// RUN: mlir-opt %s --sparse-reinterpret-map -sparsification | FileCheck %s #SpVec = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }> #Row = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : dense) }> #EncDenseVec = #sparse_tensor.encoding<{ map = (d0) -> (d0 : dense) }> #trait1 = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (3)>, // b affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) += a(i) * b(3)" } // CHECK-LABEL: func @mul_inv_dense1d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<4xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 3 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<4xf32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_4]]] : memref<4xf32> // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_5]]] : memref // CHECK: scf.for %[[VAL_15:.*]] = %[[VAL_13]] to %[[VAL_14]] step %[[VAL_5]] { // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_15]]] : memref // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_16]]] : memref<32xf32> // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_15]]] : memref // CHECK: %[[VAL_19:.*]] = arith.mulf %[[VAL_18]], %[[VAL_12]] : f32 // CHECK: %[[VAL_20:.*]] = arith.addf %[[VAL_17]], %[[VAL_19]] : f32 // CHECK: memref.store %[[VAL_20]], %[[VAL_11]]{{\[}}%[[VAL_16]]] : memref<32xf32> // CHECK: } // CHECK: %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xf32> // CHECK: return %[[VAL_21]] : tensor<32xf32> // CHECK: } func.func @mul_inv_dense1d(%arga: tensor<32xf32, #SpVec>, %argb: tensor<4xf32>, %argx: tensor<32xf32>) -> tensor<32xf32> { %0 = linalg.generic #trait1 ins(%arga, %argb: tensor<32xf32, #SpVec>, tensor<4xf32>) outs(%argx: tensor<32xf32>) { ^bb(%a: f32, %b: f32, %x: f32): %0 = arith.mulf %a, %b : f32 %1 = arith.addf %x, %0 : f32 linalg.yield %1 : f32 } -> tensor<32xf32> return %0 : tensor<32xf32> } // CHECK-LABEL: func.func @mul_inv_enc_dense1d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xf32, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<4xf32, #sparse{{[0-9]*}}>) -> tensor<32xf32, #sparse{{[0-9]*}}> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 3 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<4xf32, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_6]] : tensor<32xf32, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_3]]] : memref // CHECK: scf.for %[[VAL_11:.*]] = %[[VAL_4]] to %[[VAL_2]] step %[[VAL_5]] { // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_11]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_11]]] : memref // CHECK: %[[VAL_14:.*]] = arith.mulf %[[VAL_13]], %[[VAL_10]] : f32 // CHECK: %[[VAL_15:.*]] = arith.addf %[[VAL_12]], %[[VAL_14]] : f32 // CHECK: memref.store %[[VAL_15]], %[[VAL_9]]{{\[}}%[[VAL_11]]] : memref // CHECK: } // CHECK: %[[VAL_16:.*]] = sparse_tensor.load %[[VAL_6]] : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK: return %[[VAL_16]] : tensor<32xf32, #sparse{{[0-9]*}}> // CHECK: } func.func @mul_inv_enc_dense1d(%arga: tensor<32xf32, #EncDenseVec>, %argb: tensor<4xf32, #EncDenseVec>) -> tensor<32xf32, #EncDenseVec> { %argx = tensor.empty() : tensor<32xf32, #EncDenseVec> %0 = linalg.generic #trait1 ins(%arga, %argb: tensor<32xf32, #EncDenseVec>, tensor<4xf32, #EncDenseVec>) outs(%argx: tensor<32xf32, #EncDenseVec>) { ^bb(%a: f32, %b: f32, %x: f32): %0 = arith.mulf %a, %b : f32 %1 = arith.addf %x, %0 : f32 linalg.yield %1 : f32 } -> tensor<32xf32, #EncDenseVec> return %0 : tensor<32xf32, #EncDenseVec> } #trait2 = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i+2)>, // b affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) & b(i+2)" } // CHECK-LABEL: func @and_affine_dense1d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32xi32, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<34xi32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xi32>) -> tensor<32xi32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0 : i32 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 0 : index} : tensor<32xi32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 0 : index} : tensor<32xi32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi32, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34xi32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi32> // CHECK: linalg.fill ins(%[[ZERO]] : i32) outs(%[[VAL_11]] : memref<32xi32>) // CHECK: %[[VAL_12:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_3]]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_6]]{{\[}}%[[VAL_4]]] : memref // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_12]] to %[[VAL_13]] step %[[VAL_4]] { // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_14]]] : memref // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref // CHECK: %[[VAL_17:.