//===- MatmulOptimizer.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "polly/MatmulOptimizer.h" #include "polly/DependenceInfo.h" #include "polly/Options.h" #include "polly/ScheduleTreeTransform.h" #include "polly/ScopInfo.h" #include "polly/ScopPass.h" #include "polly/Simplify.h" #include "polly/Support/GICHelper.h" #include "polly/Support/ISLTools.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/raw_ostream.h" #include "isl/ctx.h" #include "isl/schedule_node.h" #include "isl/schedule_type.h" #include "isl/union_map.h" #include "isl/union_set.h" #include #include #include #include #include #include #define DEBUG_TYPE "polly-opt-isl" using namespace llvm; using namespace polly; namespace llvm { class Value; } static cl::opt LatencyVectorFma( "polly-target-latency-vector-fma", cl::desc("The minimal number of cycles between issuing two " "dependent consecutive vector fused multiply-add " "instructions."), cl::Hidden, cl::init(8), cl::cat(PollyCategory)); static cl::opt ThroughputVectorFma( "polly-target-throughput-vector-fma", cl::desc("A throughput of the processor floating-point arithmetic units " "expressed in the number of vector fused multiply-add " "instructions per clock cycle."), cl::Hidden, cl::init(1), cl::cat(PollyCategory)); static cl::opt FirstCacheLevelSize( "polly-target-1st-cache-level-size", cl::desc("The size of the first cache level specified in bytes."), cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); static cl::opt FirstCacheLevelDefaultSize( "polly-target-1st-cache-level-default-size", cl::desc("The default size of the first cache level specified in bytes" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(32768), cl::cat(PollyCategory)); static cl::opt SecondCacheLevelSize( "polly-target-2nd-cache-level-size", cl::desc("The size of the second level specified in bytes."), cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); static cl::opt SecondCacheLevelDefaultSize( "polly-target-2nd-cache-level-default-size", cl::desc("The default size of the second cache level specified in bytes" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(262144), cl::cat(PollyCategory)); // This option, along with --polly-target-2nd-cache-level-associativity, // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size // represent the parameters of the target cache, which do not have typical // values that can be used by default. However, to apply the pattern matching // optimizations, we use the values of the parameters of Intel Core i7-3820 // SandyBridge in case the parameters are not specified or not provided by the // TargetTransformInfo. static cl::opt FirstCacheLevelAssociativity( "polly-target-1st-cache-level-associativity", cl::desc("The associativity of the first cache level."), cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); static cl::opt FirstCacheLevelDefaultAssociativity( "polly-target-1st-cache-level-default-associativity", cl::desc("The default associativity of the first cache level" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(8), cl::cat(PollyCategory)); static cl::opt SecondCacheLevelAssociativity( "polly-target-2nd-cache-level-associativity", cl::desc("The associativity of the second cache level."), cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); static cl::opt SecondCacheLevelDefaultAssociativity( "polly-target-2nd-cache-level-default-associativity", cl::desc("The default associativity of the second cache level" " (if not enough were provided by the TargetTransformInfo)."), cl::Hidden, cl::init(8), cl::cat(PollyCategory)); static cl::opt VectorRegisterBitwidth( "polly-target-vector-register-bitwidth", cl::desc("The size in bits of a vector register (if not set, this " "information is taken from LLVM's target information."), cl::Hidden, cl::init(-1), cl::cat(PollyCategory)); static cl::opt PollyPatternMatchingNcQuotient( "polly-pattern-matching-nc-quotient", cl::desc("Quotient that is obtained by dividing Nc, the parameter of the" "macro-kernel, by Nr, the parameter of the micro-kernel"), cl::Hidden, cl::init(256), cl::cat(PollyCategory)); static cl::opt PMBasedTCOpts("polly-tc-opt", cl::desc("Perform optimizations of tensor contractions based " "on pattern matching"), cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt PMBasedMMMOpts("polly-matmul-opt", cl::desc("Perform optimizations of matrix multiplications " "based on pattern matching"), cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory)); static cl::opt OptComputeOut( "polly-tc-dependences-computeout", cl::desc("Bound the dependence analysis by a maximal amount of " "computational steps (0 means no bound)"), cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory)); namespace { /// Parameters of the micro kernel. /// /// Parameters, which determine sizes of rank-1 (i.e., outer product) update /// used in the optimized matrix multiplication. struct MicroKernelParamsTy { int Mr; int Nr; }; /// Parameters of the macro kernel. /// /// Parameters, which determine sizes of blocks of partitioned matrices /// used in the optimized matrix multiplication. struct MacroKernelParamsTy { int Mc; int Nc; int Kc; }; /// Parameters of the matrix multiplication operands. /// /// Parameters, which describe access relations that represent operands of the /// matrix multiplication. struct MatMulInfoTy { MemoryAccess *A = nullptr; MemoryAccess *B = nullptr; MemoryAccess *ReadFromC = nullptr; MemoryAccess *WriteToC = nullptr; int i = -1; int j = -1; int k = -1; }; /// Parameters of the tensor contraction operands. /// /// A general d-dimensional tensor T ∈ R ^ Nu0 x ... x Nud−1 can be defined /// as the set of scalar elements indexed by the set of indices u0 ... ud, /// /// T ≡ {Anu0...nud−1 ∈ R | (u0,...,ud−1) ∈ Nu0 x ... x Nud−1}. /// /// Let A, B, and C be dA, dB, and dC-dimensional tensors, respectively. /// Let the free and the contracted indices of the tensor A be grouped into /// two bundles I = i0...ir−1 and P = p0...pt−1, respectively. Similarly, /// the free and the contracted indices of B are grouped into bundles /// J = j0..js−1 and P and the free indices of C are grouped into /// bundles I and J. /// /// Tensor contraction (TC) of tensors A, B into tensor C can be represented as /// C(shuffle(I,J))=∑α·A(shuffle(I,P))·B(shuffle(P,J))+β·C(shuffle(I,J)), /// where ∑ is a summation over all contracted indices of P, /// α, β ∈ R, Npi is the length of the tensor dimension that corresponds /// to the index pi, A(shuffle(I, P)), B(shuffle(P, J)), C(shuffle(I, J)) are /// accesses to tensors A, B, C, respectively, /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of /// the enclosed indices. /// /// Multiplication of C(shuffle(I,J)) by β can be moved into a different SCoP /// statement by loop distribution, which is done by the isl scheduler. // If β is not equal to one, the optimization of TC of Polly requires /// such a transformation. /// /// TCInfoTy contains parameters, which describe access relations that represent /// operands of the tensor contraction. struct TCInfoTy { /// @{ /// Memory accesses that represent reading from tensors, which are operands of /// the tensor contraction. MemoryAccess *A = nullptr; MemoryAccess *B = nullptr; /// @} /// @{ /// Memory accesses that represent reading from and writing into the tensor, /// which contains the result of the tensor contraction. MemoryAccess *ReadFromC = nullptr; MemoryAccess *WriteToC = nullptr; /// @} /// @{ /// Input dimensions of the schedule space, which represent free /// indices of tensors. SmallDenseSet I; SmallDenseSet J; /// @} /// Input dimension of the schedule space, which represents contracted /// indices of tensors. SmallDenseSet P; /// @{ /// Sizes of tensor dimensions for corresponding input dimensions of /// the schedule space. The size of the tensor dimension can be larger than /// the size of the corresponding input dimension of the schedule space. /// This does not correspond to a tensor contraction. However, such a pattern /// will be optimized by the transformation. SmallVector DimensionSizes; SmallVector ADimensions; SmallVector BDimensions; SmallVector CDimensions; /// @} /// @{ /// Permutations of indices of I, J, and P, which describe operands of /// the tensor contraction and its result. SmallVector OrderedI; SmallVector OrderedJ; SmallVector OrderedP; /// @} }; /// Create an isl::union_set, which describes the option of the form /// [isolate[] -> unroll[x]]. /// /// @param Ctx An isl::ctx, which is used to create the isl::union_set. static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) { isl::space Space = isl::space(Ctx, 0, 0, 1); isl::map