitution. Our implementation of unification guarantees
that all the α̂i will be solved, as reflected in the rule a-dt-decl. The type parameters are added
to the context to type check each data constructor. Checking the data constructor Dj returns its

type τj and the context Θj+1, ai : α̂i
i
. Note that each output context must be of this form as no new

entries are added to the end of the context during checking individual data constructors. We can
then generalize the type τj over type parameters, returning Θn+1 as the result context.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:10 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

∆ ⊩
k τ : κ ⊣ Θ (Kinding)

a-k-arrow

∆ ⊩
k→: ⋆ → ⋆ → ⋆ ⊣ ∆

a-k-tcon

(T : κ) ∈ ∆

∆ ⊩
k T : κ ⊣ ∆

a-k-nat

∆ ⊩
k Int : ⋆ ⊣ ∆

a-k-var

(a : κ) ∈ ∆

∆ ⊩
k a : κ ⊣ ∆

a-k-app

∆ ⊩
k τ1 : κ1 ⊣ Θ1 Θ1 ⊩

k τ2 : κ2 ⊣ Θ2 Θ2 ⊩
kapp [Θ2]κ1 • [Θ2]κ2 : κ3 ⊣ Θ

∆ ⊩
k τ1 τ2 : κ3 ⊣ Θ

∆ ⊩
kapp κ1 • κ2 : κ ⊣ Θ (Application Kinding)

a-kapp-kuvar

∆[α̂1, α̂2, α̂ = α̂1 → α̂2] ⊩
u α̂1 ≈ κ ⊣ Θ

∆[α̂] ⊩kapp α̂ • κ : α̂2 ⊣ Θ

a-kapp-arrow

∆ ⊩
u κ1 ≈ κ ⊣ Θ

∆ ⊩
kapp κ1 → κ2 • κ : κ2 ⊣ Θ

∆ ⊩
u κ1 ≈ κ2 ⊣ Θ (Kind Unification)

a-u-refl

∆ ⊩
u κ ≈ κ ⊣ ∆

a-u-arrow

∆ ⊩
u κ1 ≈ κ3 ⊣ Θ1 Θ1 ⊩

u [Θ1]κ2 ≈ [Θ1]κ4 ⊣ Θ

∆ ⊩
u κ1 → κ2 ≈ κ3 → κ4 ⊣ Θ

a-u-kvarL

∆ ⊩
pr

α̂
κ ⇝ κ2 ⊣ Θ[α̂]

∆[α̂] ⊩u α̂ ≈ κ ⊣ Θ[α̂ = κ2]

a-u-kvarR

∆ ⊩
pr

α̂
κ ⇝ κ2 ⊣ Θ[α̂]

∆[α̂] ⊩u κ ≈ α̂ ⊣ Θ[α̂ = κ2]

∆ ⊩
pr

α̂
κ1 ⇝ κ2 ⊣ Θ (Promotion)

a-pr-star

∆ ⊩
pr

α̂
⋆⇝ ⋆ ⊣ ∆

a-pr-arrow

∆ ⊩
pr

α̂
κ1 ⇝ κ3 ⊣ ∆1 ∆1 ⊩

pr

α̂
[∆1]κ2 ⇝ κ4 ⊣ Θ

∆ ⊩
pr

α̂
κ1 → κ2 ⇝ κ3 → κ4 ⊣ Θ

a-pr-kuvarL

∆[β̂][α̂] ⊩
pr

α̂
β̂ ⇝ β̂ ⊣ ∆[β̂][α̂]

a-pr-kuvarR

∆[α̂][β̂] ⊩
pr

α̂
β̂ ⇝ β̂1 ⊣ ∆[β̂1, α̂][β̂ = β̂1]

Fig. 3. Algorithmic kinding, unification and promotion in Haskell98.

The data constructor declaration judgment ∆ ⊩dcτ D { τ ′ ⊣ Θ type-checks a data constructor,

by simply checking that the expected type τi
i → τ is well-kinded.

4.5 Kinding

The algorithmic kinding ∆ ⊩
k τ : κ ⊣ Θ is given in Figure 3. Most rules are self-explanatory. For

applications (rule a-k-app), we synthesize the type for an application τ1 τ2, where τ1 and τ2 have
kinds κ1 and κ2, respectively. The hard work is delegated to the application kinding judgment.

Application kinding ∆ ⊩kapp κ1 •κ2 : κ ⊣ Θ says that, under the context ∆, applying an expression
of kind κ1 to an argument of kind κ2 returns the result kind κ and an output context Θ. We require
the invariants that [∆]κ1 = κ1 and [∆]κ2 = κ2. Therefore, if the kind is a unification variable α̂
(rule a-kapp-kuvar), we know it must be an unsolved unification variable. Since we know κ1 must
be a function kind, we solve α̂ using α̂1 → α̂2, unify α̂1 with the argument kind κ, and return α̂2.
Note that the unification variables α̂1 and α̂2 are inserted in the middle of the context ∆; this allows
us to remove the type variables from the end of the context in rule a-dt-decl and also plays a
critical role in maintaining unification variable scoping in the more complicated system we analyze
later. If the kind of the function is not a unification variable, it must surely be a function kind
κ1 → κ2 (rule a-kapp-arrow), so we unify κ1 with the known argument kind κ, returning κ2.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:11

4.6 Unification

The unification judgment ∆ ⊩u κ1 ≈ κ2 ⊣ Θ is given in Figure 3. The elaborate style of this
judgment (and its helper judgment ⊩pr) is overkill for Haskell98, but this design sets us up well to
understand unification in the presence of our PolyKinds system, later. We require the preconditions
that [∆]κ1 = κ1 and [∆]κ2 = κ2, so that every time we encounter a unification variable, we know
it is unsolved. Rule a-u-refl is our base case, and rule a-u-arrow unifies the components of the
arrow types. When unifying α̂ ≈ κ (rule a-u-kvarL), we cannot simply set α̂ to κ, as κ might
include variables bound to the right of α̂ . Instead, we need to promote (⊩pr) κ.

Promotion. The crucial observation of ⊩pr is that the relative order between unification variables

does not matter for solving a constraint. Consider unifying α̂ , β̂ ⊩u α̂ ≈ β̂ → ⋆. We cannot set

α̂ = β̂ → ⋆, as this is ill-scoped. However, the constraint is solvable, as one solution context can

be β̂1, α̂ = β̂1 → ⋆, β̂ = β̂1. In other words, although β̂ → ⋆ contains an out-of-scope variable β̂ ,

we can solve the constraint by introducing a fresh in-scope variable β̂1 and setting β̂ = β̂1.
The promotion judgment ∆ ⊩

pr

α̂
κ1 ⇝ κ2 ⊣ Θ captures this observation. The judgment says

that, under the context ∆, we promote the kind κ1, yielding κ2, so that κ2 is well-formed in the
prefix context of α̂ , while retaining [Θ]κ1 = [Θ]κ2. At a high-level, ⊩pr looks for free variables
in κ1. Kind constants are always well-formed (rule a-pr-star). Variables bound to the left of α̂
in ∆ are unaffected (rule a-pr-kuvarL), as they are already well-formed. In rule a-pr-kuvarR, a

unification variable β̂ bound to the right of α̂ in ∆ is replaced by a fresh variable introduced to α̂ ’s

left. Promotion is a partial operation, as it requires β̂ either to be to the right or to the left of α̂ .

There is yet another possibility: if β̂ = α̂ , then no rule applies. This is a desired property, as the

β̂ = α̂ case exactly corresponds to the łoccurs-checkž in a more typical presentation of unification.
By preventing promoting α̂ to the left of α̂ , we prevent the possibility of an infinite substitution
when applying an algorithmic context. It is this promotion algorithm that guarantees that all the α̂i
will be solved in rule a-dt-decl: those variables will appear to the right of the unification variable
invented in rule a-pgm-dt and will be promoted (and thus solved).

Returning to the ⊩u judgment, rule a-u-kvarL first promotes the kind κ, yielding κ2, so that κ2 is
well-formed in the prefix context of α̂ . We can then set α̂ = κ2 in the concluding context. Rule a-u-

kvarR is symmetric to rule a-u-kvarL. Note that when unifying α̂ ≈ β̂ , either rule a-u-kvarL and
rule a-u-kvarR could be tried; an implementation can arbitrarily choose between them.

4.7 Soundness and Completeness

The main theorem of soundness is for program typing:

Theorem4.2 (Soundness of⊩pgm). IfΩ ok, andΩ ⊩ectx Γ, andΩ; Γ ⊩pgm pgm : σ , then [Ω]Ω; [Ω]Γ ⊢pgm

pgm : σ .

This lemma statement refers to judgments Ω ok and Ω ⊩
ectx

Γ; these basic well-formedness
checks are given in the technical supplement. Because the declarative judgment ⊢pgm requires
declarative contexts, we write [Ω]Ω and [Ω]Γ in the conclusion, applying the complete algorithmic
context Ω as a substitution to form a declarative context, free of unification variables.

The statement of completeness relies on the definition of context extension ∆ −→ Θ. The judgment
captures a process of information increase. The formal definition of context extension is given in
the technical supplement, and its treatment is as in Dunfield and Krishnaswami [2013]. Intuitively,
context extension preserves all information in ∆, and may increase the information by adding
or solving more unification variables. In all the algorithmic judgments, the output context is an
extension of the input context.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:12 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

We prove that our system is complete only up to checking a group of datatype declarations.

Theorem 4.3 (Completeness of ⊩grp). Given Ω ok, if [Ω]Ω ⊢grp recTi
i
{ κi

i ;Ψi
i
, then there exists

κ ′
i

i
, Γi

i
, Θ, and Ω

′, such that Ω ⊩grp recTi
i
{ κ ′

i

i
; Γi

i
⊣ Θ, where Θ −→ Ω

′, and [Ω′]κ ′
i = κi

i
, and

Ψi = [Ω′]Γi
i
.