*]] = arith.addi %[[VAL_15]], %[[VAL_5]] : index // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_17]]] : memref<34xi32> // CHECK: %[[VAL_19:.*]] = arith.andi %[[VAL_16]], %[[VAL_18]] : i32 // CHECK: memref.store %[[VAL_19]], %[[VAL_11]]{{\[}}%[[VAL_15]]] : memref<32xi32> // CHECK: } // CHECK: %[[VAL_20:.*]] = bufferization.to_tensor %[[VAL_11]] : memref<32xi32> // CHECK: return %[[VAL_20]] : tensor<32xi32> // CHECK: } func.func @and_affine_dense1d(%arga: tensor<32xi32, #SpVec>, %argb: tensor<34xi32>, %argx: tensor<32xi32>) -> tensor<32xi32> { %0 = linalg.generic #trait2 ins(%arga, %argb: tensor<32xi32, #SpVec>, tensor<34xi32>) outs(%argx: tensor<32xi32>) { ^bb(%a: i32, %b: i32, %x: i32): %0 = arith.andi %a, %b : i32 linalg.yield %0 : i32 } -> tensor<32xi32> return %0 : tensor<32xi32> } #trait3 = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // a affine_map<(i,j) -> (i+2,j+3)>, // b affine_map<(i,j) -> (i,j)> // x (out) ], iterator_types = ["parallel","parallel"], doc = "x(i,j) += a(i,j) * b(i+2,j+3)" } // CHECK-LABEL: func @mul_affine_dense2d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<32x16xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_1:.*]]: tensor<34x19xf64>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16xf64>) -> tensor<32x16xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<32x16xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<32x16xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf64, #sparse{{[0-9]*}}> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34x19xf64> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf64> // CHECK: scf.for %[[VAL_14:.*]] = %[[VAL_5]] to %[[VAL_4]] step %[[VAL_3]] { // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_14]]] : memref // CHECK: %[[VAL_16:.*]] = arith.addi %[[VAL_14]], %[[VAL_3]] : index // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_16]]] : memref // CHECK: scf.for %[[VAL_18:.*]] = %[[VAL_15]] to %[[VAL_17]] step %[[VAL_3]] { // CHECK: %[[VAL_19:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_19]]] : memref<32x16xf64> // CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_18]]] : memref // CHECK: %[[VAL_22:.*]] = arith.addi %[[VAL_14]], %[[VAL_6]] : index // CHECK: %[[VAL_23:.*]] = arith.addi %[[VAL_19]], %[[VAL_7]] : index // CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_22]], %[[VAL_23]]] : memref<34x19xf64> // CHECK: %[[VAL_25:.*]] = arith.mulf %[[VAL_21]], %[[VAL_24]] : f64 // CHECK: %[[VAL_26:.*]] = arith.addf %[[VAL_20]], %[[VAL_25]] : f64 // CHECK: memref.store %[[VAL_26]], %[[VAL_13]]{{\[}}%[[VAL_14]], %[[VAL_19]]] : memref<32x16xf64> // CHECK: } // CHECK: } // CHECK: %[[VAL_27:.*]] = bufferization.to_tensor %[[VAL_13]] : memref<32x16xf64> // CHECK: return %[[VAL_27]] : tensor<32x16xf64> // CHECK: } func.func @mul_affine_dense2d(%arga: tensor<32x16xf64, #CSR>, %argb: tensor<34x19xf64>, %argx: tensor<32x16xf64>) -> tensor<32x16xf64> { %0 = linalg.generic #trait3 ins(%arga, %argb: tensor<32x16xf64, #CSR>, tensor<34x19xf64>) outs(%argx: tensor<32x16xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 %1 = arith.addf %x, %0 : f64 linalg.yield %1 : f64 } -> tensor<32x16xf64> return %0 : tensor<32x16xf64> } #trait4 = { indexing_maps = [ affine_map<(i,j) -> (i+2,j)>, // a affine_map<(i,j) -> (i,j+3)>, // b affine_map<(i,j) -> (i,j)> // x (out) ], iterator_types = ["parallel","parallel"], doc = "x(i,j) += a(i+2,j) * b(i,j+3)" } // CHECK-LABEL: func.func @mul_affine_dense_dim_2d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<34x16xf64, #sparse{{[0-9]*}}> // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x19xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16xf64>) -> tensor<32x16xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 19 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index // CHECK: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf64> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_5]]] : memref // CHECK: scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_5]] { // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_17]]] : memref // CHECK: %[[VAL_19:.*]] = arith.addi %[[VAL_18]], %[[VAL_6]] : index // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_19]]] : memref // CHECK: %[[VAL_21:.*]] = arith.addi %[[VAL_19]], %[[VAL_5]] : index // CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_21]]] : memref // CHECK: scf.for %[[VAL_23:.