UnrollIsolatedSetOption = isl::map::universe(Space); isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr); isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr); UnrollIsolatedSetOption = UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId); UnrollIsolatedSetOption = UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId); return UnrollIsolatedSetOption.wrap(); } /// Permute the two dimensions of the isl map. /// /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that /// have type @p DimType. /// /// @param Map The isl map to be modified. /// @param DimType The type of the dimensions. /// @param DstPos The first dimension. /// @param SrcPos The second dimension. /// @return The modified map. static isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos, unsigned SrcPos) { assert(DstPos < unsignedFromIslSize(Map.dim(DimType)) && SrcPos < unsignedFromIslSize(Map.dim(DimType))); if (DstPos == SrcPos) return Map; isl::id DimId; if (Map.has_tuple_id(DimType)) DimId = Map.get_tuple_id(DimType); auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in; isl::id FreeDimId; if (Map.has_tuple_id(FreeDim)) FreeDimId = Map.get_tuple_id(FreeDim); auto MaxDim = std::max(DstPos, SrcPos); auto MinDim = std::min(DstPos, SrcPos); Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1); Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1); Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1); Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1); if (!DimId.is_null()) Map = Map.set_tuple_id(DimType, DimId); if (!FreeDimId.is_null()) Map = Map.set_tuple_id(FreeDim, FreeDimId); return Map; } /// Check the form of the access relation. /// /// Check that the access relation @p AccMap has the form M[i][j], where i /// is a @p FirstPos and j is a @p SecondPos. /// /// @param AccMap The access relation to be checked. /// @param FirstPos The index of the input dimension that is mapped to /// the first output dimension. /// @param SecondPos The index of the input dimension that is mapped to the /// second output dimension. /// @return True in case @p AccMap has the expected form and false, /// otherwise. static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos, int &SecondPos) { isl::space Space = AccMap.get_space(); isl::map Universe = isl::map::universe(Space); if (unsignedFromIslSize(Space.dim(isl::dim::out)) != 2) return false; // MatMul has the form: // for (i = 0; i < N; i++) // for (j = 0; j < M; j++) // for (k = 0; k < P; k++) // C[i, j] += A[i, k] * B[k, j] // // Permutation of three outer loops: 3! = 6 possibilities. int FirstDims[] = {0, 0, 1, 1, 2, 2}; int SecondDims[] = {1, 2, 2, 0, 0, 1}; for (int i = 0; i < 6; i += 1) { auto PossibleMatMul = Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0) .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1); AccMap = AccMap.intersect_domain(Domain); PossibleMatMul = PossibleMatMul.intersect_domain(Domain); // If AccMap spans entire domain (Non-partial write), // compute FirstPos and SecondPos. // If AccMap != PossibleMatMul here (the two maps have been gisted at // this point), it means that the writes are not complete, or in other // words, it is a Partial write and Partial writes must be rejected. if (AccMap.is_equal(PossibleMatMul)) { if (FirstPos != -1 && FirstPos != FirstDims[i]) continue; FirstPos = FirstDims[i]; if (SecondPos != -1 && SecondPos != SecondDims[i]) continue; SecondPos = SecondDims[i]; return true; } } return false; } /// Does the memory access represent a non-scalar operand of the matrix /// multiplication. /// /// Check that the memory access @p MemAccess is the read access to a non-scalar /// operand of the matrix multiplication or its result. /// /// @param MemAccess The memory access to be checked. /// @param MMI Parameters of the matrix multiplication operands. /// @return True in case the memory access represents the read access /// to a non-scalar operand of the matrix multiplication and /// false, otherwise. static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess, MatMulInfoTy &MMI) { if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead()) return false; auto AccMap = MemAccess->getLatestAccessRelation(); isl::set StmtDomain = MemAccess->getStatement()->getDomain(); if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) { MMI.ReadFromC = MemAccess; return true; } if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) { MMI.A = MemAccess; return true; } if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) { MMI.B = MemAccess; return true; } return false; } /// Check accesses to operands of the matrix multiplication. /// /// Check that accesses of the SCoP statement, which corresponds to /// the partial schedule @p PartialSchedule, are scalar in terms of loops /// containing the matrix multiplication, in case they do not represent /// accesses to the non-scalar operands of the matrix multiplication or /// its result. /// /// @param PartialSchedule The partial schedule of the SCoP statement. /// @param MMI Parameters of the matrix multiplication operands. /// @return True in case the corresponding SCoP statement /// represents matrix multiplication and false, /// otherwise. static bool containsOnlyMatrMultAcc(isl::map PartialSchedule, MatMulInfoTy &MMI) { auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in); auto *Stmt = static_cast(InputDimId.get_user()); unsigned OutDimNum = unsignedFromIslSize(PartialSchedule.range_tuple_dim()); assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest " "and, consequently, the corresponding scheduling " "functions have at least three dimensions."); auto MapI = permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1); auto MapJ = permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1); auto MapK = permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1); auto Accesses = getAccessesInOrder(*Stmt); for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) { auto *MemAccessPtr = *MemA; if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC && !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) && !(MemAccessPtr->isStrideZero(MapI) && MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))) return false; } return true; } /// Check for dependencies corresponding to the matrix multiplication. /// /// Check that there is only true dependence of the form /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds /// to the dependency produced by the matrix multiplication. /// /// @param Schedule The schedule of the SCoP statement. /// @param D The SCoP dependencies. /// @param Pos The parameter to describe an acceptable true dependence. /// In case it has a negative value, try to determine its /// acceptable value. /// @return True in case dependencies correspond to the matrix multiplication /// and false, otherwise. static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D, int &Pos) { isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW); isl::union_map Red = D->getDependences(Dependences::TYPE_RED); if (!Red.is_null()) Dep = Dep.unite(Red); auto DomainSpace = Schedule.get_space().domain(); auto Space = DomainSpace.map_from_domain_and_range(DomainSpace); auto Deltas = Dep.extract_map(Space).deltas(); int DeltasDimNum = unsignedFromIslSize(Deltas.dim(isl::dim::set)); for (int i = 0; i < DeltasDimNum; i++) { auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i); Pos = Pos < 0 && Val.is_one() ? i : Pos; if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one()))) return false; } if (DeltasDimNum == 0 || Pos < 0) return false; return true; } /// Check if the SCoP statement could probably be optimized with analytical /// modeling. /// /// containsMatrMult tries to determine whether the following conditions /// are true: /// 1. The last memory access modeling an array, MA1, represents writing to /// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or /// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement /// under consideration. /// 2. There is only one loop-carried true dependency, and it has the /// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no /// loop-carried or anti dependencies. /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent /// reading from memory and have the form S(..., i3, ...) -> M(i1, i3), /// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively, /// and all memory accesses of the SCoP that are different from MA1, MA2, /// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any /// of loops i1, i2 and i3. /// /// @param PartialSchedule The PartialSchedule that contains a SCoP statement /// to check. /// @D The SCoP dependencies. /// @MMI