The theorem statement uses the notational convenience for checking groups, defined in Sec-
tion 3.2 and Section 4.2. The theorem states that for every possible declarative typing for a group,
the algorithmic typing results can be extended to support the declarative typing.
Unfortunately, the typing program judgment ⊢pgm is incomplete, as our algorithm models de-

faulting, while the declarative system does not. (For example, the Q1/Q2 example of Section 4.3
is accepted by the declarative system but rejected by both GHC and our algorithmic system.) As
straightforward as the defaulting rule may seem, it is surprisingly hard to model in a declarative
system. We remedy this in the next section.

5 TYPE PARAMETERS, PRINCIPAL KINDS AND COMPLETENESS IN HASKELL98

We have seen that our judgments for checking programs ⊢pgm and⊩pgm do not support completeness,
because the declarative system cannot easily model the defaulting rule given in Section 4.3. In this
section, we introduce kind parameters, inspired by type parameters in Garcia and Cimini [2015],
and relate the defaulting rule to principal kinds to recover completeness.

5.1 Type Parameters

Consider the datatype data App f a = MkApp (f a) again. The parameter a in this example can be
of any kind, including⋆,⋆→ ⋆, or others. To express this polymorphism without introducing first-
class polymorphism, we endow the declarative system with a set of kind parameters. Importantly,
kind parameters live only in our reasoning; users are not allowed to write any kind parameters in
the source. We amend the definition of kinds in Figure 1 as follows.

kind parameter P ∈ KParam

kind κ F ⋆ | κ1 → κ2 | P

Kind parameters are uninterpreted kinds: there is no special treatment of kind parameters in the
type system. Think of them as abstract, opaque kind constants. Kind parameters are eliminated
by substitutions S , which map kind parameters to kinds, and homomorphically work on kinds
themselves. For example, App can be assigned kind (P → ⋆) → P → ⋆. By substituting for P ,
we can get, for example, (⋆ → ⋆) → ⋆ → ⋆. Indeed, from (P → ⋆) → P → ⋆we can get all
other possible kinds of App. This leads to the definition of principal kinds for a group; and to the
property that for every well-formed group, there exists a list of principal kinds.

Definition 5.1 (Principal Kind in Haskell98 with Kind Parameters). Given a context Σ, a group

recTi
i
, and a list of kinds κi

i, we say that the κi
i are principal kinds of Σ and recTi

i
, denoted as

Σ ⊢ recTi
i
{

p κi
i, if Σ ⊢grp recTi

i
{ κi

i ;Ψi
i
, and whenever Σ ⊢grp recTi

i
{ κ ′

i

i
;Ψ′

i

i
holds,

there exists some substitution S , such that S(κi) = κ
′
i

i
and S(Ψi) = Ψ′

i

i
.

Theorem 5.2 (Principality of Haskell98 with Kind Parameters). If Σ ⊢grp recTi
i
{ κi

i ;Ψi
i
, then

there exists some κ ′
i

i
such that Σ ⊢ recTi

i
{

p κ ′
i

i
.

5.2 Principal Kinds and Defaulting

Using the notion of kind parameters, we can now incorporate defaulting into the declarative
specification of Haskell98. To this end, we define the defaulting kind parameter substitution S⋆:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:13

Definition 5.3 (Defaulting Kind Parameter Substitution). Let S⋆ ∈ KParam → κ denote the

substitution that substitutes all kind parameters to ⋆.

Using S⋆, we can rewrite rule pgm-dt. Noteworthy is the fact that kind parameters only live in the
middle of the derivation (in the κi), but never appear in the results S⋆(κi).

Σ ⊢grp recTi
i
{ κi

i ;Ψi
i

Σ ⊢ recTi
i
{

p κi
i

Σ, Ti : S⋆(κi)
i
;Ψ, S⋆(Ψi)

i
⊢pgm pgm : σ

Σ;Ψ ⊢pgm recTi
i
; pgm : σ

pgm-dtP

5.3 Completeness

The two versions of defaulting (the one above and ∆ −→→ Ω of Section 4.2) are equivalent. This
fact is embodied in the following theorem, stating that the algorithmic system is complete with
respect to the declarative system with kind parameters.

Theorem 5.4 (Completeness of ⊩pgm with Kind Parameters). Given algorithmic contexts Ω, Γ, and

a program pgm, if [Ω]Ω; [Ω]Γ ⊢pgm pgm : σ , then Ω; Γ ⊩pgm pgm : σ .

6 DECLARATIVE SYNTAX AND SEMANTICS OF POLYKINDS

Having set the stage for kind inference for datatypes in Haskell98, we now present the declarative
PolyKinds system. Our syntax is given at the top of Figure 4. Compared to Haskell98, programs
pgm now include datatype signatures S. Data constructor declarations D support existential quan-
tification. Types and kinds are collapsed into one level; σ and K are now synonymous metavariables
and allow prenex polymorphism, where variables in a kind binder ϕ can optionally have kind
annotations. Monotypes τ and κ allow visible kind applications τ1 @τ2. Elaborated types µ, η are
the result of elaboration, which decorates source types to make them fully explicit. This is done
so that checking equality of elaborated types is straightforward. The syntax for elaborated types
contains inferred polymorphism ∀{ϕc}.µ, where complete free kind binders ϕc have all variables
annotated. Elaborated monotypes ρ and ω share the same syntax as monotypes. We informally use
only ρ or ω for elaborated monotypes.

6.1 Groups and Dependency Analysis

Decomposition of signatures and definitions allows a more fine-grained control of dependency
analysis. If T has a signature, and S depends on T , then we can kind-check S without inspecting
the definition of T , because we know the kind of T . In other words, S only depends on the signature
of T , not the definition of T . The complete dependency analysis rule, inspired by Jones [1999,
Section 11.6.3], is:

Definition 6.1 (Dependency Analysis in PolyKinds).

(i) If the signature/definition of T1 mentions T2, then:

(a) if T2 has a signature, the signature/definition of T1 depends on the signature of T2;

(b) otherwise, the signature/definition of T1 depends on the definition of T2.

(ii) A definition depends on its signature.

To avoid a type that mentions itself in its own kind, we disallow self-dependency or mutual
dependency involving signatures. For example, a group data T1 :: T2 a → ⋆; data T2 :: T1 → ⋆

is rejected, lest T1 be assigned type ∀(a :: T1). T2 a → ⋆. In other words, signatures do not form
groups: they are always processed individually. Moreover, the definition of a datatype which has a
signature does not join others in a group, as according to Definition 6.1, there will be no dependency
from datatypes on it. This simplifies the kinding procedure, as we will see in the coming section.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:14 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

program pgm F sigS; pgm | recTi
i
; pgm | e

datatype signature S F data T : σ

datatype decl. T F data T ai
i
= Dj

j

data constructor decl. D F ∀ϕ .D τi
i

type, kind σ , K F ∀ϕ . σ | τ

monotype, monokind τ ,κ, ρ, ω F ⋆ | Int | a | T | τ1 τ2 | τ1 @τ2 |→

elaborated type, kind µ, η F ∀{ϕc}.µ | ∀ϕc. µ | ρ

term context Ψ F • | Ψ,D : µ
type context Σ F • | Σ, a : ρ | Σ,T : η
kind binder list ϕ F • | ϕ, a | ϕ, a : κ
complete kind binder list ϕc

F • | ϕc, a : ρ

Σ;Ψ ⊢pgm pgm : σ (Typing Program)

pgm-sig

Σ ⊢sig S { T : η Σ,T : η;Ψ ⊢pgm pgm : µ

Σ;Ψ ⊢pgm sigS; pgm : µ

pgm-dt-ttS

(T : η) ∈ Σ Σ ⊢dt T { Ψ1 Σ;Ψ,Ψ1 ⊢
pgm pgm : µ

Σ;Ψ ⊢pgm recT ; pgm : µ
pgm-dt-tt

Σ, ϕc
i ⊢

ela ωi : ⋆
i

ϕc
i ∈ Q(ωi)

i
Σ, ∪ϕc

i

i
, Ti : ωi

i
⊢dt Ti { Ψi

i

Σ, ∪ϕc
i

i
, Ti : ωi

i
⊢
gen

ϕc
i
Ψi { Ψ′

i

i

Σ, Ti : ∀{ϕ
c
i }.ωi

i
;Ψ, Ψ′

i [Ti 7→ Ti @ϕc
i

i
]
i

⊢pgm pgm : σ

Σ;Ψ ⊢pgm recTi
i
; pgm : σ

Σ ⊢sig S { T : η (Typing Signature)

sig-tt

⌉σ ⌈ ϕ ∈ Q(σ) ϕc
1 ∈ Q(∀ϕc. η) Σ,ϕc

1 ⊢
k
∀ϕ . σ : ⋆{ ∀ϕc. η |ϕ | = |ϕc |

Σ ⊢sig data T : σ { T : ∀{ϕc
1}.∀{ϕ

c}.η

Σ ⊢dt T { Ψ (Typing Datatype Decl.)
dt-tt

(T : ∀{ϕc
1}.∀ϕ

c
2. ωi

i → ⋆) ∈ Σ Σ,ϕc
1,ϕ

c
2, ai : ωi

i ⊢dc
(T @ϕc

1 @ϕc
2 ai

i)
Dj { µj

j

Σ ⊢dt data T ai
i
= Dj

j
{ Dj : ∀{ϕ

c
1}.∀ϕ

c
2. ∀ai : ωi

i .µj
j

Σ ⊢dcρ D { µ (Typing Data Constructor Decl.)

dc-tt

ϕc ∈ Q(µ\
Σ,τi

i) Σ,ϕc ⊢k ∀ϕ .τi
i → ρ : ⋆{ µ

Σ ⊢dcρ ∀ϕ .D τi
i
{ ∀{ϕc}.µ

Σ ⊢
gen

ϕc Ψ1 { Ψ2 (Generalization)

gen

ϕc,ϕc
i ∈ Q(µi)

i

Σ ⊢
gen

ϕc Di : µi
i
{ Di : ∀{ϕc,ϕc

i }.µi
i

Fig. 4. Declarative specification of PolyKinds

6.2 Checking Programs

The declarative typing rules appear in Figure 4. The judgment Σ;Ψ ⊢pgm pgm : σ checks the
program. From now on we omit the typing rule for expressions in programs, which is essentially
the same as in Haskell98. Rule pgm-sig processes kind signatures by elaborating and generalizing
the kind, then adding it to the context Σ. The helper judgment Σ ⊢sig S { T : η checks a kind