*]] = %[[VAL_20]] to %[[VAL_22]] step %[[VAL_5]] { // CHECK: %[[VAL_24:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_23]]] : memref // CHECK: %[[VAL_25:.*]] = arith.addi %[[VAL_24]], %[[VAL_7]] : index // CHECK: %[[VAL_26:.*]] = arith.muli %[[VAL_17]], %[[VAL_3]] : index // CHECK: %[[VAL_27:.*]] = arith.addi %[[VAL_26]], %[[VAL_25]] : index // CHECK: %[[VAL_28:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_18]], %[[VAL_24]]] : memref<32x16xf64> // CHECK: %[[VAL_29:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_23]]] : memref // CHECK: %[[VAL_30:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_27]]] : memref // CHECK: %[[VAL_31:.*]] = arith.mulf %[[VAL_29]], %[[VAL_30]] : f64 // CHECK: %[[VAL_32:.*]] = arith.addf %[[VAL_28]], %[[VAL_31]] : f64 // CHECK: memref.store %[[VAL_32]], %[[VAL_14]]{{\[}}%[[VAL_18]], %[[VAL_24]]] : memref<32x16xf64> // CHECK: } // CHECK: } // CHECK: %[[VAL_33:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16xf64> // CHECK: return %[[VAL_33]] : tensor<32x16xf64> // CHECK: } func.func @mul_affine_dense_dim_2d(%arga: tensor<34x16xf64, #CSR>, %argb: tensor<32x19xf64, #Row>, %argx: tensor<32x16xf64>) -> tensor<32x16xf64> { %0 = linalg.generic #trait4 ins(%arga, %argb: tensor<34x16xf64, #CSR>, tensor<32x19xf64, #Row>) outs(%argx: tensor<32x16xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 %1 = arith.addf %x, %0 : f64 linalg.yield %1 : f64 } -> tensor<32x16xf64> return %0 : tensor<32x16xf64> } #trait5 = { indexing_maps = [ affine_map<(i,j) -> (2,j)>, // a affine_map<(i,j) -> (i,3)>, // b affine_map<(i,j) -> (i,j)> // x (out) ], iterator_types = ["parallel","parallel"], doc = "x(i,j) += a(2,j) * b(i,3)" } // CHECK-LABEL: func.func @mul_const_affine_dense_dim_2d( // CHECK-SAME: %[[VAL_0:.*]]: tensor<34x16xf64, // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x19xf64, #sparse{{[0-9]*}}>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16xf64>) -> tensor<32x16xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 19 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index // CHECK: %[[VAL_8:.*]] = sparse_tensor.positions %[[VAL_0]] {level = 1 : index} : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.coordinates %[[VAL_0]] {level = 1 : index} : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<34x16xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_11:.*]] = sparse_tensor.positions %[[VAL_1]] {level = 0 : index} : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_12:.*]] = sparse_tensor.coordinates %[[VAL_1]] {level = 0 : index} : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x19xf64, #sparse{{[0-9]*}}> to memref // CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf64> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_5]]] : memref // CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_6]]] : memref // CHECK: scf.for %[[VAL_17:.*]] = %[[VAL_15]] to %[[VAL_16]] step %[[VAL_6]] { // CHECK: %[[VAL_18:.*]] = memref.load %[[VAL_12]]{{\[}}%[[VAL_17]]] : memref // CHECK: %[[VAL_19:.*]] = arith.muli %[[VAL_17]], %[[VAL_3]] : index // CHECK: %[[VAL_20:.*]] = arith.addi %[[VAL_19]], %[[VAL_7]] : index // CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_13]]{{\[}}%[[VAL_20]]] : memref // CHECK: %[[VAL_22:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref // CHECK: %[[VAL_23:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_7]]] : memref // CHECK: scf.for %[[VAL_24:.*]] = %[[VAL_22]] to %[[VAL_23]] step %[[VAL_6]] { // CHECK: %[[VAL_25:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_24]]] : memref // CHECK: %[[VAL_26:.*]] = memref.load %[[VAL_14]]{{\[}}%[[VAL_18]], %[[VAL_25]]] : memref<32x16xf64> // CHECK: %[[VAL_27:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_24]]] : memref // CHECK: %[[VAL_28:.*]] = arith.mulf %[[VAL_27]], %[[VAL_21]] : f64 // CHECK: %[[VAL_29:.*]] = arith.addf %[[VAL_26]], %[[VAL_28]] : f64 // CHECK: memref.store %[[VAL_29]], %[[VAL_14]]{{\[}}%[[VAL_18]], %[[VAL_25]]] : memref<32x16xf64> // CHECK: } // CHECK: } // CHECK: %[[VAL_30:.*]] = bufferization.to_tensor %[[VAL_14]] : memref<32x16xf64> // CHECK: return %[[VAL_30]] : tensor<32x16xf64> // CHECK: } func.func @mul_const_affine_dense_dim_2d(%arga: tensor<34x16xf64, #CSR>, %argb: tensor<32x19xf64, #Row>, %argx: tensor<32x16xf64>) -> tensor<32x16xf64> { %0 = linalg.generic #trait5 ins(%arga, %argb: tensor<34x16xf64, #CSR>, tensor<32x19xf64, #Row>) outs(%argx: tensor<32x16xf64>) { ^bb(%a: f64, %b: f64, %x: f64): %0 = arith.mulf %a, %b : f64 %1 = arith.addf %x, %0 : f64 linalg.yield %1 : f64 } -> tensor<32x16xf64> return %0 : tensor<32x16xf64> }