Parameters of the matrix multiplication operands. static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D, MatMulInfoTy &MMI) { auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in); auto *Stmt = static_cast(InputDimsId.get_user()); if (Stmt->size() <= 1) return false; auto Accesses = getAccessesInOrder(*Stmt); for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) { auto *MemAccessPtr = *MemA; if (!MemAccessPtr->isLatestArrayKind()) continue; if (!MemAccessPtr->isWrite()) return false; auto AccMap = MemAccessPtr->getLatestAccessRelation(); if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j)) return false; MMI.WriteToC = MemAccessPtr; break; } if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k)) return false; if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI)) return false; if (!MMI.A || !MMI.B || !MMI.ReadFromC) return false; return true; } /// Permute two dimensions of the band node. /// /// Permute FirstDim and SecondDim dimensions of the Node. /// /// @param Node The band node to be modified. /// @param FirstDim The first dimension to be permuted. /// @param SecondDim The second dimension to be permuted. static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node, unsigned FirstDim, unsigned SecondDim) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band && (unsigned)isl_schedule_node_band_n_member(Node.get()) > std::max(FirstDim, SecondDim)); auto PartialSchedule = isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get())); auto PartialScheduleFirstDim = PartialSchedule.at(FirstDim); auto PartialScheduleSecondDim = PartialSchedule.at(SecondDim); PartialSchedule = PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim); PartialSchedule = PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim); Node = isl::manage(isl_schedule_node_delete(Node.release())); return Node.insert_partial_schedule(PartialSchedule); } static isl::schedule_node createMicroKernel(isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) { Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1); Node = Node.parent().parent(); return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0); } /// Create the BLIS macro-kernel. /// /// We create the BLIS macro-kernel by applying a combination of tiling /// of dimensions of the band node and interchanging of two innermost /// modified dimensions. The values of MacroKernelParams's fields are used /// as tile sizes. /// /// @param Node The schedule node to be modified. /// @param MacroKernelParams Parameters of the macro kernel /// to be used as tile sizes. static isl::schedule_node createMacroKernel(isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 && MacroKernelParams.Kc == 1) return Node; int DimOutNum = isl_schedule_node_band_n_member(Node.get()); std::vector TileSizes(DimOutNum, 1); TileSizes[DimOutNum - 3] = MacroKernelParams.Mc; TileSizes[DimOutNum - 2] = MacroKernelParams.Nc; TileSizes[DimOutNum - 1] = MacroKernelParams.Kc; Node = tileNode(Node, "1st level tiling", TileSizes, 1); Node = Node.parent().parent(); Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1); Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1); return Node.child(0).child(0); } /// Get the size of the widest type of the matrix multiplication operands /// in bytes, including alignment padding. /// /// @param MMI Parameters of the matrix multiplication operands. /// @return The size of the widest type of the matrix multiplication operands /// in bytes, including alignment padding. static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) { auto *S = MMI.A->getStatement()->getParent(); auto &DL = S->getFunction().getParent()->getDataLayout(); auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType()); auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType()); auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType()); return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); } /// Get the size of the widest type of the matrix multiplication operands /// in bits. /// /// @param MMI Parameters of the matrix multiplication operands. /// @return The size of the widest type of the matrix multiplication operands /// in bits. static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) { auto *S = MMI.A->getStatement()->getParent(); auto &DL = S->getFunction().getParent()->getDataLayout(); auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType()); auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType()); auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType()); return std::max({ElementSizeA, ElementSizeB, ElementSizeC}); } /// Get parameters of the BLIS micro kernel. /// /// We choose the Mr and Nr parameters of the micro kernel to be large enough /// such that no stalls caused by the combination of latencies and dependencies /// are introduced during the updates of the resulting matrix of the matrix /// multiplication. However, they should also be as small as possible to /// release more registers for entries of multiplied matrices. /// /// @param TTI Target Transform Info. /// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MicroKernelParamsTy. /// @see MicroKernelParamsTy static MicroKernelParamsTy getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) { assert(TTI && "The target transform info should be provided."); // Nvec - Number of double-precision floating-point numbers that can be hold // by a vector register. Use 2 by default. long RegisterBitwidth = VectorRegisterBitwidth; if (RegisterBitwidth == -1) RegisterBitwidth = TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); auto ElementSize = getMatMulTypeSize(MMI); assert(ElementSize > 0 && "The element size of the matrix multiplication " "operands should be greater than zero."); auto Nvec = RegisterBitwidth / ElementSize; if (Nvec == 0) Nvec = 2; int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) / Nvec) * Nvec; int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr)); return {Mr, Nr}; } /// Determine parameters of the target cache. /// /// @param TTI Target Transform Info. static void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) { auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D; auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D; if (FirstCacheLevelSize == -1) { if (TTI->getCacheSize(L1DCache)) FirstCacheLevelSize = TTI->getCacheSize(L1DCache).value(); else FirstCacheLevelSize = static_cast(FirstCacheLevelDefaultSize); } if (SecondCacheLevelSize == -1) { if (TTI->getCacheSize(L2DCache)) SecondCacheLevelSize = TTI->getCacheSize(L2DCache).value(); else SecondCacheLevelSize = static_cast(SecondCacheLevelDefaultSize); } if (FirstCacheLevelAssociativity == -1) { if (TTI->getCacheAssociativity(L1DCache)) FirstCacheLevelAssociativity = TTI->getCacheAssociativity(L1DCache).value(); else FirstCacheLevelAssociativity = static_cast(FirstCacheLevelDefaultAssociativity); } if (SecondCacheLevelAssociativity == -1) { if (TTI->getCacheAssociativity(L2DCache)) SecondCacheLevelAssociativity = TTI->getCacheAssociativity(L2DCache).value(); else SecondCacheLevelAssociativity = static_cast(SecondCacheLevelDefaultAssociativity); } } /// Get parameters of the BLIS macro kernel. /// /// During the computation of matrix multiplication, blocks of partitioned /// matrices are mapped to different layers of the memory hierarchy. /// To optimize data reuse, blocks should be ideally kept in cache between /// iterations. Since parameters of the macro kernel determine sizes of these /// blocks, there are upper and lower bounds on these parameters. /// /// @param TTI Target Transform Info. /// @param MicroKernelParams Parameters of the micro-kernel /// to be taken into account. /// @param MMI Parameters of the matrix multiplication operands. /// @return The structure of type MacroKernelParamsTy. /// @see MacroKernelParamsTy /// @see MicroKernelParamsTy static MacroKernelParamsTy getMacroKernelParams(const llvm::TargetTransformInfo *TTI, const MicroKernelParamsTy &MicroKernelParams, MatMulInfoTy MMI) { getTargetCacheParameters(TTI); // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf, // it requires information about the first two levels of a cache to determine // all the parameters of a macro-kernel. It also checks that an associativity // degree of a cache level is greater than two. Otherwise, another algorithm // for determination of the parameters should be used. if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 && FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 && FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2)) return {1, 1, 1}; // The quotient should be greater than zero. if (PollyPatternMatchingNcQuotient <= 0) return {1, 1, 1}; int Car = floor( (FirstCacheLevelAssociativity - 1) / (1 + static_cast(MicroKernelParams.Nr) / MicroKernelParams.Mr)); // Car can be computed to be zero since it is floor to int. // On Mac OS, division by 0 does not raise a signal. This causes negative // tile sizes to be computed. Prevent division by Cac==0 by early returning // if this happens. if (Car == 0) return {1, 1, 1}; auto ElementSize = getMatMulAlignTypeSize(MMI); assert(ElementSize > 0 && "The element size of the matrix multiplication " "operands should be greater than zero."); int Kc = (Car * FirstCacheLevelSize) / (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize); double Cac = static_cast(Kc * ElementSize * SecondCacheLevelAssociativity) / SecondCacheLevelSize; int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac); int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr; assert(Mc > 0 && Nc > 0 && Kc > 0 && "Matrix block sizes should be greater than zero"); return {Mc, Nc, Kc}; } /// Create an access relation that is specific to /// the matrix multiplication pattern. /// /// Create an access relation of the following form: /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ] /// where I is @p FirstDim, J is @p SecondDim. /// /// It can be used, for example, to create relations that helps to consequently /// access elements of operands of a matrix multiplication after creation of /// the BLIS micro and macro kernels. /// /// @see ScheduleTreeOptimizer::createMicroKernel /// @see ScheduleTreeOptimizer::createMacroKernel /// /// Subsequently, the described access relation is applied to the range of /// @p MapOldIndVar, that is used to map original induction variables to /// the ones, which are produced by schedule transformations. It helps to /// define relations using a new space and, at the same time, keep them /// in the original one. /// /// @param MapOldIndVar The relation, which maps original induction variables /// to the ones, which are produced by schedule /// transformations. /// @param FirstDim, SecondDim The input dimensions that are used to define /// the specified access relation. /// @return The specified access relation. static isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim, unsigned SecondDim) { auto AccessRelSpace = isl::space(MapOldIndVar.ctx(), 0, 9, 3); auto AccessRel = isl::map::universe(AccessRelSpace); AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0); AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1); AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2); return MapOldIndVar.apply_range(AccessRel); } static isl::schedule_node createExtensionNode(isl::schedule_node Node, isl::map ExtensionMap) { auto Extension = isl::union_map(ExtensionMap); auto NewNode = isl::schedule_node::from_extension(Extension); return Node.graft_before(NewNode); } static isl::schedule_node optimizePackedB(isl::schedule_node Node, ScopStmt *Stmt, isl::map MapOldIndVar, MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams, MatMulInfoTy &MMI) { Scop *S = Stmt->getParent(); isl::set Domain = Stmt->getDomain(); // Create packed array. unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr; unsigned SecondDimSize = MacroParams.Kc; unsigned ThirdDimSize = MicroParams.Nr; ScopArrayInfo *PackedB = S->createScopArrayInfo(MMI.B->getElementType(), "Packed_B", {FirstDimSize, SecondDimSize, ThirdDimSize}); // Compute the access relation for copying from B to PackedB. isl::map AccRelB = MMI.B->getLatestAccessRelation(); isl::map AccRelPackedB = getMatMulAccRel(MapOldIndVar, 3, 7); AccRelPackedB = AccRelPackedB.set_tuple_id(isl::dim::out, PackedB->getBasePtrId()); // Create the copy statement and redirect access. ScopStmt *CopyStmt = S->addScopStmt(AccRelB, AccRelPackedB, Domain); MMI.B->setNewAccessRelation(AccRelPackedB); unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim()); assert(Dim >= 2); // Insert into the schedule tree. isl::map ExtMap = MapOldIndVar.project_out(isl::dim::out, 2, Dim - 2); ExtMap = ExtMap.reverse(); ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0); ExtMap = ExtMap.intersect_range(Domain); ExtMap = ExtMap.set_tuple_id(isl::dim::out, CopyStmt->getDomainId()); return createExtensionNode(Node, ExtMap); } static isl::schedule_node optimizePackedA(isl::schedule_node Node, ScopStmt *, isl::map MapOldIndVar, MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams, MatMulInfoTy &MMI) { isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); ScopStmt *Stmt = static_cast(InputDimsId.get_user()); isl::set Domain = Stmt->getDomain(); isl::id DomainId = Domain.get_tuple_id(); // Create the packed array. unsigned FirstDimSize = MacroParams.Mc / MicroParams.Mr; unsigned SecondDimSize = MacroParams.Kc; unsigned ThirdDimSize = MicroParams.Mr; ScopArrayInfo *PackedA = Stmt->getParent()->createScopArrayInfo( MMI.A->getElementType(), "Packed_A", {FirstDimSize, SecondDimSize, ThirdDimSize}); // Compute the access relation for copying from A to PackedA. isl::map AccRelA = MMI.A->getLatestAccessRelation(); isl::map AccRelPackedA = getMatMulAccRel(MapOldIndVar, 4, 6); AccRelPackedA = AccRelPackedA.set_tuple_id(isl::dim::out, PackedA->getBasePtrId()); // { MemrefA[] -> PackedA[] } isl::map PackedATranslator = AccRelPackedA.apply_domain(AccRelA); // Compute the domain for the copy statement. // Construct the copy statement domain out of the 3 outermost scatter // dimensions (to match the 3 band nodes surrounding the extension node) and // the array elements to copy (one statement instance per array element). // { Scatter[] } isl::set ScatterDomain = MapOldIndVar.intersect_domain(Domain).range(); // { Scatter[] -> OutermostScatter[] } isl::map OuterDomainMap = makeIdentityMap(ScatterDomain, true).project_out(isl::dim::out, 3, 6); // { Scatter[] -> MemrefA[] } isl::map CopyFrom = MapOldIndVar.reverse().apply_range(AccRelA); // { Scatter[] -> CopyStmt[] } isl::map DomainTranslator = OuterDomainMap.range_product(CopyFrom); // { CopyStmt[] } isl::set CopyDomain = DomainTranslator.range(); // Translate the access relations to the new domain. // { CopyStmt[] -> MemrefA[] } CopyFrom = CopyFrom.apply_domain(DomainTranslator); // { CopyStmt[] -> PackedA[] } isl::map CopyTo = CopyFrom.apply_range(PackedATranslator); // Create the copy statement and redirect access. ScopStmt *CopyStmt = Stmt->getParent()->addScopStmt(CopyFrom, CopyTo, CopyDomain); MMI.A->setNewAccessRelation(AccRelPackedA); // Insert into the schedule tree. // { Scatter[] -> CopyStmt[] } isl::map ExtScatterCopy = makeIdentityMap(CopyStmt->getDomain(), true); ExtScatterCopy = ExtScatterCopy.project_out(isl::dim::in, 3, 2); return createExtensionNode(Node, ExtScatterCopy); } /// Apply the packing transformation. /// /// The packing transformation can be described as a data-layout /// transformation that requires to introduce a new array, copy data /// to the array, and change memory access locations to reference the array. /// It can be used to ensure that elements of the new array are read in-stride /// access, aligned to cache lines boundaries, and preloaded into certain cache /// levels. /// /// As an example let us consider the packing of the array A that would help /// to read its elements with in-stride access. An access to the array A /// is represented by an access relation that has the form /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr), /// k mod Kc, j mod Nr, i mod Mr]. /// /// To ensure that elements of the array A are read in-stride access, we add /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using /// Scop::createScopArrayInfo, change the access relation /// S[i, j, k] -> A[i, k] to /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using /// the copy statement created by Scop::addScopStmt. /// /// @param Node The schedule node to be optimized. /// @param MapOldIndVar The relation, which maps original induction variables /// to the ones, which are produced by schedule /// transformations. /// @param MicroParams, MacroParams Parameters of the BLIS kernel /// to be taken into account. /// @param MMI Parameters of the matrix multiplication operands. /// @return The optimized schedule node. static isl::schedule_node optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar, MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams, MatMulInfoTy &MMI) { isl::id InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in); ScopStmt *Stmt = static_cast(InputDimsId.get_user()); Node = Node.parent().parent().parent().parent().parent().parent(); Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)); Node = Node.child(0); Node = optimizePackedB(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI); Node = Node.child(0); Node = optimizePackedA(Node, Stmt, MapOldIndVar, MicroParams, MacroParams, MMI); return Node.child(0).child(0).child(0).child(0).child(0); } /// Get a relation mapping induction variables produced by schedule /// transformations to the original ones. /// /// @param Node The schedule node produced as the result of creation /// of the BLIS kernels. /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel /// to be taken into account. /// @return The relation mapping original induction variables to the ones /// produced by schedule transformation. /// @see ScheduleTreeOptimizer::createMicroKernel /// @see ScheduleTreeOptimizer::createMacroKernel /// @see getMacroKernelParams static isl::map getInductionVariablesSubstitution(isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams, MacroKernelParamsTy MacroKernelParams) { auto Child = Node.child(0); auto UnMapOldIndVar = Child.get_prefix_schedule_union_map(); auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar); unsigned Dim = unsignedFromIslSize(MapOldIndVar.range_tuple_dim()); if (Dim > 9u) return MapOldIndVar.project_out(isl::dim::out, 0, Dim - 9); return MapOldIndVar; } /// Isolate a set of partial tile prefixes and unroll the isolated part. /// /// The set should ensure that it contains only partial tile prefixes that have /// exactly Mr x Nr iterations of the two innermost loops produced by /// the optimization of the matrix multiplication. Mr and Nr are parameters of /// the micro-kernel. /// /// In case of parametric bounds, this helps to auto-vectorize the unrolled /// innermost loops, using the SLP vectorizer. /// /// @param Node The schedule node to be modified. /// @param MicroKernelParams Parameters of the micro-kernel /// to be taken into account. /// @return The modified isl_schedule_node. static isl::schedule_node isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) { isl::schedule_node Child = Node.child(0); isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation(); isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range(); unsigned Dims = unsignedFromIslSize(Prefix.tuple_dim()); assert(Dims >= 1); Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1); Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr); Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr); isl::union_set IsolateOption = getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3); isl::ctx Ctx = Node.ctx(); auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll")); Options = Options.unite(getUnrollIsolatedSetOptions(Ctx)); Node = Node.as().set_ast_build_options(Options); Node = Node.parent().parent().parent(); IsolateOption = getIsolateOptions(Prefix, 3); Options = IsolateOption.unite(getDimOptions(Ctx, "separate")); Node = Node.as().set_ast_build_options(Options); Node = Node.child(0).child(0).child(0); return Node; } /// Insert "Loop Vectorizer Disabled" mark node. /// /// @param Node The child of the mark node to be inserted. /// @return The modified isl_schedule_node. static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) { auto Id = isl::id::alloc(Node.ctx(), "Loop Vectorizer Disabled", nullptr); return Node.insert_mark(Id).child(0); } /// Restore the initial ordering of dimensions of the band node /// /// In case the band node represents all the dimensions of the iteration /// domain, recreate the band node to restore the initial ordering of the /// dimensions. /// /// @param Node The band node to be modified. /// @return The modified schedule node. static isl::schedule_node getBandNodeWithOriginDimOrder(isl::schedule_node Node) { assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band); if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf) return Node; auto Domain = Node.get_universe_domain(); assert(isl_union_set_n_set(Domain.get()) == 1); if (Node.get_schedule_depth().release() != 0 || (unsignedFromIslSize(isl::set(Domain).tuple_dim()) != unsignedFromIslSize(Node.as().n_member()))) return Node; Node = isl::manage(isl_schedule_node_delete(Node.copy())); auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff(); auto PartialScheduleMultiPwAff = isl::multi_union_pw_aff(PartialSchedulePwAff); PartialScheduleMultiPwAff = PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set); return Node.insert_partial_schedule(PartialScheduleMultiPwAff); } static isl::schedule_node optimizeMatMulPattern(isl::schedule_node Node, const TargetTransformInfo *TTI, MatMulInfoTy &MMI) { assert(TTI && "The target transform info should be provided."); int DimOutNum = isl_schedule_node_band_n_member(Node.get()); assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest " "and, consequently, the corresponding scheduling " "functions have at least three dimensions."); Node = getBandNodeWithOriginDimOrder(Node); Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3); int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j; int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k; Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2); NewK = NewK == DimOutNum - 2 ? NewJ : NewK; Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1); auto MicroKernelParams = getMicroKernelParams(TTI, MMI); auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI); Node = createMacroKernel(Node, MacroKernelParams); Node = createMicroKernel(Node, MicroKernelParams); if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 || MacroKernelParams.Kc == 1) return Node; auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams, MacroKernelParams); if (MapOldIndVar.is_null()) return Node; Node = markLoopVectorizerDisabled(Node.parent()).child(0); Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams); return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams, MacroKernelParams, MMI); } /// Check if this node contains a partial schedule that could /// probably be optimized with analytical modeling. /// /// isMatrMultPattern tries to determine whether the following conditions /// are true: /// 1. the partial schedule contains only one statement. /// 2. there are exactly three input dimensions. /// 3. all memory accesses of the statement will have stride 0 or 1, if we /// interchange loops (switch the variable used in the inner loop to /// the outer loop). /// 4. all memory accesses of the statement except from the last one, are /// read memory access and the last one is write memory access. /// 5. all subscripts of the last memory access of the statement don't /// contain the variable used in the inner loop. /// If this is the case, we could try to use an approach that is similar to /// the one used to get close-to-peak performance of matrix multiplications. /// /// @param Node The node to check. /// @param D The SCoP dependencies. /// @param MMI Parameters of the matrix multiplication operands. static bool isMatrMultPattern(isl::schedule_node Node, const Dependences *D, MatMulInfoTy &MMI) { auto PartialSchedule = isl::manage( isl_schedule_node_band_get_partial_schedule_union_map(Node.get())); if (isl_schedule_node_band_n_member(Node.get()) < 3 || Node.get_schedule_depth().release() != 0 || isl_union_map_n_map(PartialSchedule.get()) != 1) return false; auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule); if (containsMatrMult(NewPartialSchedule, D, MMI)) return true; return false; } /// Get the dimension size. /// /// Return the size of the dimension @p Pos, which is obtained from @p SAI. /// Return -1 in the case of the first dimension of a multi-dimensional array, /// since the ScopArrayInfo class does not carry size information. /// /// @param SAI The information about the array. /// @param Pos The position of the dimension. /// @return The size of the dimension. static int getDimSize(const ScopArrayInfo *SAI, unsigned Pos) { if (Pos == 0) return -1; const llvm::SCEV *SCEVDimSize = SAI->getDimensionSize(Pos); assert(SCEVDimSize); auto *ConstantDimSize = dyn_cast(SCEVDimSize); assert(ConstantDimSize); auto *IntDimSize = dyn_cast(ConstantDimSize->getValue()); assert(IntDimSize); return IntDimSize->getSExtValue(); } /// Check whether the access relation has the specified form. /// /// Check that the access relation @p AccMap has the form T[I0, …, In], where /// indexes I0, …, In are specified by @p Dimensions. /// /// @param Domain The domain of the access relation. /// @param AccMap The access relation to be checked. /// @param Dimensions The permutation of the subset of the input dimensions. /// @return True if @p AccMap has the expected form and false, /// otherwise. static bool isCorrectAccessMap(isl::set