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:15

Σ ⊢inst µ1 : η ⊑ ω { µ2 (Instantiation)

inst-refl

Σ ⊢inst µ : ω ⊑ ω { µ

inst-forall

Σ ⊢ela ρ : ω1 Σ ⊢inst µ1 @ρ : η[a 7→ ρ] ⊑ ω2 { µ2

Σ ⊢inst µ1 : ∀a : ω1.η ⊑ ω2 { µ2

Σ ⊢kc σ ⇐ ω { µ (Kind Checking)kc-sub

Σ ⊢k σ : η { µ1 Σ ⊢inst µ1 : η ⊑ ω { µ2

Σ ⊢kc σ ⇐ ω { µ2

Σ ⊢k σ : η { µ (Kinding)

ktt-star

Σ ⊢k ⋆ : ⋆{ ⋆

ktt-app

Σ ⊢k τ1 : η1 { ρ1 Σ ⊢inst ρ1 : η1 ⊑ (ω1 → ω2) { ρ2 Σ ⊢kc τ2 ⇐ ω1 { ρ3

Σ ⊢k τ1 τ2 : ω2 { ρ2 ρ3
ktt-kapp

Σ ⊢k κ1 : ∀a : ω .η { ρ1 Σ ⊢kc κ2 ⇐ ω { ρ2

Σ ⊢k κ1 @κ2 : η[a 7→ ρ2] { ρ1 @ρ2

ktt-foralli

Σ ⊢ela ω : ⋆ Σ, a : ω ⊢kc σ ⇐ ⋆{ µ

Σ ⊢k ∀a.σ : ⋆{ ∀a : ω .µ

Σ ⊢ela µ : η (Elaborated Kinding)

ela-app

Σ ⊢ela ρ1 : ω1 → ω2 Σ ⊢ela ρ2 : ω1

Σ ⊢ela ρ1 ρ2 : ω2

ela-kapp

Σ ⊢ela ρ1 : ∀a : ω .η Σ ⊢ela ρ2 : ω

Σ ⊢ela ρ1 @ρ2 : η[a 7→ ρ2]

Fig. 5. Selected rules for declarative kind-checking in PolyKinds

signature data T : σ . First, it uses ⌉σ ⌈ to ensure σ returns ⋆: ⌉σ ⌈ simply traverses over arrows
and foralls, checking that the final kind of σ is ⋆. Then, as σ may be an open kind signature, it
extracts the free kind variables ϕ ∈ Q(σ), where Q(σ) is the set of all well-formed orderings of
the free variables (transitively looking into variables’ kinds) of σ ; thus, ϕ is one such ordering. As
discussed in Section 2.2, variables in ϕ are inferred so we accept any relative order, as long as it
features the necessary dependency between the variables. Then the rule tries to elaborate (⊢k) the
kind ∀ϕ . σ , where ϕ and ϕc have the same length (|ϕ | = |ϕc |). As the elaborated result ∀ϕc. η can
be further generalized, we bring the free variables ϕc

1 ∈ Q(∀ϕc. η) into scope when elaborating.
The concluding output is T : ∀{ϕc

1}.∀{ϕ
c}.η. As an example, consider a kind signature ∀a.b → ⋆.

We have ϕ = b, ϕc
= b : ⋆, and ϕc

1 = c : ⋆, and the final kind is ∀{c : ⋆}.∀{b : ⋆}.∀(a : c).b → ⋆.
We see in this one example the three sources of quantified variables, always in this order: variables
arising from generalization (c), from implicit quantification (b), and from explicit quantification (a).
Returning to the ⊢pgm judgment, rule pgm-dt-ttS checks a datatype definition that has a kind

signature. It ensures that the signature has already been checked, by fetching the kind information
in the context using (T : η) ∈ Σ. Then it checks the datatype declaration, and gathers the output
term context to check the rest of the program. Rule pgm-dt-tt, as in Haskell98, guesses kinds ωi

for each datatype Ti and puts Ti : ωi in the context before looking at the declarations. The major
difference from Haskell98 is that kinds can be generalized after the group is checked. We use ϕc

i

to denote the free variables in each kind ωi. After the recursive group is typed, we generalize the
kind of each type constructor as well as the type of its data constructors. To generalize the type of
data constructors, we use the ⊢gen judgment. Rule gen generalizes every data constructor in the
context, where ϕc are free type variables of its corresponding type constructor, and ϕc

i are free type
variables specific to the data constructor. Returning to rule pgm-dt-tt, note that since the kinds of
type constructors are generalized, the occurrences of the type constructors now require more type

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:16 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

arguments. Therefore in Ψ
′
i , we substitute Ti with Ti @ϕc

i , where Ti is applied to all the variables
bound in ϕc

i .

The judgment of checking datatype declarations Σ ⊢dt T { Ψ has only rule dt-tt, which
expands on the rule in Haskell98, to support top-level polymorphism for the kind of T .

Rule dc-tt supports existential variables ϕ. Moreover, the elaborated type µ of ∀ϕ .τi
i → ρ can

be further generalized over ϕc. Note that ϕc (via a small abuse of notation in the rule) excludes free
variables in τi and Σ.

6.3 Checking Kinds

The kinding judgment ⊢k appears in Figure 5. For space reasons, we present only selected rules.
Kinding Σ ⊢k σ : η { µ infers the type σ to have kind η, and it elaborates σ to µ. The kinding rules
are built upon the axiom Σ ⊢k ⋆ : ⋆ { ⋆ (rule ktt-star). While this axiom is known to violate
logical consistency, as Haskell is already logically inconsistent because of its general recursion, we
do not consider it as an issue here. Rule ktt-app concerns applications τ1 τ2. It first infers the kind
of τ1 to be η1. The kind η1 can be a polymorphic kind headed by a ∀, though it is expected to be a
function kind. Thus the rule uses ⊢inst to instantiate η1 to ω1 → ω2. The instantiation judgment
Σ ⊢inst µ1 : η ⊑ ω { µ2 instantiates a kind η to a monokind ω, where if µ1 has kind η then µ2
has kind ω. After instantiation, rule ktt-app checks (⊢kc) the argument τ2 against the expected
argument kind ω1. The kind checking judgment ⊢kc simply delegates the work to kinding and
instantiation. Rule ktt-kapp checks visible kind applications. Note in the return kind η, the variable
a is substituted by the elaborated argument ρ2. Rule ktt-foralli elaborates an unannotated type
∀a.σ to ∀a : ω .µ, where ω is an elaborated kind (⊢ela) guessed for a.

The stand-alone elaborated kinding judgment ⊢ela type-checks elaborated types. As all necessary
instantiation has been done, type-checking for elaborated types is easy. For example, rule ela-app
concerns applications ρ1 ρ2. Compared to rule ktt-app, here ρ1 has an arrow kind, and takes exactly
the kind of ρ2. All judgments output well-formed elaborated types, as the following lemma states:

Lemma 6.2 (Type Elaboration). We have: (1) if Σ ⊢k σ : η { µ, then Σ ⊢ela µ : η; (2) if Σ ⊢kc σ ⇐

η { µ, then Σ ⊢ela µ : η; (3) if Σ ⊢ela µ1 : η, and Σ ⊢inst µ1 : η ⊑ ω { µ2, then Σ ⊢ela µ2 : ω.

7 KIND INFERENCE FOR POLYKINDS

We now describe the algorithmic counterpart of the PolyKinds system. Figure 6 presents the syntax
of kinds and contexts in the algorithmic system for PolyKinds. Elaborated monotypes are extended
with unification variables α̂ . Echoing the algorithm for Haskell98, type contexts are extended with
unification variables, which now have kinds (α̂ : ω and α̂ : ω = ρ). Also added to contexts are
local scopes {∆}. These are special type contexts, where variables can be reordered. Recall the kind
∀(a :: (f b)) (c :: k). f c → ⋆ in Section 2, where f and b appear before k, but end up depending on
k. In which order should we put f , b and k in the algorithmic context to kind-check the signature?
We cannot have a correct order before completing inference. Therefore, we put them into a local
scope, knowing we can reorder the variables during kind-checking according to the dependency
information. The well-formedness judgment for local scopes requires them to be well-scoped,
leading to the fact that ∆, {∆′} is well-formed iff ∆,∆′ is. The marker ▶D , subscripted by the name
of a data constructor, is used only in and explained with rule a-dc-tt.