Domain, isl::map AccMap, ArrayRef Dimensions) { isl::space Space = AccMap.get_space(); if (unsignedFromIslSize(Space.dim(isl::dim::out)) != Dimensions.size()) return false; // Create an access relation of the following form: // [I0, …, Im] -> [Il, …, In], where indexes // Il, …, In are specified by @p Dimensions. isl::map PossibleTensor = isl::map::universe(Space); unsigned DimInSize = unsignedFromIslSize(Space.dim(isl::dim::in)); for (unsigned i = 0; i < Dimensions.size(); i++) { const int InPos = Dimensions[i]; if ((InPos >= static_cast(DimInSize)) || (InPos < 0)) return false; PossibleTensor = PossibleTensor.equate(isl::dim::in, InPos, isl::dim::out, i); } AccMap = AccMap.intersect_domain(Domain); PossibleTensor = PossibleTensor.intersect_domain(Domain); // If AccMap != PossibleTensor here (the two maps have been gisted at // this point), it means that the writes are not complete, or in other // words, it is a Partial write and Partial writes must be rejected. return AccMap.is_equal(PossibleTensor); } /// Check whether the access represents the tensor contraction operand. /// /// Check that the access relation @p AccMap has the form T[i1, …, in]. /// Obtained indexes i1, …, in, their sizes and their permutation are stored /// into @p IndexSet, @p DimensionSizes, and @p Dimensions, respectively. /// /// @param Domain The domain of the access relation. /// @param AccMap The access relation to be checked. /// @param IndexSet The subset of the input dimensions. /// @param DimensionSizes Sizes of the input dimensions of @p Dimensions. /// @param Dimensions The permutation of the subset of the input dimensions. /// @return True if @p AccMap has the expected form and false, /// otherwise. static bool isTCOperandAcc(isl::set Domain, isl::map AccMap, SmallDenseSet &IndexSet, SmallVectorImpl &DimensionSizes, SmallVectorImpl &Dimensions) { isl::id Id = AccMap.get_tuple_id(isl::dim::out); const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(Id); assert(SAI && "AccMap should represent memory access"); // Fix values of output dimensions with respect to their positions. // In the case of the tensor contraction, values of output dimensions are // fixed and form a permutation of a subset of values of input dimensions. // // For example, in the case of Stmt[i][j][k] -> A[k][i], which represents // the operand of the tensor contraction, we get the following map by fixing // the output dimensions Stmt[1][j][0] -> A[0][1]. // // We store the permutation of the subset of the input dimensions {2, 0} into // @p Dimensions. // // The obtained permutation and the isCorrectAccessMap function are used to // check whether the access relation @p AccMap represents the tensor // contraction operand. For example, in the case of // Stmt[i][j][k] -> A[i-1][j+1], we get Stmt[1][0][k] -> A[0][1] and, // consequently, {1, 0}, which is rejected by isCorrectAccessMap, // since it corresponds to Stmt[i][j][k] -> A[j][i]. isl::map CheckMap = isl::manage(AccMap.copy()); unsigned OutDimNum = unsignedFromIslSize(CheckMap.dim(isl::dim::out)); for (unsigned i = 0; i < OutDimNum; i++) CheckMap = CheckMap.fix_si(isl::dim::out, i, i); // Try to obtain the permutation and sizes of corresponding input dimensions. Dimensions.assign(OutDimNum, -1); for (unsigned i : rangeIslSize(0, CheckMap.dim(isl::dim::in))) { isl::val Val = getConstant(CheckMap, isl::dim::in, i); if (!Val.is_int()) continue; int OutPos = -1; llvm::APInt ValAPInt = APIntFromVal(Val); if (ValAPInt.isSignedIntN(32)) OutPos = ValAPInt.getSExtValue(); if ((OutPos < 0) || (OutPos >= static_cast(OutDimNum)) || IndexSet.count(i)) return false; IndexSet.insert(i); Dimensions[OutPos] = i; if (DimensionSizes[i] <= 0) DimensionSizes[i] = getDimSize(SAI, OutPos); } return isCorrectAccessMap(Domain, AccMap, Dimensions); } /// Find the intersection of two sets. /// /// Find the intersection of the set @p A and the set @p B. /// /// @param A, B Sets to intersect. /// @return The set intersection. static SmallDenseSet intersect(const SmallDenseSet &A, const SmallDenseSet &B) { SmallDenseSet Intersection = A; set_intersect(Intersection, B); return Intersection; } /// Check whether the set is a superset. /// /// Check that the set @p A is a superset of @p B. /// /// @param A, B Sets to be checked. /// @return True if the set A is a superset of B. static bool isSuperset(const SmallDenseSet &A, const SmallDenseSet &B) { return intersect(A, B).size() == B.size(); } /// Find the union of two sets. /// /// Find the union of the set @p A and the set @p B. /// /// @param A, B Sets to unite. /// @return The set union. static SmallDenseSet unite(const SmallDenseSet &A, const SmallDenseSet &B) { SmallDenseSet Union = A; set_union(Union, B); return Union; } /// Determine the access that writes to the tensor, which contains /// the result of the tensor contraction. /// /// @param Domain The domain of the statement. /// @param Stmt The statement, which writes to memory. /// @param TCI The information about the tensor contraction. /// @param IandJIndexSet The set, which contains free indexes of tensors. /// @return The determined MemoryAccess, or nullptr if there is no necessary /// access within the SCoP. static MemoryAccess *getWriteAccess(isl::set Domain, ScopStmt *Stmt, TCInfoTy &TCI, SmallDenseSet &IandJIndexSet) { TCI.WriteToC = nullptr; SmallVector Accesses = getAccessesInOrder(*Stmt); for (MemoryAccess *MemA : reverse(Accesses)) { // A TC-like does not contain write scalar memory accesses if (!MemA->isLatestArrayKind()) return nullptr; // The last memory access should be a write memory access. if (!MemA->isWrite()) return nullptr; isl::map AccMap = MemA->getLatestAccessRelation(); if (!isTCOperandAcc(Domain, AccMap, IandJIndexSet, TCI.DimensionSizes, TCI.CDimensions)) return nullptr; return MemA; } return nullptr; } /// Determine an access, which reads elements of an operand of the tensor /// contraction /// /// @param MemAccessPtr The access, which reads elements of the tensor. /// @param IndexSet The set, which contains indexes of the tensors. /// @param IandJIndexSet The set, which contains free indexes of tensors. /// @param Dimensions The permutation of the subset of the input dimensions. /// @param TCI The information about the tensor contraction. /// @return True if the memory access @p MemAccessPtr corresponds /// to the tensor contraction. static bool setReadAccess(MemoryAccess *MemAccessPtr, const SmallDenseSet &IndexSet, const SmallDenseSet &IandJIndexSet, ArrayRef Dimensions, TCInfoTy &TCI) { if (!TCI.A) { // Probably IndexSet is a union of I and P sets. if (!isSuperset(IndexSet, TCI.P)) return false; // Obtain the set I. TCI.I = set_difference(IndexSet, TCI.P); if (!isSuperset(IandJIndexSet, TCI.I)) return false; // Obtain the set J. TCI.J = set_difference(IandJIndexSet, TCI.I); // Set the first operand of the tensor contraction. TCI.A = MemAccessPtr; llvm::replace(TCI.ADimensions, TCI.ADimensions.begin(), TCI.ADimensions.end(), Dimensions.begin(), Dimensions.end()); return true; } if (!TCI.B) { // IndexSet should be a union of J and P sets. if (unite(TCI.P, TCI.J) != IndexSet) return false; // Set the second operand of the tensor contraction. TCI.B = MemAccessPtr; llvm::replace(TCI.BDimensions, TCI.BDimensions.begin(), TCI.BDimensions.end(), Dimensions.begin(), Dimensions.end()); return true; } return false; } /// Check that all memory accesses of the statement, except from the last /// one, are read memory accesses, which read elements of operands of the tensor /// contraction and its result. /// /// @param Domain The domain of the statement. /// @param Stmt The statement, which writes to memory. /// @param TCI The information about the tensor contraction. /// @param IandJIndexSet The set, which contains free indexes of tensors. /// @return True if all read memory accesses of the statement @p Stmt correspond /// to the tensor contraction. static bool setReadAccesses(isl::set Domain, ScopStmt *Stmt, TCInfoTy &TCI, SmallDenseSet &IandJIndexSet) { TCI.A = nullptr; TCI.B = nullptr; TCI.ReadFromC = nullptr; SmallVector Accesses = getAccessesInOrder(*Stmt); for (auto *MemA = Accesses.begin(); *MemA != TCI.WriteToC; MemA++) { MemoryAccess *MemAccessPtr = *MemA; // All memory accesses, except from the last one, should be read memory // accesses. if (MemAccessPtr->isWrite()) return false; isl::map AccMap = MemAccessPtr->getLatestAccessRelation(); if (!MemAccessPtr->isLatestArrayKind()) { // Check whether the scalar read memory access is not partial. if (!Domain.is_subset(AccMap.domain())) return false; continue; return false; } // There is only one memory