7.1 Algorithmic Program Typing

The algorithmic typing rules appear in Figure 6. The judgment Ω; Γ ⊩pgm pgm : µ checks the
program. The rule a-pgm-sig and rule a-pgm-dt-ttS correspond directly to the declarative rules.
Note that as the datatype declaration in rule a-pgm-dt-ttS already has a signature, the output type

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:17

elaborated monotype ρ,ω F ⋆ | Int | a | T | ρ1 ρ2 | ρ1 @ρ2 |→| α̂

term context Γ F • | Γ,D : µ
type context ∆,Θ F • | ∆, a : ω | ∆,T : η

| ∆, α̂ : ω | ∆, α̂ : ω = ρ | ∆, {∆′} | ∆,▶D

complete type context Ω F • | Ω, a : ω | Ω,T : η | Ω, α̂ : ω = ρ | Ω, {Ω′} | Ω,▶D

kind binder list ϕ̂c
F • | ϕ̂c, α̂ : κ

Ω; Γ ⊩pgm pgm : µ (Typing Program)

a-pgm-sig

Ω ⊩
sig S { T : η Ω,T : η; Γ ⊩pgm pgm : µ

Ω; Γ ⊩pgm sigS; pgm : µ

a-pgm-dt-ttS

(T : η) ∈ Ω

Ω ⊩
dt T { Γ1 ⊣ Ω Ω; Γ, Γ1 ⊩

pgm pgm : µ

Ω; Γ ⊩pgm recT ; pgm : µ

a-pgm-dt-tt

Θ1 = Ω, α̂i : ⋆
i
, Ti : α̂i

i
Θi ⊩

dt Ti { Γi ⊣ Θi+1

i

ϕ̂c
i = unsolved([Θn+1]α̂i)

i

Θn+1 ⊩
gen

ϕc
i
([Θn+1](Γi[ϕ̂

c
i 7→ ϕc

i

i

])) { Γ′i

i

Ω, Ti : ∀{ϕ
c
i }.(([Θn+1]α̂i)[ϕ̂

c
i 7→ ϕc

i

i

])

i

; Γ, Γ′i [Ti 7→ Ti @ϕc
i

i
]
i

⊩
pgm pgm : µ

Ω; Γ ⊩pgm recTi
i∈1..n

; pgm : µ

Ω ⊩
sig S { T : η (Typing Signature)a-sig-tt

⌉σ ⌈ ai
i
= fkv(σ) Ω, {α̂i : ⋆, ai : α̂i

i
} ⊩k σ : ⋆{ η ⊣ ∆

ϕc
1 = scoped_sort(ai : [∆]α̂i

i
) ϕ̂c

2 = unsolved(∆) ∆ ֒→ ai
i

Ω ⊩
sig data T : σ { T : ∀{ϕc

2}.((∀{ϕ
c
1}.[∆]η)[ϕ̂

c
2 7→ ϕc

2])

∆ ⊩
dt T { Γ ⊣ Θ (Typing Datatype Decl.)
a-dt-tt

(T : ∀{ϕc
1}.∀ϕ

c
2. ω) ∈ ∆ ∆,ϕc

1,ϕ
c
2, α̂i : ⋆

i
⊩
u [∆]ω ≈ (α̂i

i
→ ⋆) ⊣ Θ1,ϕ

c
1,ϕ

c
2, α̂i : ⋆ = ωi

i

Θj,ϕ
c
1,ϕ

c
2, ai : ωi

i
⊩
dc

(T @ϕc
1 @ϕc

2 ai
i)
Dj { µj ⊣ Θj+1,ϕ

c
1,ϕ

c
2, ai : ωi

i
j

∆ ⊩
dt data T ai

i
= Dj

j∈1..n
{ Dj : ∀{ϕ

c
1}.∀ϕ

c
2. ∀ai : ωi

i .µj
j

⊣ Θn+1

∆ ⊩
dc
ρ D { µ ⊣ Θ (Typing Data Constructor Decl.)

a-dc-tt

∆,▶D ⊩
k
∀ϕ .(τi

i → ρ) : ⋆{ µ ⊣ Θ1,▶D ,Θ2 ϕ̂c
= unsolved(Θ2)

∆ ⊩
dc
ρ ∀ϕ .D τi

i
{ ∀{ϕc}.(([Θ2]µ)[ϕ̂

c 7→ ϕc]) ⊣ Θ1

Fig. 6. Algorithmic program typing in PolyKinds

context remains unchanged. Rule a-pgm-dt-tt concerns a group (without kind signatures). Like in
Haskell98, it first assigns a fresh unification variable α̂i : ⋆ as the kind of each type constructor, and
then type-checks each datatype declaration, yielding the output context Θn+1. Unlike Haskell98

which then uses defaulting, here from each α̂i we get their unsolved unification variables ϕ̂c
i and

generalize the kind of each type constructor as well as the type of each data constructor. The
unsolved(∆) metafunction simply extracts a set of free unification variables in ∆, with their kinds
substituted by ∆. Before generalization, we apply Θn+1 to the results so all solved unification

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:18 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

variables get substituted away. We use the notation ϕ̂c
i 7→ ϕc

i to mean that all unification variables

in ϕ̂c
i are replaced by fresh type variables in ϕc

i . The algorithmic generalization judgment ⊩gen

corresponds straightforwardly to the declarative rule, and thus is included only in the technical
supplement. Though they appear daunting, the extended contexts used in the last premise to this
rule are unsurprising: they just apply the relevant substitutions (the solved unification variables in

Θn+1, the replacement of unification variables with fresh proper type variables ϕ̂c
i 7→ ϕc

i , and the
generalization of the kinds of the group of datatypes Ti 7→ Ti @ϕc

i).

The judgment Ω ⊩sig S { T : η type-checks a signature definition. We get all free variables in σ

using fkv(σ) and assign each variable ai a kind α̂i : ⋆. Those variables are put into a local scope to
kind-check σ . Then, we use scoped_sortÐa standard topological sortÐto return an ordering of the
variables that respects dependencies. Finally, we substitute away solved unification variables in the

result kind µ and generalize over the unsolved variables ϕ̂c
2 in ∆. As ϕ̂c

2 is generalized outside ϕc
1,

we use the quantification check ∆ ֒→ ai
i (Section 7.2) to ensure the result kind is well-ordered.

Rule a-dt-tt is a straightforward generalization of rule a-dt-decl to polymorphic kinds. Here
T can have a polymorphic kind from kind signatures.

Rule a-dc-tt checks a data constructor declaration. It first puts a marker into the context before
kinding. After kinding, it substitutes away all the solved unification variables to the right of the
marker, and generalizes over all unsolved unification variables to the right of the marker. The fact
that the context is ordered gives us precise control over variables that need generalization.

7.2 TheQuantification Check

Ill-ordered kinds are rejected. Consider the following example:

data Proxy :: ∀k . k → ⋆

data Relate :: ∀a (b :: a). a → Proxy b → ⋆

data T :: ∀(a ::⋆) (b :: a) (c :: a) d . Relate b d → ⋆

Proxy just gives us a way to write a type whose kind is not ⋆. The Relate τ1 τ2 type forces the kind
of τ2 to depend on that of τ1, giving rise to the unusual dependency in T . The definition of T then
introduces a, b, c and d . The kinds of a, b and c are known, but the kind of d must be inferred; call

it α̂ . We discover that α̂ = Proxy β̂ , where β̂ :: a. There are no further constraints on β̂ . Naïvely,

we would generalize over β̂ , but that would be disastrous, as a is locally bound. Instead, we must
reject this definition, as our declarative specification always puts inferred variables (such as the

type variable β̂ would become if generalized) before other ones.
The quantification-checking metafunction ∆ ֒→ ϕ, defined as fkv(unsolved(∆)) ♯ ϕ, ensures that

free variables in unsolved(∆) are disjoint (♯) with ϕ, so that we can safely generalize unsolved(∆)
outside ϕ.4

7.3 Kinding

Figure 7 presents the selected rules for kinding judgment ⊩k, along with the auxiliary judgments.
Most rules correspond directly to their declarative counterparts. For applications τ1 τ2, rule a-

ktt-app first synthesizes the kind of τ1 to be η1, then uses ⊩kapp to type-check τ2. The judgment
∆ ⊩

kapp (ρ1 : η) • τ : ω { ρ2 ⊣ Θ is interpreted as, under context ∆, applying the type ρ1 of
kind η to the type τ returns kind ω, the elaboration result ρ2, and an output context Θ. When
η1 is polymorphic (rule a-kapp-tt-forall), we instantiate it with a fresh unification variable.
Rule a-ktt-foralli checks a polymorphic type. We assign a unification variable as the kind of a,
bring α̂ : ⋆, a : α̂ into scope to check the body against ⋆, yielding the output context ∆2, a : α̂ ,∆3.

4See also the alternative design in the technical supplement.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:19

∆ ⊩
inst µ1 : η ⊑ ω { µ2 ⊣ Θ (Instantiation)

a-inst-refl

∆ ⊩
u ω1 ≈ ω2 ⊣ Θ

∆ ⊩
inst µ : ω1 ⊑ ω2 { µ ⊣ Θ

a-inst-forall

∆, α̂ : ω1 ⊩
inst µ1 @α̂ : η[a 7→ α̂] ⊑ ω2 { µ2 ⊣ Θ

∆ ⊩
inst µ1 : ∀a : ω1.η ⊑ ω2 { µ2 ⊣ Θ

∆ ⊩
kc σ ⇐ ω { µ ⊣ Θ (Kind Checking)

a-kc-sub

∆ ⊩
k σ : η { µ1 ⊣ ∆1 ∆1 ⊩

inst µ1 : [∆1]η ⊑ [∆1]ω { µ2 ⊣ ∆2

∆ ⊩
kc σ ⇐ ω { µ2 ⊣ ∆2

∆ ⊩
k σ : η { µ ⊣ Θ (Kinding)

a-ktt-star

∆ ⊩
k ⋆ : ⋆{ ⋆ ⊣ ∆

a-ktt-app

∆ ⊩
k τ1 : η1 { ρ1 ⊣ ∆1 ∆1 ⊩

kapp (ρ1 : [∆1]η1) • τ2 : ω { ρ ⊣ Θ

∆ ⊩
k τ1 τ2 : ω { ρ ⊣ Θ

a-ktt-foralli

∆, α̂ : ⋆, a : α̂ ⊩kc σ ⇐ ⋆{ µ ⊣ ∆2, a : α̂ ,∆3 ∆3 ֒→ a

∆ ⊩
k
∀a.σ : ⋆{ ∀a : α̂ .[∆3]µ ⊣ ∆2, unsolved(∆3)

∆ ⊩
kapp (ρ1 : η) • τ : ω { ρ2 ⊣ Θ (Application Kinding)

a-kapp-tt-arrow

∆ ⊩
kc τ ⇐ ω1 { ρ2 ⊣ Θ

∆ ⊩
kapp (ρ1 : ω1 → ω2) • τ : ω2 { ρ1 ρ2 ⊣ Θ

a-kapp-tt-forall

∆, α̂ : ω1 ⊩
kapp (ρ1 @α̂ : η[a 7→ α̂]) • τ : ω { ρ ⊣ Θ

∆ ⊩
kapp (ρ1 : ∀a : ω1.η) • τ : ω { ρ ⊣ Θ

a-kapp-tt-kuvar

∆1, α̂1 : ⋆, α̂2 : ⋆, α̂ : ω = (α̂1 → α̂2),∆2 ⊩
kc τ ⇐ α̂1 { ρ2 ⊣ Θ

∆1, α̂ : ω,∆2 ⊩
kapp (ρ1 : α̂) • τ : α̂2 { ρ1 ρ2 ⊣ Θ

∆ ⊩
ela µ : η (Elaborated Kinding)

a-ela-app

∆ ⊩
ela ρ1 : ω1 → ω2 ∆ ⊩

ela ρ2 : ω1

∆ ⊩
ela ρ1 ρ2 : ω2

a-ela-kapp

∆ ⊩
ela ρ1 : ∀a : ω .η ∆ ⊩

ela ρ2 : ω

∆ ⊩
ela ρ1 @ρ2 : η[a 7→ [∆]ρ2]

Fig. 7. Selected rules for algorithmic kinding in PolyKinds

As a goes out of the scope in the conclusion, we need to drop a in the concluding context. To
make sure that dropping a outputs a well-formed context, we substitute away all solved unification
variables in ∆3 for the return kind, and keep only unsolved(∆3), which are ensured (∆3 ֒→ a) to
have no dependency on a.
In the algorithmic elaborated kinding judgment ∆ ⊩ela µ : η, we keep the invariant: [∆]η = η.