access, which reads elements of the result of // the tensor contraction. if (AccMap.is_equal(TCI.WriteToC->getLatestAccessRelation())) { if (TCI.ReadFromC) return false; TCI.ReadFromC = MemAccessPtr; continue; } SmallVector Dimensions; SmallDenseSet IndexSet; if (!isTCOperandAcc(Domain, AccMap, IndexSet, TCI.DimensionSizes, Dimensions)) return false; if (!setReadAccess(MemAccessPtr, IndexSet, IandJIndexSet, Dimensions, TCI)) return false; } // Check that there are read memory accesses, which read elements of operands // of the tensor contraction and its result. return TCI.ReadFromC && TCI.A && TCI.B; } /// Check accesses to operands of the tensor contraction. /// /// Check that accesses of the SCoP statement, which corresponds to /// the partial schedule @p PartialSchedule, represent accesses /// to the non-scalar operands of the tensor contraction. /// /// @param Domain The domain of the SCoP statement. /// @param PartialSchedule The partial schedule of the SCoP statement. /// @param TCI Parameters of the tensor contraction operands. /// @return True if the corresponding SCoP statement /// represents tensor contraction and false, /// otherwise. static bool containsOnlyTCAcc(isl::set Domain, isl::map PartialSchedule, TCInfoTy &TCI) { isl::id InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in); ScopStmt *Stmt = static_cast(InputDimsId.get_user()); // In region statements, the order of memory accesses execution is not // predictable at compile-time. if ((Stmt->size() <= 1) || Stmt->isRegionStmt()) return false; unsigned DimNum = unsignedFromIslSize(PartialSchedule.dim(isl::dim::in)); TCI.DimensionSizes.resize(DimNum); SmallDenseSet IandJIndexSet; TCI.WriteToC = getWriteAccess(Domain, Stmt, TCI, IandJIndexSet); if (!TCI.WriteToC) return false; if (intersect(IandJIndexSet, TCI.P).size() != 0) return false; if (!setReadAccesses(Domain, Stmt, TCI, IandJIndexSet)) return false; return true; } /// Check that dependency corresponds to the tensor contraction carried over /// loop dimension @p Dim. /// /// Check that the dependency has the form /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) -> /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP /// statement. For this purpose, we analyze the set @p DepDelta, which /// represents the differences between image elements and domain elements of /// the corresponding map. /// /// @param DepDelta The set contains the differences between image elements /// and corresponding domain elements of the map, which /// represents the dependency. /// @param Dim The position of the index ki. /// @param BoundDeltas In the case of indexes of ki, the difference between /// image elements and corresponding domain elements /// corresponds to the difference between lexicographic /// minimum and lexicographic maximum of the corresponding /// dimension of the domain of the statement. /// @param IndexSet Obtained indexes ki, which describe the dependency. /// @return True if dependencies correspond to the tensor contraction /// and false, otherwise. static bool isReductionCarriedOverDim(isl::set DepDelta, unsigned Dim, isl::pw_multi_aff BoundDeltas, const SmallDenseSet &IndexSet) { isl::space Space = DepDelta.get_space(); isl::set Superset = isl::set::universe(Space); for (unsigned i = 0; i < Dim; i += 1) Superset = Superset.fix_si(isl::dim::set, i, 0); Superset = Superset.fix_si(isl::dim::set, Dim, 1); // Check that the difference between the image element and the domain element // is equal to one in the case of the index ki. Image elements and // corresponding domain elements should be equal in the case of positions, // which are lower than the specified position. if (!DepDelta.is_subset(Superset)) return false; // Compute a set, which is used to analyze how values of // the domain are related to the map that describes the dependency. isl_pw_multi_aff *DepDeltaPW = isl_pw_multi_aff_from_set(DepDelta.copy()); BoundDeltas = BoundDeltas.add(isl::manage(DepDeltaPW)); isl_set *ComplementRawSet = isl_set_from_pw_multi_aff(BoundDeltas.release()); isl::set Complement = isl::manage(ComplementRawSet); for (unsigned i : rangeIslSize(Dim + 1, DepDelta.dim(isl::dim::set))) { if (!IndexSet.count(i)) { // Check the difference between the image element and the domain element // in the case of indexes, which do not describe the dependency. if (DepDelta.plain_get_val_if_fixed(isl::dim::set, i).is_zero()) continue; return false; } // In the case of other indexes, which describe the dependency, // the difference between the image element and the domain element // should be equal to the difference between lexicographic minimum and // lexicographic maximum of the domain of the statement. if (!Complement.plain_get_val_if_fixed(isl::dim::set, i).is_zero()) return false; } return true; } /// Check whether dependencies are over the complete domain. /// /// In the case of the tensor contraction RAW, WAW, WAR dependencies /// have the form /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) -> /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP /// statement. Consequently, the domain of the dependencies /// can be described as /// Domain / Domain ∩ S(…, max(kn),…) ∩ S(…, max(k(i + 1)),…), /// where Domain is the domain of the statement S. /// /// For example, in the case of the following tensor contraction, /// corresponding domains will have the following form. /// /// An example of the tensor contraction: /// for (i = 0; i < 1024; i++) /// for (j = 0; j < 1024; j++) /// for (l = 0; l < 64; ++l) /// for (w = 0; w < 64; ++w) /// C[i][j] += A[i][l][w] * B[w][j][l]; /// /// The domain of the statement: /// { S[i0, i1, i2, i3] : i0 >= 0 and i0 <= 1023 and /// i1 >= 0 and i1 <= 1023 and /// i2 >= 0 and i2 <= 63 and /// i3 >= 0 and i3 <= 63 } /// /// The domain of the dependencies: /// { S[i0, i1, i2, i3] : (i0 >= 0 and i0 <= 1023 and /// i1 >= 0 and i1 <= 1023 and /// i2 >= 0 and i2 <= 63 and /// i3 >= 0 and i3 <= 62) or /// (i3 = 63 and i0 >= 0 and i0 <= 1023 and /// i1 >= 0 and i1 <= 1023 and /// i2 >= 0 and i2 <= 62) } /// /// @param Domain The domain of the statement. /// @param DepsForStmt RAW and RED dependencies for the statement. /// @param UpperBound The lexicographic maximum of the elements in /// the @p Domain. /// @param IndexSet Obtained indexes ki, which describe the dependencies. /// @return True if dependencies are over the complete domain /// and false, otherwise. static bool areDepsOverCompleteDomain(isl::set Domain, isl::map DepsForStmt, isl::pw_multi_aff UpperBound, SmallDenseSet &IndexSet) { isl_set *UpperBoundRawSet = isl_set_from_pw_multi_aff(UpperBound.copy()); isl::set UpperBoundSet = isl::manage(UpperBoundRawSet); isl::set DomainRed = isl::manage(Domain.copy()); for (const auto It : IndexSet) { isl::val FixedVal = UpperBoundSet.plain_get_val_if_fixed(isl::dim::set, It); if (FixedVal.is_nan()) return false; DomainRed = isl::manage( isl_set_fix_val(DomainRed.copy(), isl_dim_set, It, FixedVal.release())); } return DepsForStmt.domain().intersect(Domain).is_equal( Domain.subtract(DomainRed)); } /// Check that dependencies correspond to the tensor contraction. /// /// Check that there are only true dependencies of the form /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) -> /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP /// statement represented by @p Schedule. Such dependencies are produced by /// the tensor contraction. Obtained indexes ki are stored into @p IndexSet. /// /// The form of anti and output dependencies is specified implicitly by /// the form the SCoP statement, which is checked by subsequent analysis. /// /// @param Schedule The schedule of the SCoP statement. /// @param D The SCoP dependencies. /// @param Domain The domain of the statement. /// @param IndexSet Obtained indexes ki, which describe the dependencies. /// @return True if dependencies correspond to the tensor contraction /// and false, otherwise. static bool containsOnlyTcDeps(isl::map Schedule, const Dependences *D, SmallDenseSet &IndexSet, isl::set Domain) { IslMaxOperationsGuard MaxOpGuard(Schedule.ctx().get(), OptComputeOut); isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW | Dependences::TYPE_RED); isl::space DomainSpace = Schedule.get_space().domain(); isl::space Space = DomainSpace.map_from_domain_and_range(DomainSpace); isl::map DepsForStmt = Dep.extract_map(Space); isl::set DepDeltas = DepsForStmt.deltas(); isl::size DeltasDimNum = DepDeltas.dim(isl::dim::set); isl::pw_multi_aff LowerBound = Domain.lexmin_pw_multi_aff(); isl::pw_multi_aff UpperBound = Domain.lexmax_pw_multi_aff(); isl::pw_multi_aff BoundDeltas = UpperBound.sub(LowerBound); for (int i : reverse(rangeIslSize(0, DeltasDimNum))) { // In the case of the tensor contraction, the difference between image // elements and domain elements lies on a hyperplane where a dimension // has the fixed value one. isl::set Intersection = DepDeltas.fix_si(isl::dim::set, i, 1); if (Intersection.is_empty()) continue; if (!isReductionCarriedOverDim(Intersection, i, BoundDeltas, IndexSet)) return false; IndexSet.insert(i); DepDeltas = DepDeltas.subtract(Intersection); } // In the case of the tensor contraction, all dependencies should have // the previously described form. if ((unsignedFromIslSize(DeltasDimNum) == 0) || !DepDeltas.is_empty()) return false; return areDepsOverCompleteDomain(Domain, DepsForStmt, UpperBound, IndexSet); } /// Check if the SCoP statement could probably be optimized with analytical /// modeling. /// /// containsTCInfoTy tries to determine whether the following conditions /// are true: /// /// 1. The last memory access modeling an array, MA1, represents writing to /// memory and has the form S(..., I, ..., J, ...) -> M(shuffle(I, J)), /// where S is the SCoP statement under consideration and shuffle(I, J) /// is a permutation of indexes of sets I and J. /// 2. There are only true dependencies of the form /// S(..., ki, max(k(i + 1)), ..., max(kn), ...) -> /// S(..., ki + 1, min(k(i + 1)), ..., min(kn), ...), where S is the SCoP /// statement represented by @p Schedule and ki are indexes of the set P. /// 3. SCoP contains an arbitrary number of reads from constants and only three /// access relations, MA2, MA3, and MA4 that represent reading from memory /// and have the form /// S(..., I, ..., P, ...) -> M(shuffle(I, P)), /// S(..., P, ..., J, ...) -> M(shuffle(J, P)), /// S(...) -> M(shuffle(I, J)), respectively. /// /// @param PartialSchedule The PartialSchedule that contains a SCoP statement /// to check. /// @param D The SCoP dependencies. /// @param TCI Parameters of the tensor contraction operands. /// @param Domain The domain of the statement. /// @return True if dependencies and memory accesses correspond to the tensor /// contraction and false, otherwise. static bool containsTCInfoTy(isl::map PartialSchedule, const Dependences *D, TCInfoTy &TCI, isl::set Domain) { if (!containsOnlyTcDeps(PartialSchedule, D, TCI.P, Domain)) return false; // TODO: handle cases of scalar multiplication if needed. if (TCI.P.size() == 0) return false; if (!containsOnlyTCAcc(Domain, PartialSchedule, TCI)) return false; // TODO: handle cases of GEMV if needed. if ((TCI.I.size() == 0) || (TCI.J.size() == 0)) return false; return true; } /// Check if this node contains a partial schedule that could /// probably be optimized with analytical modeling. /// /// isTCPattern is used to determine whether the SCoP represents a TC-like /// kernel [1], which is a perfectly nested set of loops, with a data usage /// pattern that is similar to that produced by the tensor contraction. /// /// A TC-like kernel can be defined as follows: /// /// 1. It satisfies the requirements of the polyhedral model. /// 2. Without loss of generality, it contains three nonempty bundles of /// one-dimensional for-loops with induction variables that are grouped into /// bundles I = i0...i(r-1), J = j0..j(s-1), and P = p0...p(t-1), and they /// are incremented by one. /// 3. The innermost loop body can be represented as a statement of the form /// C(shuffle(I, J)) = E(A(shuffle(I, P)), B(shuffle(P, J)), /// C(shuffle(I, J))), where A(shuffle(I, P)), B(shuffle(P, J)), /// C(shuffle(I, J)) are accesses to tensors A, B, C, respectively, /// shuffle(I, J), shuffle(I, P), and shuffle(P, J) are permutations of the /// enclosed indices, and E is an expression that contains reads from /// the tensors A, B, C, and an arbitrary number of reads from constants /// with respect to bundles I, J, and P. /// /// TC can be considered as a particular case of a TC-like kernel. /// /// The order of loops with indexes from P should be preserved. Otherwise, /// isTCPattern should check if a commutative operation is used. /// /// isTCPattern performs the following steps to check whether the SCoP /// corresponds to a definition of a TC-like kernel: /// /// 1. Checks that the node is the innermost band node. /// 2. Checks that the partial schedule contains only one statement. /// 3. Check that all ancestors of the node contain all band nodes for /// the statement and only mark nodes interleave such band nodes. This /// corresponds to a straightforward implementation of TC. /// 4. Analyses the dependencies to determine contraction dimensions. /// 5. Check that the last memory access modeling an array, represents writing /// to the result of the TC-like kernel. /// 6. Check that SCoP contains only three access relations that represent /// reading of the operands of the TC-like kernel and an arbitrary number of /// reads from constants. /// /// [1] - Gareev R., Grosser T., Kruse M. High-Performance Generalized Tensor /// Operations: A Compiler-Oriented Approach // ACM Transactions /// Architecture and Code Optimization (TACO). 2018. /// Vol. 15, no. 3. P. 34:1–34:27. DOI: 10.1145/3235029. /// /// If this is the case, we could logically represent tensors as matrices and /// apply algorithms, which are used to get close-to-peak performance of /// matrix multiplications in manually tuned BLAS libraries (e.g., BLIS). /// /// @param Node The node to check. /// @param D The SCoP dependencies. /// @param TCI Parameters of the tensor contraction operands. static bool isTCPattern(isl::schedule_node Node, const Dependences *D, TCInfoTy &TCI) { Node = Node.child(0); isl::union_map PartialSchedule = Node.get_prefix_schedule_union_map(); isl::union_set Domain = Node.domain(); Node = Node.parent(); // The partial schedule should contain only one statement. // TODO: This constraint should not be intrinsic to the algorithm. if (isl_union_set_n_set(Domain.get()) != 1) return false; isl_schedule_node_type NodeType = isl_schedule_node_get_type(Node.get()); // Check that all ancestors of the node contain all band nodes for // the statement, which represents the TC-like kernel, and only mark nodes // interleave such band nodes. This corresponds to a straightforward // implementation of TC with/without DeLICM applied. // // For example, this covers the matrix multiplication pattern after a full // run of -polly-optree and -polly-delicm, where the write access is not // through the original memory access, but trough a PHI node that was // delicmed. Subsequently, such band nodes will be replaced by a single band // node. // // The corresponding schedule can be the following, where Stmt_for_body8 // contains the matrix multiplication: // // domain: "{ Stmt_for_body8[i0, i1, i2] : 0 <= i0 <= 1599 and // 0 <= i1 <= 1799 and // 0 <= i2 <= 2199; // Stmt_for_body3[i0, i1] : 0 <= i0 <= 1599 and // 0 <= i1 <= 1799; // Stmt_for_body3_last[i0, i1] : 0 <= i0 <= 1599 and // 0 <= i1 <= 1799 }" // child: // sequence: // - filter: "{ Stmt_for_body3[i0, i1] }" // child: // schedule: "[{ Stmt_for_body3[i0, i1] -> [(i0)] }, // { Stmt_for_body3[i0, i1] -> [(i1)] }]" // permutable: 1 // coincident: [ 1, 1 ] // - filter: "{ Stmt_for_body3_last[i0, i1] }" // child: // schedule: "[{ Stmt_for_body3_last[i0, i1] -> [(i0)] }, // { Stmt_for_body3_last[i0, i1] -> [(i1)] }]" // permutable: 1 // coincident: [ 1, 1 ] // - filter: "{ Stmt_for_body8[i0, i1, i2] }" // child: // schedule: "[{ Stmt_for_body8[i0, i1, i2] -> [(i0)] }, // { Stmt_for_body8[i0, i1, i2] -> [(i1)] }, // { Stmt_for_body8[i0, i1, i2] -> [(i2)] }]" // permutable: 1 // coincident: [ 1, 1, 0 ] // while (NodeType != isl_schedule_node_domain) { if (NodeType == isl_schedule_node_filter) { if (!Node.parent().isa() || !Node.parent().parent().isa()) return false; break; } if ((NodeType != isl_schedule_node_band) && (NodeType != isl_schedule_node_mark)) return false; Node = Node.parent(); NodeType = isl_schedule_node_get_type(Node.get()); } isl::map PartialScheduleMap = isl::map::from_union_map(PartialSchedule); if (containsTCInfoTy(PartialScheduleMap, D, TCI, isl::set(Domain))) return true; return false; } } // namespace isl::schedule_node polly::tryOptimizeMatMulPattern(isl::schedule_node Node, const llvm::TargetTransformInfo *TTI, const Dependences *D) { TCInfoTy TCI; if (PMBasedTCOpts && isTCPattern(Node, D, TCI)) LLVM_DEBUG(dbgs() << "The tensor contraction pattern was detected\n"); MatMulInfoTy MMI; if (PMBasedMMMOpts && isMatrMultPattern(Node, D, MMI)) { LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n"); return optimizeMatMulPattern(Node, TTI, MMI); } return {}; }