That is why in rule a-ela-app we substitute a with [∆]ρ2.
Instantiation (⊩inst) contains the only entry to unification (rule a-inst-refl).

7.4 Unification

The judgments of unification and promotion are excerpted in Figure 8. Most rules are natural
extensions of those in Haskell98. Full rules are in the technical supplement.

Promotion. The promotion judgment ∆ ⊩
pr

α̂
ω1 ⇝ ω2 ⊣ Θ is extended with kind annotations for

unification variables. As our unification variables have kinds now, rule a-pr-kuvarR-tt must also

promote the kind of β̂ , so that β̂1 : ρ1 in the context is well-formed. Promotion now has a new

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:20 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

∆ ⊩
u ω1 ≈ ω2 ⊣ Θ (Unification)

a-u-refl-tt

∆ ⊩
u ω ≈ ω ⊣ ∆

a-u-app

∆ ⊩
u ρ1 ≈ ρ3 ⊣ ∆1 ∆1 ⊩

u [∆1]ρ2 ≈ [∆1]ρ4 ⊣ Θ

∆ ⊩
u ρ1 ρ2 ≈ ρ3 ρ4 ⊣ Θ

a-u-kvarL-tt

∆ ⊩
pr

α̂
ρ1 ⇝ ρ2 ⊣ Θ1, α̂ : ω1,Θ2 Θ1 ⊩

ela ρ2 : ω2 Θ1 ⊩
u [Θ1]ω1 ≈ ω2 ⊣ Θ3

∆ ⊩
u α̂ ≈ ρ1 ⊣ Θ3, α̂ : ω1 = ρ2,Θ2

a-u-kvarL-lo-tt

∆1,∆2 ++
mv α̂ : ω1 { Θ ∆[{Θ}] ⊩

pr

α̂
ρ1 ⇝ ρ2 ⊣ Θ1, {Θ2, α̂ : ω1,Θ3},Θ4

Θ1, {Θ2} ⊩
ela ρ2 : ω2 Θ1, {Θ2} ⊩

u [Θ1,Θ2]ω1 ≈ ω2 ⊣ Θ5, {Θ6}

∆[{∆1, α̂ : ω1,∆2}] ⊩
u α̂ ≈ ρ1 ⊣ Θ5, {Θ6, α̂ : ω1 = ρ2,Θ3},Θ4

∆ ⊩
pr

α̂
ω1 ⇝ ω2 ⊣ Θ (Promotion)

a-pr-tvar

∆[a][α̂] ⊩
pr

α̂
a⇝ a ⊣ ∆[a][α̂]

a-pr-kuvarR-tt

∆ ⊩
pr

α̂
[∆]ρ ⇝ ρ1 ⊣ Θ[α̂][β̂ : ρ]

∆[α̂][β̂ : ρ] ⊩
pr

α̂
β̂ ⇝ β̂1 ⊣ Θ[β̂1 : ρ1, α̂][β̂ : ρ = β̂1]

∆1 ++
mv

∆2 { Θ (Moving)

a-mv-empty

• ++mv
∆ { ∆

a-mv-kuvar

vars(ω) ♯ dom(∆2)

∆1 ++
mv

∆2 { Θ

α̂ : ω,∆1 ++
mv

∆2 { α̂ : ω,Θ

a-mv-kuvarM

¬(vars(ω) ♯ dom(∆2))

∆1 ++
mv

∆2, α̂ : ω { Θ

α̂ : ω,∆1 ++
mv

∆ { Θ

Fig. 8. Selected rules for unification, promotion, and moving in PolyKinds

failure mode: it cannot move proper quantified type variables. In rule a-pr-tvar, the variable a
must be to the left of α̂ .
Unfortunately, now we cannot easily tell whether promoting is terminating. In particular, the

convergence of promotion in Haskell98 is built upon the obvious fact that the size of the kind being
promoted always gets smaller from the conclusion to the hypothesis. However, rule a-pr-kuvarR-
tt breaks this invariant, as the judgment recurs into the kinds of unification variables, and the size
of the kinds may be larger than the unification variables. As shown in Section 7.5, we prove that
promotion is terminating.

Unification. The unification judgment ∆ ⊩u ω1 ≈ ω2 ⊣ Θ for PolyKinds features heterogeneous

constraints. Recall the definition of X and Y discussed in Section 2.2. When unifying α̂ β̂ with

Maybe Bool, setting α̂ =Maybe and β̂ =Bool results in ill-kinded results. This suggests that when
solving a unification variable, we need to first unify the kinds of both sides, as shown in rule a-u-
kvarL-tt. When unifying α̂ with ρ1, we first promote ρ1, yielding ρ2. Now ρ2 must be well-formed
under Θ1, so we can get its kind ω1. We then unify the kinds of both sides. If everything succeeds,

we set α̂ : ω1 = ρ2. Under this rule, the unification α̂ β̂ ≈Maybe Bool would be rejected correctly.
Rule a-u-kvarL-lo-tt is essentially the same as rule a-u-kvarL-tt, but deals with unification

variables in a local scope. We thus need an extra step to move α̂ towards the end of the local scope.

Local scopes and moving. As we have mentioned, a local scope can be reordered as long as the
context is well-formed. Consider unifying {α̂ : ⋆, a : ⋆, b : α̂ , c : ⋆} ⊩u α̂ ≈ a. We see that a is not
well-formed under the context before α̂ , and thus we cannot rewrite α̂ : ⋆with α̂ = a : ⋆. However,
we can reorder the context to put α̂ to the right of a. In fact, to maximize the prefix context of α̂ ,
we can move α̂ to the end of the context, yielding {a : ⋆, c : ⋆, α̂ : ⋆, b : α̂ }. As b depends on α̂ , b is
also moved to the end of the context. The final context is now {a : ⋆, c : ⋆, α̂ : ⋆ = a, b : α̂ }.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:21

The moving judgment ∆1 ++
mv

∆2 { Θ reorders the context, by appending ∆2 to the end of ∆1,
yielding Θ. As we have emphasized, reordering must preserve a well-formed context. Therefore,
every term that depends on ∆2 (rule a-mv-kuvarM) needs to be placed at the end, along with ∆2.
In rule a-u-kvarL-lo-tt, we begin by reordering the local scope to put α̂ as far to the right as

possible. The rest of the rule is essentially the same as rule a-u-kvarL-tt: the added complication
stems from the need to keep track of what bindings in the context are a part of the current local
scope.

7.5 Termination

Now the challenge is to prove that our unification algorithm terminates, which relies on the
convergence of the promotion algorithm. Next, we first discuss the termination of unification, and
then move to the more complicated proof for promotion. Let ⟨∆⟩ denote the number of unsolved
unification variables in ∆.

Lemma 7.1 (Promotion Preserves ⟨∆⟩). If ∆ ⊩
pr

α̂
ω1 ⇝ ω2 ⊣ Θ, then ⟨∆⟩ = ⟨Θ⟩.

Lemma 7.2 (Unification Makes Progress). If ∆ ⊩u ω1 ≈ ω2 ⊣ Θ, then either Θ = ∆, or ⟨Θ⟩ < ⟨∆⟩.

Now we measure unification ∆ ⊩
u ω1 ≈ ω2 ⊣ Θ using the lexicographic order of the pair

(⟨∆⟩, |ω1 |), where |ω1 | computes the standard size of ω1. We prove the pair always gets smaller
from the conclusion to the hypothesis. Formally, assuming promotion terminates, we have

Theorem 7.3 (Unification Terminates). Given a context ∆ ok, and kinds ρ1 and ρ2, where [∆]ρ1 = ρ1,

and [∆]ρ2 = ρ2, it is decidable whether there exists Θ such that ∆ ⊩u ρ1 ≈ ρ2 ⊣ Θ.

We are not yet done, since Theorem 7.3 depends on the convergence of promotion. As observed
in rule a-pr-kuvarR, the size of the type being promoted increases from the conclusion to the
hypothesis.Worse, the context never decreases. How dowe prove promotion terminates? The crucial
observation for rule a-pr-kuvarR is that, when we move from the conclusion to the hypothesis,
we also move from a unification variable to its kind. Since the kind is well-formed under the prefix
context of the variable, we are somehow moving leftward in the context.
To formalize the observation, we define the dependency graph of a context.

Definition 7.4 (Dependency Graph). The dependency graph of a context ∆ is a directed graph where:

(1) Nodes are all type variables and unsolved unification variables of ∆, and the terminal symbols

⋆, → and Int.

(2) Edges indicate the dependency from a type to its substituted kind. For example, if α̂ : ω, then
there is a directed edge from α̂ to all the nodes appearing in [∆]ω.

As an illustration, consider the context ∆ = α̂ : ⋆, α̂1 : ⋆, α̂2 : ⋆ = α̂1, α̂3 : ⋆ → α̂2, whose
dependency graph is given in Figure 9a (the reader is advised to ignore the color for now). There are
several notable properties. First, as long as the context is well-formed, the graph is acyclic except
for the self-loop of ⋆ and→. Second, solved unification variables never appear in the graph. The
kind of α̂3 depends on α̂2, which is already solved by α̂1, so the dependency goes from α̂3 to α̂1.
Now let us consider how promotion works in terms of the dependency graph, by trying to

unify ∆ ⊩
u α̂ ≈ α̂3 Int. We start by promoting α̂3 Int. The derivation of the promotion is given at

the bottom of Figure 9. We omit some details via (· · ·) as promoting constants (⋆,→ and Int) is
trivial. At the top of Figure 9 we give the dependency graph at certain points in the derivation,
where the part being promoted is highlighted in gray. At the beginning we are at Figure 9a. For
α̂3, by rule a-pr-kuvarR, we first promote the kind of α̂3, which is (after context application)
⋆ → α̂1 (Figure 9b). As ⋆ and→ are always well-formed, we then promote α̂1 whose kind is the

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:22 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

⋆→ Int

α̂1 α̂

α̂3

(a) Promote α̂3 Int

⋆→ Int

α̂1 α̂

α̂3

(b) Promote ⋆ → α̂1

⋆→ Int

β̂1 α̂

α̂3

(c) Solve α̂1 = β̂1

⋆→ Int

β̂1 α̂

β̂2

(d) Solve α̂3 = β̂2

Θ1 = β̂1 : ⋆ , α̂ : ⋆, α̂1 : ⋆ = β̂1 , α̂2 : ⋆ = α̂1, α̂3 : ⋆ → α̂2

Θ2 = β̂1 : ⋆, β̂2 : ⋆ → β̂1 , α̂ : ⋆, α̂1 : ⋆ = β̂1, α̂2 : ⋆ = α̂1, α̂3 : ⋆ → α̂2 = β̂2

· · ·

∆ ⊩
pr

α̂
⋆⇝ ⋆ ⊣ ∆

∆ ⊩
pr

α̂
α̂1 ⇝ β̂1 ⊣ Θ1 9c

a-pr-kuvarR

9b ∆ ⊩
pr

α̂
⋆ → α̂1 ⇝ ⋆ → β̂1 ⊣ Θ1

a-pr-app

∆ ⊩
pr

α̂
α̂3 ⇝ β̂2 ⊣ Θ2 9d

a-pr-kuvarR

· · ·

9a ∆ ⊩
pr

α̂
α̂3 Int⇝ α̂2 Int ⊣ Θ2

a-pr-app

Fig. 9. Example of dependency graph

well-formed ⋆. Now we create a fresh variable β̂1 : ⋆, and solve α̂1 with β̂1 (Figure 9c). Note since

α̂1 is solved, the dependency from α̂3 goes to β̂1. Finally, we create a fresh variable β̂2 with kind

⋆ → β̂1, and solve α̂3 with β̂2 (Figure 9d). Going back to unification, we solve α̂ = β̂2 Int.
We have several key observations. First, when we move from Figure 9a to Figure 9b via rule a-

pr-kuvarR, we are actually moving from the current node (α̂3) to its adjacent nodes (⋆,→, and α̂1).
In other words, we are going down in this graph. Moreover, promotion terminates immediately at
type constants, so we never fall into the trap of loop. Further, when we solve variables with fresh
ones (Figure 9c and Figure 9d), the shape of the graph never changes.
With all those in mind, we conclude that the promotion process goes top-down via rule a-pr-

kuvarR in the dependency graph until it terminates at types that are already well-formed. Based on
this conclusion, we can formally prove that promotion terminates.

Theorem 7.5 (Promotion Terminates). Given a context ∆[α̂] ok, and a kind ρ1 with [∆]ω1 = ω1, it

is decidable whether there exists Θ such that ∆ ⊩
pr

α̂
ω1 ⇝ ω2 ⊣ Θ.

7.6 Soundness, Completeness and Principality

We prove our algorithm is sound:

Theorem 7.6 (Soundness of ⊩pgm). If Ω; Γ ⊩pgm pgm : µ, then [Ω]Ω; [Ω]Γ ⊢pgm pgm : [Ω]µ.

Unfortunately, we lose completeness. Recall the example in Section 7.2. This definition of T is
rejected by the algorithmic quantification check as the kind of d cannot be determined. However,
the declarative system can guess correctly, e.g., Proxy b or Proxy c. Unfortunately, different choices
lead to incomparable kinds for T . Thus we argue such programs must be rejected.

Nevertheless, if the user explicitly writes down d :: Proxy b or d :: Proxy c, then the program will
be accepted by the algorithm. Thus, we conjecture that if all local dependencies are annotated by
the user, we can regain completeness. This, however, is a bit annoying to users, because it means
that we cannot accept definitions like the one below, even though the dependency is clear.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:23

data Eq :: ∀k . k → k → ⋆

data P :: ∀k (a :: k) b. Eq a b → ⋆

We do not consider the incompleteness as a problematic issue in practice, as this scenario is
quite contrived and (we expect) will rarely occur łin the wildž. See more discussion of this point in
Section 9.

Although the algorithm is incomplete, we offer the following guarantee: if the algorithm accepts

a definition, then that definition has a principal kind, and the algorithm infers the principal kind.

Definition 7.7 (Kind Instantiation). Under context Σ, a kind η = ∀{ϕ1}.∀ϕ2.ω1, where ϕ’s can be

empty, instantiates to ω, denoted as Σ ⊢ η ⊑ ω, if ω1[ϕ1 7→ ρ1][ϕ2 7→ ρ2] = ω for some ρ1 and ρ2 .

The relation is embedded in Σ ⊢inst µ1 : η ⊑ ω { µ2 (Figure 5), where we ignore µ1 and µ2.

Definition 7.8 (Partial Order of Kinds in PolyKinds). Under context Σ, a kind η1 is more general

than η2, denoted as Σ ⊢ η1 ⪯ η2, if for all ω such that Σ ⊢ η2 ⊑ ω, we have Σ ⊢ η1 ⊑ ω.

To understand the definition, consider that if the program type-checks under T : η2, then it must
type-check under T : η1, as T : η1 can be instantiated to all monokinds that T : η2 is used at.
Now we lift the definition of ⊩grp to be the generalized result of kinds and contexts.

Theorem 7.9 (Principality of ⊩grp). If Ω ⊩
grp recTi

i
{ ηi

i ; Γi
i
, then whenever [Ω]Ω ⊢grp

recTi
i
{ η′i

i
;Ψi

i
holds, we have [Ω]Ω ⊢ [Ω]ηi ⪯ η′i .

This result echoes the result in the term-level type inference algorithm for Haskell ([Vytiniotis
et al. 2011, Section 6.5]): our algorithm does not infer every kind acceptable by the declarative
system, but the kinds it does infer are always the best (principal) ones.

8 LANGUAGE EXTENSIONS

We have seen that the PolyKinds system incorporates many features and enjoys desirable properties.
In this section, we discuss how the PolyKinds system can be extended with more related language
features. The technical supplement contains a few more, less impactful extensions.

8.1 Higher-Rank Polymorphism

The system can be extended naturally to support higher-rank polymorphism [Dunfield and Krish-
naswami 2013; Peyton Jones et al. 2007]. With higher-rank polymorphism, every type can have a

polymorphic kind. For example, data constructor declarations become ∀ϕ .D σi
i instead of ∀ϕ .D τi

i .
Unfortunately, higher-rank polymorphism breaks principality. Consider:

data Q1 :: ∀k1 k2. k1 → ⋆ data Q2 :: (∀(k1 :⋆) (k2 : k1). k1 → ⋆) → ⋆

First, we modify the definition of partial order of kinds (Definition 7.8) to state that one kind
is more general than another if it can be instantiated to all polykinds that the other kind can
be instantiated to. Now consider the kind of Q1, which under the algorithm is generalized to
∀{k3 :⋆} (k1 :⋆) (k2 :k3). k1 → ⋆. In Theorem 7.9, we guarantee that this kind is a principal kind as
it can be instantiated to all monokinds that other possible kinds forQ1, e.g.,∀(k1::⋆) (k2::k1). k1 → ⋆,
can be instantiated to. However, under the new definition, ∀{k3 ::⋆} (k1 ::⋆) (k2 :: k3). k1 → ⋆
is no longer more general than ∀(k1 ::⋆) (k2 :: k1). k1 → ⋆, as there is no way to instantiate the
former to the latter. To see why we need to modify the definition at all, consider the rank-2 kind of
Q2, which expects exactly an argument of kind ∀(k1 ::⋆) (k2 :: k1). k1 → ⋆.
We do not consider the absence of principality in the setting of higher-rank polymorphism

to be a severe issue in practice, for two reasons: to our knowledge, higher-rank polymorphism
for datatypes is not heavily used; and it may be possible to recover principality through the use

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:24 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

of a more generous type-subsumption relation. Currently, GHC (and our model of it) does not
support first-class type-level abstraction (i.e., Λ in types) [Jones 1995]. This means that we cannot
introduce new variables (also called skolemization [Peyton Jones et al. 2007, Section 4.6.2]) in
an attempt to equate one type with another. Returning to the example above, we could massage
∀{k3 ::⋆} (k1 ::⋆) (k2 :: k3). k1 → ⋆ to ∀(k1 ::⋆) (k2 :: k1). k1 → ⋆ if we could abstract over the
k1 in the target type. Recent advances in type-level programming in Haskell [Kiss et al. 2019]
suggest we may be able to add first-class abstraction, meaning that type-subsumption can use both
instantiation and skolemization. We conjecture that this development would recover principal
types.

8.2 Generalized Algebraic Datatypes (GADTs)

The focus of this work has been on uniform datatypes, where every constructor’s type matches
exactly the datatype head: this fact allows us to easily choose the subscript to the ⊢dc judgment
in, e.g., rule dt-tt. Programmers in modern Haskell, however, often use generalized algebraic
datatypes [Peyton Jones et al. 2006; Xi et al. 2003]. There are two impacts of adding these, both of
which we found surprising.

Equality constraints. The power of GADTs arises from how they encode local equality constraints.
Any GADT can be rewritten to a uniform datatype with equality constraints [Vytiniotis et al. 2011,
Section 4.1]. For example, we can rewrite data G a where MkG :: G Bool to be data G a = (a ∼

Bool) ⇒ MkG, where ∼ describes an equality constraint. For our purposes of doing kind inference,
these equality constraints are uninteresting: the ∼ operator simply relates two types of the same
kind and can be processed as any polykinded type constructor would be. Modeling constraints to
the left of a ⇒ similarly would add a little clutter to our rules, but would offer no real challenges.
The unexpected simplicity of adding GADTs to our system arises from a key fact: we do not

ever allow pattern-matching. A GADT pattern-match brings a local equality assumption into scope,
which would influence the unification algorithm. However, as pattern matching does not happen
in the context of datatype declarations, we avoid this wrinkle here.

Syntax. The implementation of GADTs in GHC has an unusual syntax: data G a where MkG ::
a → G Int . The surprising aspect of this syntax is that the two as above are different: the a in the
header is unrelated to the a in the data constructor. This seemingly inconsequential design choice
makes kind inference for GADTs very challenging, as constructors have no way to refer back to
the datatype parameters. Given that this aspect of GADTs is a quirk of GHC’s designÐand is not
repeated in other languages that support GADTsÐwe remark here that it is odd and perhaps should
be remedied. For the details, please see the technical supplement.

8.3 Type Families

Type families [Chakravarty et al. 2005] are, effectively, type-level functions. Kind inference of type
families thus can be designed much like type inference for ordinary functions. However, as they can
have dependency, the complications we describe in this paper would arise here, too. In particular,
unification would have to be kind-directed, as we have described. The current syntax for closed
type families [Eisenberg et al. 2014] shares the same scoping problem as the syntax for GADTs, so
our arguments above apply to closed type families equally.
The challenge with type families is that they indeed do pattern-matching, and thus (in concert

with GADTs) can bring local equalities into scope. A full analysis of the ramifications here is beyond
the scope of this paper, but we believe the literature on type inference in the presence of local
equalities would be helpful. Principal among these is the work of Vytiniotis et al. [2011], but Gundry
[2013] and Eisenberg [2016] also approach this problem in the context of dependent types.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:25

9 RELATED WORK

The Glasgow Haskell Compiler. The systems we present here are inspired by the algorithms
implemented in GHC. However, our goal in the design of these systems is to produce a sound and
(nearly) complete pair of specification and implementation, not simply to faithfully record what is
implemented. We have identified ways that the GHC implementation can improve in the future. For
example, GHC quantifies over local scopes as specified where we believe they should be inferred;
and the tight connection in our system between unification and promotion may improve upon
GHC’s approach, which separates the two. The details of the relationship between our work and
GHC (including a myriad of ways our design choices differ in small ways from GHC’s) appear in
the technical supplement.

Unification with dependent types. While full higher-order unification is undecidable [Goldfarb
1981], the pattern fragment [Miller 1991] is a well-known decidable fragment. Much literature [Abel
and Pientka 2011; Gundry and McBride 2013; Reed 2009] is built upon the pattern fragment.

Unification in a dependently typed language features heterogeneous constraints. To prove correct-
ness, Reed [2009] used a weaker invariant on homogeneous equality, typing modulo, which states
that two sides are well typed up to the equality of the constraint yet to be solved. Gundry and
McBride [2013] observed the same problem, and use twin variables to explicitly represent the same
variable at different types, where twin variables are eliminated once the heterogeneous constraint
is solved. In both approaches the well-formedness of a constraint depends on other constraints.
Cockx et al. [2016] proposed a proof-relevant unification that keeps track of the dependencies
between equations. Different from their approaches, our algorithm unifies the kinds when solving
unification variables. This guarantees that our unification always outputs well-formed solutions.

Ziliani and Sozeau [2015] present the higher-order unification algorithm for CIC, the base logic
of Coq. They favor syntactic equality by trying first-order unification, as they argue the first-order
solution gives the most natural solution. However, they omit a correctness proof for their algorithm.
Coen [2004] also considers first-order unification, but only the soundness lemma is proved. Different
from their systems, our system is based on the novel promotion judgment, and correctness including
soundness and termination is proved.

The technique of suspended substitutions [Eisenberg 2016; Gundry and McBride 2013] is widely
adopted in unification algorithms. Our system provides a design alternative, our quantification check.
Choosing between suspended substitutions and the quantification check is a user-facing language
design decision, as suspended substitutions can accept some more programs. The quantification
check means that the kind of a locally quantified variable a must be fully determined in a’s scope;
it may not be influenced by usage sites of the construct that depends on a. Suspended substitutions
relax this restriction. We conjecture that suspended substitutions can yield a complete algorithm.
However, that mechanism is complex. Moreover, unification based on suspended substitutions
is only decidable for the pattern fragment. Our system, in contrast, avoids all the complication
introduced by suspended substitutions through its quantification check. Our unification terminates
for all inputs, preserving backward compatibility to Hindley-Milner-style inference. Although we
reject the definition of T (Section 7.2), we can solve more constraints outside the pattern fragment.
We conjecture that those constraints are much more common than definitions like T . Suspended
substitutions often come with a pruning process [Abel and Pientka 2011], which produces a valid
solution before solving a unification variable. Our promotion process has a similar effect.

Homogeneous kind-preserving unification. Jones [1995] proposed a homogeneous kind-preserving
unification between two types. Kinds κ are defined only as ⋆ or κ1 → κ2. As the kind system is
much simpler, kind-preserving unification ≈κ is simply subscripted by the kind, and working out
the kinds is straightforward. Our unification subsumes Jones’s algorithm.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

53:26 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

Type inference in Haskell. Type inference in Haskell is inspired by Damas and Milner [1982] and
Pottier and Rémy [2005], extended with various type features, including higher rank polymor-
phism [Peyton Jones et al. 2007] and local assumptions [Schrijvers et al. 2009; Simonet and Pottier
2007; Vytiniotis et al. 2011], among others. However, none of these works describe an inference
algorithm for datatypes, nor do they formalize type variables of varying kinds or polymorphic
recursion.

Dependent Haskell. Our PolyKinds system merges types and kinds, a key feature of Dependent
Haskell (DH) [Eisenberg 2016; Gundry 2013; Weirich et al. 2013, 2017]. There is ongoing work
dedicated to its implementation [Xie and Eisenberg 2018]. The most recent work by Weirich et al.
[2019] integrates roles [Breitner et al. 2016] with dependent types. Our work is the first presentation
of unification for DH, and our system may be useful in designing DH’s term-level type inference.

Context extension. Our approach of recording unification variables and their solutions in the
contexts is inspired by Gundry et al. [2010] and Dunfield and Krishnaswami [2013]. Gundry and
McBride [2013] applied the approach to unification in dependent types, where the context also
records constraints; constraints also appear in context in Eisenberg [2016]. Further, we extend the
context extension approach with local scopes, supporting groups of order-insensitive variables.

Polymorphic recursion. Mycroft [1984] presented a semi-algorithm for polymorphic recursion. Jim
[1996] and Damiani [2003] studied typing rules for recursive definitions based on rank-2 intersection
types. Comini et al. [2008] studied recursive definitions in a type system that corresponds to the
abstract interpreter in Gori and Levi [2002, 2003]. Our system does not infer polymorphic recursion;
instead, we exploit kind annotations to guide the acceptance of polymorphic recursion.

Constraint-solving approaches. Many systems (e.g. [Pottier and Rémy 2005]) adopt a modular
presentation of type inference, which consists of a constraint generator and a constraint solver. For
simplicity, we have presented an eager unification algorithm instead of using a separate constraint
solver. However, we believe changing to a constraint-solving approach should not change any of
our main results. Section B.1 of the technical supplement considers this point further.

10 CONCLUSION

We have presented the first known, detailed account of kind inference for datatypes, codifying
the inference both from the early days of Haskell and the Haskell of today. For the former, we can
prove soundness and completeness using the technique of kind parameters. For the latter, we have
described a sound algorithm for inferring types even in the presence of dependency, allowing users
to infer datatype kinds instead of merely checking them. The algorithm is incomplete in obscure
scenarios (Section 7.2), a conscious design decision in order to retain termination.

There are several ways we could extend this work. The most obvious is to include other constructs
in our approach. However, even with only datatypes formalized, we see this work as sturdy enough
to aim at implementation. A primary motivation for starting this work was shortcomings in GHC’s
current kind inference algorithm and results, yet we had no principled way of improving it. Having
completed this research, we now feel encouraged to attack this practical problem afresh and apply
what we have learned. We further believe that our approach to inference will be useful to designers
and implementors of other dependently typed languages, as they share many of the same challenges
as GHC, both in processing datatypes and in type-checking ordinary expressions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. This work has been sponsored by
the Hong Kong Research Grant Council projects number 17210617 and 17209519. This material is
based upon work supported by the National Science Foundation under Grant No. 1704041.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

Kind Inference for Datatypes 53:27

REFERENCES

Andreas Abel and Brigitte Pientka. 2011. Higher-order dynamic pattern unification for dependent types and records. In

International Conference on Typed Lambda Calculi and Applications. Springer, 10ś26.

P. B. Andrews. 1971. Resolution in type Theory. Journal of Symbolic Logic 36 (1971), 414ś432.

Richard S. Bird and Lambert Meertens. 1998. Nested datatypes. In LNCS 1422: Proceedings of Mathematics of Program

Construction, Johan Jeuring (Ed.). Springer-Verlag, Marstrand, Sweden, 52ś67. http://www.cs.ox.ac.uk/people/richard.

bird/online/BirdMeertens98Nested.pdf

Joachim Breitner, Richard A Eisenberg, Simon Peyton Jones, and Stephanie Weirich. 2016. Safe zero-cost coercions for

Haskell. Journal of Functional Programming 26 (2016).

L. Cardelli. 1986. A polymorphic lambda-calculus with Type:Type. Technical Report 10. SRC.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Associated type synonyms. In Proceedings of the

Tenth ACM SIGPLAN International Conference on Functional Programming (ICFP ’05). ACM, New York, NY, USA, 241ś253.

https://doi.org/10.1145/1086365.1086397

Jesper Cockx, Dominique Devriese, and Frank Piessens. 2016. Unifiers as equivalences: proof-relevant unification of

dependently typed data. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming

(ICFP 2016). ACM, New York, NY, USA, 270ś283. https://doi.org/10.1145/2951913.2951917

Claudio Sacerdoti Coen. 2004. Mathematical knowledge management and interactive theorem proving. Ph.D. Dissertation.

University of Bologna, 2004. Technical Report UBLCS 2004-5.

Marco Comini, Ferruccio Damiani, and Samuel Vrech. 2008. On polymorphic recursion, type systems, and abstract

interpretation. In International Static Analysis Symposium. Springer, 144ś158.

Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Proceedings of the 9th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’82). ACM, New York, NY, USA, 207ś212.

https://doi.org/10.1145/582153.582176

Ferruccio Damiani. 2003. Rank 2 intersection types for local definitions and conditional expressions. ACM Transactions on

Programming Languages and Systems (TOPLAS) 25, 4 (2003), 401ś451.

Joshua Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and easy bidirectional typechecking for higher-rank

polymorphism. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13).

ACM, New York, NY, USA, 429ś442. https://doi.org/10.1145/2500365.2500582

Richard A Eisenberg. 2016. Dependent types in haskell: Theory and practice. Ph.D. Dissertation. University of Pennsylvania.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed type families with

overlapping equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’14). ACM, New York, NY, USA, 671ś683. https://doi.org/10.1145/2535838.2535856

Richard A Eisenberg, Stephanie Weirich, and Hamidhasan G Ahmed. 2016. Visible type application. In European Symposium

on Programming. Springer, 229ś254.

Ronald Garcia and Matteo Cimini. 2015. Principal type schemes for gradual programs. In Proceedings of the 42nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA,

303ś315. https://doi.org/10.1145/2676726.2676992

Warren D Goldfarb. 1981. The undecidability of the second-order unification problem. Theoretical Computer Science 13, 2

(1981), 225ś230.

Roberta Gori and Giorgio Levi. 2002. An experiment in type inference and verification by abstract interpretation. In

International Workshop on Verification, Model Checking, and Abstract Interpretation. Springer, 225ś239.

Roberta Gori and Giorgio Levi. 2003. Properties of a type abstract interpreter. In International Workshop on Verification,

Model Checking, and Abstract Interpretation. Springer, 132ś145.

Adam Gundry and Conor McBride. 2013. A tutorial implementation of dynamic pattern unification. Unpublished draft

(2013).

Adam Gundry, Conor McBride, and James McKinna. 2010. Type inference in context. In Proceedings of the third ACM

SIGPLAN workshop on Mathematically structured functional programming. ACM, 43ś54.

Adam Michael Gundry. 2013. Type inference, Haskell and dependent types. Ph.D. Dissertation. University of Strathclyde.

Fritz Henglein. 1993. Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst. 15, 2 (April 1993),

253ś289. https://doi.org/10.1145/169701.169692

J. Roger Hindley. 1969. The principal type-scheme of an object in combinatory logic. Trans. Amer. Math. Soc. 146 (1969),

29ś60.

G. Huet. 1973. A unification algorithm for typed lambda calculus. Theoretical Computer Science 1, 1 (1973), 27ś57.

Trevor Jim. 1996. What are principal typings and what are they good for?. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. ACM, 42ś53.

Mark P Jones. 1995. A system of constructor classes: overloading and implicit higher-order polymorphism. Journal of

functional programming 5, 1 (1995), 1ś35.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

http://www.cs.ox.ac.uk/people/richard.bird/online/BirdMeertens98Nested.pdf
http://www.cs.ox.ac.uk/people/richard.bird/online/BirdMeertens98Nested.pdf
https://doi.org/10.1145/1086365.1086397
https://doi.org/10.1145/2951913.2951917
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2535838.2535856
https://doi.org/10.1145/2676726.2676992
https://doi.org/10.1145/169701.169692

53:28 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira

Mark P. Jones. 1999. Typing Haskell in Haskell. In Proceedings of the 1999 Haskell Workshop (Haskell ’99), Erik Meijer (Ed.).

Paris, France, pp. 9ś22. University of Utrecht Technical Report UU-CS-1999-28.

Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones. 2019. Higher-order type-level programming in Haskell.

In Proceedings of the 24th ACM SIGPLAN International Conference on Functional Programming (ICFP 2019). ACM.

Didier Le Botlan and Didier Rémy. 2003. MLF: Raising ML to the Power of System F (ICFP ’03). 12.

Daan Leijen. 2009. Flexible types: robust type inference for first-class polymorphism. In Proceedings of the 36th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM, New York, NY, USA, 66ś77.

https://doi.org/10.1145/1480881.1480891

Dale Miller. 1991. Unification of simply typed lambda-terms as logic programming. (1991).

Alan Mycroft. 1984. Polymorphic type schemes and recursive definitions. In International Symposium on Programming.

Springer, 217ś228.

Martin Odersky and Konstantin Läufer. 1996. Putting type annotations to work. In Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’96). ACM, New York, NY, USA, 54ś67. https:

//doi.org/10.1145/237721.237729

Simon Peyton Jones. 2003. Haskell 98 language and libraries: the revised report. Cambridge University Press.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. 2007. Practical type inference for arbitrary-

rank types. Journal of Functional Programming 17, 1 (2007), 1ś82.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. 2006. Simple unification-based type

inference for GADTs. In Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming

(ICFP ’06). ACM, New York, NY, USA, 50ś61. https://doi.org/10.1145/1159803.1159811

François Pottier and Didier Rémy. 2005. The essence of ML type inference. Advanced Topics in Types and Programming

Languages (2005).

Jason Reed. 2009. Higher-order constraint simplification in dependent type theory. In Proceedings of the Fourth International

Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. ACM, 49ś56.

Didier Rémy and Boris Yakobowski. 2008. From ML to MLF: Graphic type constraints with efficient type inference. In

Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming (ICFP ’08). ACM, New York,

NY, USA, 63ś74. https://doi.org/10.1145/1411204.1411216

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis. 2009. Complete and decidable type

inference for GADTs. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP

’09). ACM, New York, NY, USA, 341ś352. https://doi.org/10.1145/1596550.1596599

Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. 2018. Guarded impredicative polymorphism.

In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018).

ACM, New York, NY, USA, 783ś796. https://doi.org/10.1145/3192366.3192389

Vincent Simonet and François Pottier. 2007. A constraint-based approach to guarded algebraic data types. ACM Transactions

on Programming Languages and Systems (TOPLAS) 29, 1 (2007), 1.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn (X) Modular type inference

with local assumptions. Journal of functional programming 21, 4-5 (2011), 333ś412.

Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. 2008. FPH: First-class polymorphism for Haskell (ICFP

’08). 12.

Stephanie Weirich, Pritam Choudhury, Antoine Voizard, and Richard A. Eisenberg. 2019. A Role for dependent types in

Haskell. Proc. ACM Program. Lang. 3, ICFP, Article 101 (July 2019), 29 pages. https://doi.org/10.1145/3341705

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In Proceedings of the

18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA, 275ś286.

https://doi.org/10.1145/2500365.2500599

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A Eisenberg. 2017. A specification for

dependent types in Haskell. In Proceedings of the 22th ACM SIGPLAN International Conference on Functional Programming

(ICFP ’17). ACM.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded recursive datatype constructors. In Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’03). ACM, New York, NY, USA, 224ś235.

https://doi.org/10.1145/604131.604150

Ningnign Xie and Richard A Eisenberg. 2018. Coercion Quantification. In Haskell Implementors’ Workshop.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and

Implementation (TLDI ’12). ACM, New York, NY, USA, 53ś66. https://doi.org/10.1145/2103786.2103795

Beta Ziliani and Matthieu Sozeau. 2015. A Unification Algorithm for Coq Featuring Universe Polymorphism and Overloading.

In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). ACM, New

York, NY, USA, 179ś191. https://doi.org/10.1145/2784731.2784751

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 53. Publication date: January 2020.

https://doi.org/10.1145/1480881.1480891
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/1411204.1411216
https://doi.org/10.1145/1596550.1596599
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3341705
https://doi.org/10.1145/2500365.2500599
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/2103786.2103795
https://doi.org/10.1145/2784731.2784751

	Abstract
	1 Introduction
	2 Overview
	2.1 Kind Inference in Haskell98
	2.2 Kind Inference in Modern GHC Haskell
	2.3 Desirable Properties for Kind Inference

	3 Datatypes in Haskell98
	3.1 Groups and Dependency Analysis
	3.2 Declarative Typing Rules

	4 Kind Inference for Haskell98
	4.1 Syntax
	4.2 Algorithmic Typing Rules
	4.3 Defaulting
	4.4 Checking Datatype Declarations
	4.5 Kinding
	4.6 Unification
	4.7 Soundness and Completeness

	5 Type Parameters, Principal Kinds and Completeness in Haskell98
	5.1 Type Parameters
	5.2 Principal Kinds and Defaulting
	5.3 Completeness

	6 Declarative Syntax and Semantics of PolyKinds
	6.1 Groups and Dependency Analysis
	6.2 Checking Programs
	6.3 Checking Kinds

	7 Kind Inference for PolyKinds
	7.1 Algorithmic Program Typing
	7.2 The Quantification Check
	7.3 Kinding
	7.4 Unification
	7.5 Termination
	7.6 Soundness, Completeness and Principality

	8 Language Extensions
	8.1 Higher-Rank Polymorphism
	8.2 Generalized Algebraic Datatypes (GADTs)
	8.3 Type Families

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

